Next: Problem 37
Up: Chapter 31
Previous: Question 13
Iodine 13153I is used in diagnostic and therapeutic techniques
in the treatment of thyroid disorders. This isotope has a half-life
of 8.04 days. What percentage of an initial sample of 13153I
remains after 30.0 days?
SOLUTION: Radioactive decay is exponential; that is, if No is the
original number of particles, and N(t) is the number of particles at
time t, then
![\begin{displaymath}
N(t) = N_o e^{-\lambda t}\end{displaymath}](img1.gif)
Half-life T1/2 is defined as the time it takes for there to be
remaining half the original number of particles; that is,
![\begin{displaymath}
\frac{N(T_{1/2})}{N_o} = \frac{1}{2} ,\end{displaymath}](img2.gif)
and, combining with the first equation,
![\begin{displaymath}
\frac{1}{2} = e^{-\lambda T_{1/2}}\end{displaymath}](img3.gif)
![\begin{displaymath}
ln \left ( \frac{1}{2} \right )= -\lambda T_{1/2}\end{displaymath}](img4.gif)
![\begin{displaymath}
ln 2 = \lambda T_{1/2}\end{displaymath}](img5.gif)
(since ln(a/b) = ln(a) - ln(b), and ln(1) = 0). So, we see that
we can relate the decay constant to the half-life
![\begin{displaymath}
\lambda = \frac{ln 2}{T_{1/2}} = \frac{0.693}{T_{1/2}} ,\end{displaymath}](img6.gif)
and, in our case,
![\begin{displaymath}
\lambda = \frac{0.693}{8.04 days} .\end{displaymath}](img7.gif)
We want the percentage of the original sample remaining after
30 days, or, in other words, we want the ratio N(30 days)/No.
![\begin{displaymath}
\frac{N(30 days)}{N_o} = e^{-\left ( \frac{0.693}{8.04 days}
\right ) 30 days} = 0.0753 ,\end{displaymath}](img8.gif)
so the percentage remaining is 7.53%.
Scott Lanning
4/23/1998