Mathematical Physics Homework 4. Topology

1. Considering complements with respect to some fixed set \(X \), prove that the complement of an arbitrary union of sets is the intersection of the complements of those sets.

2. Consider \(A \subseteq B \). Does \(A \subseteq A' \) imply \(\varphi[A] \subseteq \varphi[A'] \)? Does \(B \subseteq B' \) imply \(\varphi^{-1}[B] \subseteq \varphi^{-1}[B'] \)?

3. Prove that closed sets have the properties claimed on page 1 of the notes.

4. Prove that if objects are topological spaces and morphisms are continuous mappings, that this is a category.

5. Prove that the open sets of a metric space as defined in example 4 on page 2 is, in fact, a topology.

6. Prove that every open subset of the real line is a union of open intervals.

7. Prove that every subset of the real line is an intersection of open sets (it’s easier than it sounds).

8. Let \(\mathbb{R} \xrightarrow{\varphi} \mathbb{R}^2 \) be given by \(\varphi(r) = (\cos r, \sin r) \). Show that \(\varphi \) is continuous.

9. Find an isomorphism from the subspace \((0,1)\) of the real line to \(\mathbb{R} \).

10. Work out the details of the decomposition of \(X \xrightarrow{\varphi} Y \) on page 7 of the notes.

11. Prove that monics in the category of topological spaces are 1-1 functions and epics are onto functions. Prove that the characterization of isomorphisms on page 7 of the notes is correct.

12. If \(A \) is a subset of topological space \(X \), show that in the standard inherited topology, closed sets in \(A \) are sets of the form \(A \cap C \) with \(C \) closed in \(X \).

13. Suppose that \(A \) is a collection of subsets of a set \(X \) which is closed under pairwise intersection and which includes both \(X \) and the empty set. Prove that arbitrary unions of sets in \(A \) is the topology generated by \(A \).

14. The direct product of topological spaces \(X \) and \(Y \) is a certain topology on the cartesian product \(X \times Y \). This space is defined as the topology generated by sets \(\alpha^{-1}[O_X] \) and \(\beta^{-1}[O_Y] \) where \(\alpha \) and \(\beta \) are the standard projections and \(O_X \) and \(O_Y \) are open sets in \(X \) and \(Y \) respectively. Geroch then notes that this topology is arbitrary unions of sets \(\alpha^{-1}[O_X] \cap \beta^{-1}[O_Y] \). Why is this true?

15. For navigation purposes, it would be convenient to have a continuous “smooth” invertible mapping from the surface of the earth to the plane. Is this possible? If not, why not?
16. Let X be a set with the discrete topology. When is X compact?

17. Prove that \mathbb{R} does not have the same topology as \mathbb{R}^2 (hint: consider “removing a point from \mathbb{R}”).

18. Prove that the real line is connected (see Geroch if you get stuck).