SU(2)-invariant spin liquids on the triangular lattice with spinful Majorana excitations
This event is part of the Condensed Matter Theory Seminar Series.
Abstract: In this talk I will describe a new class of spin liquids with global SU(2) spin rotation symmetry in spin 1/2 systems on the triangular lattice, which have real Majorana fermion excitations carrying spin S = 1. The simplest translationally-invariant mean-field state on the triangular lattice breaks time-reversal symmetry and is stable to fluctuations. It generically possesses gapless excitations along 3 Fermi lines in the Brillouin zone. These intersect at a single point where the excitations scale with a dynamic exponent z = 3. An external magnetic field has no orbital coupling to the SU(2) spin rotation-invariant fermion bilinears that can give rise to a transverse thermal conductivity, thus leading to the absence of a thermal Hall effect. The Zeeman coupling is found to gap out two-thirds of the z = 3 excitations near the intersection point and this leads to a suppression of the low temperature specific heat, the spin susceptibility and the Wilson ratio. I will also describe physical properties in the presence of weak disorder and discuss possible connections to recent experiments on organic insulators.
Reference: arXiv:1102.3690