Vector Spaces (S. Younus) Chapter Ch. 9, 10, 11, 13

A real (complex) vector space \(V \) is an abelian group with bilinear product \(\mathbb{R} \times V \to V \) \((c \times v + a \times v') \to V \) satisfying \((a + c)v = a(v) + c(v) \) and \(1 \times v = v \).

The category of real (complex) vector spaces consists of

Objects: real (complex) vector spaces

Morphisms: linear maps \(V \to W \) \(\varphi(v) = \varphi(v) + \varphi(v) \)

In this category

\(\text{monomorphisms } \iff \text{one-to-one linear maps } \iff \text{Ker } \varphi = \{ 0 \} \)

\(\text{epimorphisms } \iff \text{onto linear maps } \iff \text{Im } \varphi = W \)

\(\text{isomorphisms } \iff \text{bi-invertible linear maps } \iff \text{Ker } \varphi = \{ 0 \} \) and \(\text{Im } \varphi = W \).

The cartesian product \(V \times W \) with the obvious vector space structure is denoted \(V \oplus W \) and is both direct sum and direct product.

\(\text{Mor } (V, W) \) is also a vector space with \((f + g)(v) = f(v) + g(v) \) etc.

A free construction

\[S \xleftarrow{\alpha} V \xrightarrow{\beta} W \]

\(\varphi(f) = \sum_{s \in S} \varphi(s) f(s) \)

Subset \(K \) of \(V \) is independent if \(a_j k_j = 0 \Rightarrow a_j = 0 \) \([\text{finite sum over repeated indices}].\)

Subset \(K \) of \(V \) spans \(V \) if \(v = a_j k_j \) for all \(v \in V \).

Subset \(K \) of \(V \) is a basis if \(K \) is independent and spans \(V \).

A vector space \(V \) has a basis \(\iff V \) is the free vector space on some set.

Theorem: Every vector space has a basis.

Theorem: For free vector spaces \(S \to V \) and \(S' \to V' \), \(\text{uses Zorn's lemma } \) \(V \cong V' \Rightarrow S \cong S' \).
Subspaces

Just as with groups, \(W \subseteq V \) is called a subspace if it is a vector space in its own. Also, just as with groups, if \(V \subseteq U \), ker \(y \) and \(\text{Im} \ y \) are subspaces. All subspaces are normal, so \(V/W \) always exists.

If \(W = \ker y \), then \(y \) is also a monomorphism. If \(y \) is also epi, then \(V/W \cong Z \).

Example: \(V = \mathbb{R}^3 \)

\(W \) is a subspace

\(V/W \) is the set of lines parallel to \(W \)

\(V/W \cong x-y \) plane

Subspaces \(U \) and \(W \) are complementary in \(V \) if, for every \(v \in V \), \(v = u + w \) for some \(u \in U \), \(w \in W \), and if \(u + w = 0 \) \(\Rightarrow u = w = 0 \).

Theorem (Gersch): Complementary subspaces exist.

Theorem: If \(U \) and \(W \) are complementary in \(V \), then \(V \cong U \oplus W \).

Proof. Let linear \(y : (u,w) \mapsto u+w \) be a mapping from \(U \oplus W \) to \(V \).

Since \(U \) and \(W \) are complementary, \(y \) is epi. Suppose \(y((u,w)) = y((u',w')) \). Then \(u+w = u'+w' \Rightarrow (u-u') + (w-w') = 0 \Rightarrow u = u', w = w' \Rightarrow y \) is mono \(\Rightarrow V \cong U \oplus W \).

Example: \(V = \text{Mat} \left(\mathbb{C}^{2 \times 2}, \mathbb{C} \right) \), \(A \subset \text{Mat} \left(\mathbb{C}^{2 \times 2}, \mathbb{C} \right) \)

\(U = \{ f \in V : f(x) = 0 \text{ for } x \in A \} \) \(\text{U} \) and \(W \) are complementary

\(W = \{ f \in V : f(x) = 0 \text{ for } x \notin A \} \)
Georg No. 83.

Given α, β, is there a morphism λ as indicated that causes the triangle to commute?

If so, when is it unique?

Answer: Such a morphism exists if and only if $\ker \alpha \subseteq \ker \beta$.

Proof. Suppose $V \xrightarrow{\gamma} W$ causes the diagram to commute.

Then $\ker \beta = \ker(\alpha \circ \gamma) \subseteq \ker \alpha$.

Suppose that $\ker \alpha \subseteq \ker \beta$. Define a morphism

$\lambda : \mathrm{im} \alpha \to \mathrm{im} \beta$ by

$\lambda : \alpha(u) \mapsto \beta(u)

Notice that $\alpha(u) = \alpha(u') \Rightarrow u - u' \in \ker \alpha \Rightarrow u - u' \in \ker \beta

\Rightarrow \beta(u) = \beta(u') \Rightarrow \lambda(\alpha(u)) = \lambda(\alpha(u')) \Rightarrow \lambda$ is a function.

λ is also linear since $\lambda(\alpha(u) + \alpha(u')) = \lambda(\alpha(u + u')) = \beta(u) + \beta(u') = \lambda(\alpha(u)) + \lambda(\alpha(u'))$.

Let $V' \cong \text{im} \alpha \oplus V'$ where V' is complementary to $\text{im} \alpha$.

$W \cong \text{im} \beta \oplus W'$ where W' is complementary to $\text{im} \beta$.

Consider

$\text{im} \alpha \rightarrow \text{im} \alpha \oplus V' \leftarrow V'$

$x \downarrow \quad \downarrow x$.

$\text{im} \beta \rightarrow \text{im} \beta \oplus W' \leftarrow W'$

Since there is always a morphism $x : V' \rightarrow W'$, x solves the problem. Also, there will be more than one x unless there is only one $x : V' \rightarrow W'$, e.g. if $V' = \{a\} \times W, W \times \{b\}$, e.g. when $\alpha \circ \beta$ is epi.

If β is epi, x is unique. Also, if α is epi, λ is uniquely determined by the triangle commuting. QED.
Duals

Given a vector space \(V \), \(\text{M} \nu (V, \mathbb{R}) \) \("V^*"\) is called the dual of \(V \). Notice that because of the free construction,

\[
\begin{array}{ccc}
S & \rightarrow & V \\
\downarrow f & & \downarrow g \\
\rightarrow & & \rightarrow \\
& & \mathbb{R}
\end{array}
\]

\(f \mapsto g \) is an isomorphism \(\text{M} \nu (S, \mathbb{R}) \cong V^* \).

Given \(V \rightarrow W \), the dual lets us also define \(V^* \leftarrow W^* \) by

\[g^*: f \mapsto f \circ g \]

Example: Let \(V \) be the vector space of continuous functions from \(C_0, [0,1] \) to \(\mathbb{R} \). For each \(m \in V \), we can define

\[f \mapsto \int_0^1 f(x) m(x) \, dx \quad V \rightarrow \mathbb{R} \text{ i.e. } \in V^* \]

\(V \) is isomorphic to such elements, but this is not all of \(V^* \! \)

For example, for any fixed \(a \in C_0, [0,1] \),

\[f \mapsto f(a) \]

is linear, but this element of \(V^* \) is not \(\int_0^1 f(x) m(x) \, dx \) for any \(m \in C_0, [0,1] \) [it would for \(m(x) = \delta(x-a) \), but \(\delta(x-a) \) is not a function].

For finite dimensional vector spaces, \(V \cong V^{**} \). In general, Grothendieck proves that \(V \cong V^{**} \) iff \(V \) is finite dimensional.
Exercise #83.

Show that \((V \oplus W)^* \cong V^* \oplus W^*\).

Consider the direct sum

\[
\begin{array}{c}
V \xrightarrow{\alpha} V \oplus W \xleftarrow{\beta} W \\
\downarrow \quad \downarrow \gamma \quad \downarrow \delta \\
\quad f \quad \quad \quad \quad \quad R \quad \quad \quad \quad \quad g
\end{array}
\]

This constitutes an invertible map \(\Phi : (f, g) \mapsto \alpha f + \beta g\) from \(V^* \oplus W^*\) to \((V \oplus W)^*\). \(\Phi\) is also linear, so \(V^* \oplus W^* \cong (V \oplus W)^*\).
Example.

Suppose that \(V \xrightarrow{\phi} W \) is a monomorphism. We want to show that \(\gamma^*: W^* \rightarrow V^* \), \(\gamma^*: f \mapsto f \circ \phi \) is epi. Let \(\gamma \) be any element of \(V^* \).

Since \(\gamma \) is mono, \(\ker \gamma \subseteq \ker \phi \), a \(\bar{\phi} \) exists s.t.

\[
\begin{array}{ccc}
V & \xrightarrow{\phi} & W \\
\downarrow \phi & & \downarrow \bar{\phi} \\
\gamma & \rightarrow & \gamma \\
\end{array}
\]

commutes. Then \(\gamma = \gamma^*(\bar{\phi}) \Rightarrow \gamma^* \) is epi.

On the other hand, if \(\gamma \) is epi, then

\[
\begin{array}{ccc}
V & \xrightarrow{\phi} & W \\
\downarrow \phi & & \downarrow \phi \\
\gamma^*(\phi) & \rightarrow & \gamma^* \\
\end{array}
\]

commutes, \(\Rightarrow \phi \Rightarrow \gamma^* \) is monomorphic.
Tensor Products (Define: Geometric).

Given multilinear $V \times W \overset{\alpha}{\to} Z$, let $V \times W \overset{\beta}{\to} F$ be the free vector space on $V \times W$ and let A be the subspace generated by

$$
\begin{align*}
\alpha(v + av', w) &= \alpha(v, w) - \alpha(v', w) \\
\alpha(v, w + aw') &= -\alpha(v, w) - \alpha(v, w')
\end{align*}
$$

for $v, v' \in V$, $w, w' \in W$, $a \in \mathbb{R}$. Consider

$$
V \times VV \overset{\alpha}{\to} F
$$

Since α is linear and $\alpha(a) = 0$ for any $a \in A$, α is also zero on any $a' \in A$.

Thus

$$
\begin{array}{ccc}
V \times W & \overset{\alpha}{\to} & F \\
\downarrow & & \downarrow \phi \phi' \\
\downarrow & & \downarrow \\
V \times W & \overset{\beta}{\to} & F/A
\end{array}
$$

A $\phi \circ \phi'$ is a ϕ' s.t. the right triangle commutes. Since ϕ is of ϕ', ϕ' is unique. \Rightarrow The whole diagram commutes.

It only remains to show that $\beta \circ \phi$ is bilinear.

$$
\begin{align*}
\beta \circ \phi\left(\alpha(v + av', w)\right) &= \beta(\alpha(v, w) - \alpha(v', w)) \\
\beta \circ \phi\left(\alpha(v, w + aw')\right) &= -\beta(\alpha(v, w) - \alpha(v, w'))
\end{align*}
$$

Thus $\beta \circ \phi$, F/A is the tensor product of $V \times W$. This is conventionally renamed

$$
V \times W \overset{\otimes}{\to} V \otimes W
$$