Real-Time X-Ray Studies of Materials Processes
Our research investigates how materials evolve on atomic and nano- length scales during growth, patterning or electrochemical function using real-time x-ray techniques. Many of the experiments use the high brightness of synchrotron x-ray sources – the National Synchrotron Light Source (NSLS-II) at Brookhaven National Laboratory on Long Island and the Advanced Photon Source (APS) at Argonne National Laboratory outside of Chicago. Where possible, our research makes contact with fundamental theory and simulation.
![Real-Time X-Ray Studies](https://edit.bu.edu/research_description/images/0/35_d285718_small.jpg)
In the last few years, our detailed interest has been in understanding surface and thin film processes. Many of our in-situ studies utilize a unique ultra-high vacuum growth and surface modification facility that we have helped develop at the NSLS-II. We have been using it to examine surface morphology evolution during ion bombardment (which can cause the spontaneous growth of surface nanostructures) and issues related to the growth of wide-bandgap group III-V semiconductor films using atomic layer epitaxy (in collaboration with the Eddy group at the Naval Research Laboratory).
Increasingly our experiments utilize coherent x-ray scattering, which provides the ability to probe nanoscale dynamics during growth and patterening. Partially coherent x-ray beams are created using small (few microns) slits in conjunction with a high-brilliance 3rd generation synchrotron source. The disorder on the surface produces speckle patterns in the scattered x-ray intensity. The evolution of the speckle pattern can then be related to the underlying dynamics of structural changes.