Many-body localization: Local integrals of motion, area-law entanglement, and quantum dynamics
This event is part of the Condensed Matter Theory Seminar Series.
Abstract: We demonstrate that the many-body localized phase is characterized by the existence of infinitely many local conservation laws. We argue that many-body eigenstates can be obtained from product states by a sequence of nearly local unitary transformation, and therefore have an area-law entanglement entropy, typical of ground states. Using this property, we construct the local integrals of motion in terms of projectors onto certain linear combinations of eigenstates [1]. The local integrals of motion can be viewed as effective quantum bits which have a conserved z-component that cannot decay. Thus, the dynamics is reduced to slow dephasing between distant effective bits. For initial product states, this leads to a characteristic slow power-law decay of local observables, which is measurable experimentally, as well as to logarithmic in time growth of entanglement entropy [2,3]. We support our findings by numerical simulations of random-field XXZ spin chains. Our work shows that the many-body localized phase is locally integrable, reveals a simple entanglement structure of eigenstates, and establishes the laws of dynamics in this phase.
[1] M. Serbyn, Z. Papic, D. A. Abanin, Phys. Rev. Lett. 111, 127201 (2013). [2] Jens H. Bardarson, Frank Pollmann, and Joel E. Moore, Phys. Rev. Lett. 109, 017202 (2012). [3] M. Serbyn, Z. Papic, D. A. Abanin, Phys. Rev. Lett. 110, 260601 (2013)