Bose-Hubbard Models with Synthetic Spin-Orbit Coupling: Mott Insulators, Spin Textures, and Superfluidity

Speaker: Nandini Trivedi, Ohio State

When: October 28, 2014 (Tue), 03:30PM to 04:30PM (add to my calendar)
Location: SCI 109
Hosted by: David Campbell
View the poster for this event.

This event is part of the Physics Department Colloquia Series.

Motivated by the experimental realization of synthetic spin-orbit coupling for ultracold atoms, we investigate the phase diagram of the Bose-Hubbard model in a non-Abelian gauge field in two dimensions. Using a strong coupling expansion in the combined presence of spin-orbit coupling and tunable interactions, we find a variety of interesting magnetic Hamiltonians in the Mott insulator (MI), which support magnetic textures such as spin spirals and vortex and Skyrmion crystals. An inhomogeneous mean-field treatment shows that the superfluid (SF) phases inherit these exotic magnetic orders from the MI and display, in addition, unusual modulated current patterns. We present a slave-boson theory which gives insight into such intertwined spin-charge orders in the SF, and discuss signatures of these orders in Bragg scattering, in situ microscopy, and dynamic quench experiments.