Heat transport properties of clean spin ladders coupled to phonons: Umklapp scattering and drag

E. Boulat, P. Mehta, N. Andrei, E. Shimshoni, and A. Rosch

1Laboratoire MPQ, CNRS, Université Paris Diderot, 75205 Paris Cedex 13, France
2Center for Material Theory, Rutgers University, Piscataway, New Jersey 08854, USA
3Department of Math-Physics, University of Haifa at Oranim, Tivon 36006, Israel
4Institute for Theoretical Physics, University of Cologne, 50937 Cologne, Germany

(Received 10 October 2007; published 17 December 2007)

We study the low-temperature heat transport in clean two-leg spin-ladder compounds coupled to three-dimensional phonons. We argue that the very large heat conductivities observed in such systems can be traced back to the existence of approximate symmetries and corresponding weakly violated conservation laws of the effective (gapful) low-energy model, namely, pseudomomenta. Depending on the ratios of spin gaps and Debye energy and on the temperature, the magnetic contribution to the heat conductivity (\(\kappa_{\text{mag}}\)) can be positive or negative and can exhibit an activated or antiactivated behavior. In most regimes, \(\kappa_{\text{mag}}\) is dominated by the spin-phonon drag: the excitations of the two subsystems have almost the same drift velocity, and this allows for an estimate of the ratio \(\kappa_{\text{mag}}/\kappa_{\text{ph}}\) of the magnetic and phononic contributions to the heat conductivity.

DOI: 10.1103/PhysRevB.76.214411

PACS number(s): 75.10.Pq, 71.10.Pm, 72.10.Bg

I. INTRODUCTION

Recent experiments both on spin-chain\(^1\) and ladder compounds\(^2\) showed a surprisingly large magnetic contribution to the heat conductivity: the heat conductivity in the direction parallel to the ladder (attributed to magnons and phonons) largely exceeds the heat conductivity in directions perpendicular to it (attributed to the phonons alone). The heat conductivity of clean gapless spin-\(\frac{1}{2}\) chains coupled to phonons shows a simple exponential behavior,\(^3\) associated with a single characteristic energy scale resulting from the high-energy process needed to relax momentum. In contrast, gaps open up in the spectrum of (two-leg) spin ladders, and consequently the heat transport involves a complex interplay between different energy scales, leading to a rich gamut of possible behaviors. In this paper, we present a theoretical framework to describe low-temperature heat transport in such clean gapped quasi-one-dimensional systems when they are coupled to phonons.

In the absence of disorder, heat transport in quasi-one-dimensional systems is determined by momentum conservation (or more precisely by “pseudomomentum” conservation\(^\text{3,5}\)). In a clean lattice, momentum transfers are quantized and therefore the momentum can only decay via an umklapp process involving a large-momentum high-energy state. This implies that transport in such systems is nonuniversal as it depends on both high- and low-energy features. Therefore, controlled analytic calculations are usually not possible (the situation is, however, simpler for systems with a finite magnetization\(^\text{3,4}\)). Nevertheless, we shall show that under certain circumstances, such calculations are possible. Indeed, in many spin systems, the typical spin velocity \(v_s\) is large compared to the sound velocity of the acoustic phonons, \(v_p\). Therefore, the large-momentum state with the lowest energy (required for an umklapp process) will have most of its momentum carried by phonons. This has two consequences: heat transport is (i) dominated by spin-phonon scattering and is (ii) determined by high-energy features of the phonon system but low-energy properties of the spin system. The latter observation implies that controlled calculations of transport are in principle possible (up to nonuniversal prefactors describing the electron-phonon coupling), using the fact that high-energy properties of the weakly interacting phonons are often known or can be measured. The necessary low-energy correlators of the gapped spin-system can be obtained from an effective field theory which can be analyzed by semiclassical\(^\text{6}\) or form-factor\(^\text{7}\) methods for temperatures \(T\) below the gap.

In contrast, in pure systems where phonons are absent (e.g., cold atom realizations) or when \(v_p > v_s\), no such controlled calculation is possible as little is known about the non-universal high-energy properties of strongly interacting spin systems and one can make only qualitative statements, e.g., that the heat conductivity is exponentially large but finite.\(^\text{8,9}\) Previous numerical studies of pure ladder systems at high \(T\) indicate that the heat conductivity of spin ladders is finite\(^\text{8,9}\) but could not reach temperature of the order of the gap and below. On the analytical side, few results are available. The field theoretical treatment of Ref. 10 ignored the role of umklapp processes, thus leading to ballistic transport in a clean and pure system. Rozhkov and Chernyshev\(^\text{11}\) included the effect of disorder and phonons in spin chains within a Boltzmann equation approach but did neither consider spin-phonon drag nor addressed the question of umklapp, which becomes essential in a clean system.

In the following, we will first present the general field theoretical framework on which our calculation is based. We discuss the various umklapp processes that induce (pseudo) momentum decay in quanta of size \(G\) or \(G/2\), where \(G\) is the reciprocal lattice vector. We shall discuss the role of such processes in (weakly) violating the conservation laws of the model, allowing a hydrodynamic description of the system. We then use the memory-matrix formalism to calculate the heat conductivity \(\kappa\) in the various regimes. The memory-matrix approach is generally not exact even in the limit of small couplings but it can be shown\(^\text{12}\) to give a lower bound to \(\kappa\), which is saturated in the limit of a large separation of time scales between slow and fast modes, i.e., if a hydrody-
FIG. 1. Schematic plots of $\kappa(T)$ in three regimes. Depending on the size of E_p (i.e., the Debye energy) compared to the values of the spin gaps, one obtains qualitatively different behaviors of the heat conductivity (shown for $T \ll \Delta_1$). Note that in regimes I and II, κ_{mag} is displayed, while in regime III, the total κ is displayed (κ_{mag} is not defined in this regime—see text). The dominating momentum transfer processes within the spin and phonon system, and from those modes via umklapp scattering to the lattice, are shown schematically below the horizontal axis. T_* is of order $(v_p/v_0)^3 \Delta_1$.

dynamic description is possible, as is the case here. Finally, we interpret our results in terms of the spin-phonon drag and the decay rates of various slow modes. The various resulting behaviors of $\kappa(T)$ are summarized in Fig. 1, where regime I is consistent with the particular data of Ref. 2 for T below the spin gap but still larger than a lower scale T_*, where the magnetic heat conductivity displays an activated behavior.

II. LOW-ENERGY EFFECTIVE THEORY

Our starting point is the following Hamiltonian:

$$H = \sum_{\gamma} H_{\lambda}(\gamma) + H_p + H_{s,p},$$

which describes an array of spin ladder (denoted by s, with γ the ladder index) coupled to acoustic three-dimensional phonons (p), via the term $H_{s,p}$. For simplicity, we assume $H_p = \sum_{k \neq 0} v_p q_p \cos k_0 x_a$, where the velocities of the various branches of acoustic phonons (v_a) are approximated by a characteristic velocity v_p, associated with the Debye energy via $\Theta_D - v_p G/2$.

A single spin ladder is described by

$$H_s = J_s \sum_{j < \ell} \mathbf{S}_{\ell,j} \cdot \mathbf{S}_{\ell,\ell+1} + J_s \sum_{j} \mathbf{S}_{\ell,j} \cdot \mathbf{S}_{\ell+1,j},$$

where $\mathbf{S}_{\ell,j}$ is a spin-$\frac{1}{2}$ operator acting on site j and on leg $\ell = 1, 2$ of the ladder. As we are interested in the heat conductivity at low T, it is useful to consider the effective low-energy theory for H_s (assuming a small gap, $\Delta \ll J_s$) described in terms of four massive Majorana fermions,13

$$H_s = H_0 + \sum_{a} g_a \int dx \mathcal{O}_a(x),$$

$$H_0 = \int dx \sum_{a=0}^3 \frac{i v_a}{2} (\xi^a_{\ell}\partial_x \xi^a_{\ell} - \xi^a_{\ell+1}\partial_x \xi^a_{\ell+1}) + i (-)^{\Delta_0} v_p \xi^a_{\ell} \xi^a_{\ell+1}.$$ (3)

In the above expression, the operators \mathcal{O}_a are all irrelevant and marginal operators allowed by the symmetry of the original lattice Hamiltonian [Eq. (2)]. The three Majorana fields ξ^a, $a=1, 2, 3$, describe the low lying magnon triplet with the velocity $v_0 = v_1$ and (spin) gap $\Delta_0 = \Delta_1$, while the remaining Majorana field ξ^0 describes a singlet excitation with gap Δ_0 and velocity v_0; the single-particle excitations have the dispersion relation $\epsilon_j(k) = \sqrt{v a^2 k^2 + \Delta_0^2}$. While $\Delta_0/\Delta_1 \sim 3$ for weak J_\perp, this ratio changes for larger $J_\perp//J_1$ or when other microscopic interactions are present—so that we shall consider it as a free parameter, yet assuming $\Delta_0 > \Delta_1$.

The total heat current, obtained through the continuity equation of the energy density, is

$$J_\kappa = v_p^2 P_p + v_p^2 P_0 + v_p^2 P_1,$$

where P_p, P_0, and P_1 are the momentum operators of phonons, singlets, and triplets, respectively, for example, $P_1 = -\frac{1}{2} \sum_{a=1, \ldots, 3} \gamma \int dx (\xi_{q=0} \partial_x \xi_{q=0} + \xi_{q=0} \partial_x \xi_{q=0})$. In Eq. (4), we neglect further contributions from the interactions which turn out to give only subleading corrections.

The crucial observation on which our following analysis is based is that the effective low-energy theory of our initial Hamiltonian conserves the total momentum,

$$P_T = P_p + P_0 + P_1.$$ (5)

A direct consequence is that—with this low-energy description—the heat conductivity is infinite.14,15 However, the continuous translational invariance of Eq. (3) is not a true symmetry and follows from neglecting umklapp terms whose inclusion leads to a decay of P_T, which now acquires an exponentially long lifetime at low temperature. This is to be contrasted to all other decaying modes, whose lifetime behaves as power laws of T and allows for a hydrodynamic description based on the slow modes $P_{\alpha}, \alpha = p, 0, 1$. Including these umklapp operators is thus the correct way to obtain a low-energy effective theory suited to the calculation of transport properties.

Three different umklapp terms turn out to be important if we assume that $v_p < v_0, v_1$. A direct consequence is that—with this low-energy description—the heat conductivity is infinite.14,15 However, the continuous translational invariance of Eq. (3) is not a true symmetry and follows from neglecting umklapp terms whose inclusion leads to a decay of P_T, which now acquires an exponentially long lifetime at low temperature. This is to be contrasted to all other decaying modes, whose lifetime behaves as power laws of T and allows for a hydrodynamic description based on the slow modes $P_{\alpha}, \alpha = p, 0, 1$. Including these umklapp operators is thus the correct way to obtain a low-energy effective theory suited to the calculation of transport properties.

Three different umklapp terms turn out to be important if we assume that $v_p < v_0, v_1$.20

$$H_{U_p}^{\alpha} = \sum_{\alpha = 3} g_p^{(\alpha)} \int dx (\partial_x q)^\alpha \cos(Gx),$$

$$H_{U_p}^{\alpha} = g_p^{(\alpha)} \int dx (\partial_x q)^\alpha \cos(Gx/2)$$ (6)

$$+ i \sum_{a=0} g_a^{(\alpha)} \int dx (\partial_x q)^2 \xi^a_{\ell} \xi^a_{\ell+1} \cos(Gx),$$ (7)

with $q(x) \approx \frac{1}{\Theta_D} \int e^{i k x} \xi^a_{\ell} (a_k + a_{-k}) \frac{d^k}{(2 \pi)}$ (the displacement field for acoustic phonons projected along the ladders (a_k is an abbreviation for the sum of contributions from various phonon modes). $G_{\alpha} = \Pi_{\alpha}^{(a)} g^a$ is the continuum limit of the dimerization operator $(\mathbf{S}_{1,j} \cdot \mathbf{S}_{2,j}) - (\mathbf{S}_{1,j+1} \cdot \mathbf{S}_{2,j+1})$, where each $g^a (a = 0, \ldots, 3)$ is the Ising spin operator for the quantum Ising model that is naturally associated with the Majorana ξ^a theory (in our conventions, Ising model “0” is in its quantum disordered phase, while the three other models are ordered). We checked that linear couplings to phonons in Eq. (7) are subdominant.21
On top of the umklapp terms, it is also important to include normal processes
\[H_{\text{sp},k}^0 = i \sum_a g_{a}^{N,k} \int dx \left(\partial_a q \right)^{\nu} \eta_{q,k}^{\nu} \xi_{q,k}^{\nu}, \quad (8) \]
which allow momentum exchange between the spin and phonon systems. We do not consider normal operators acting only in the spin sector or only in the phonon sector, as they commute separately with the spin and phonon momentum operators and accordingly do not contribute to leading order to the heat conductivity.

III. HYDRODYNAMIC APPROACH

To obtain a hydrodynamic description, we first identify a basis in the space of slow modes, in our case given by \(P_{\nu} \), \(P_{o} \), and \(P_{1} \). Then, we introduce the matrix of static susceptibilities of the slow modes, \(\chi_{q} = \int T \left(P_{\nu}(0)P_{\nu}(0) \right) \) (equal time correlator) and a matrix of conductivities defined by Kubo formulas for the \(P_{i} \)'s, \(\sigma_{jj} = \frac{1}{T} \langle \partial^\nu + \nu \partial^\nu \rangle \eta_{q,k}^{\nu} \xi_{q,k}^{\nu} \rangle \), \(i,j = p,0,1 \). The heat conductivity is then given by
\[\kappa = \frac{1}{T} \sum_{i,j=p,0,1} u_{i}^{2} u_{j}^{2} \sigma_{ij} = \kappa_{ss} + 2 \kappa_{sp} + \kappa_{pp}. \quad (9) \]

Note that besides the spin and phonon heat conductivities \(\kappa_{ss}, \kappa_{pp} \), there is also the drag term \(2 \kappa_{pp} = \frac{2}{T} \sum_{\nu=0,1} u_{q}^{2} u_{p}^{2} \delta_{qp} \).

Within the memory-matrix approach,\(^{16,17}\) the matrix of conductivities \(\Theta(\omega) \) is expressed as
\[\Theta(\omega,T) = \frac{1}{\hat{M}(\omega) - i\omega\hat{\chi}}, \quad (10) \]
where \(\hat{M}(\omega) \) is the so-called memory matrix. It can be shown that to leading order in the coupling constants of the umklapp terms \(g_{N} \) and of the normal spin-phonon term \(g_{N} \), the memory matrix is simply given by\(^{5-5}\)
\[M_{ij} = \frac{i}{\omega L} \left[(\hat{P}\hat{P})^{R}(\omega) - (\hat{P}\hat{P})^{R}(0) \right], \quad (11) \]
where \(\langle \cdots \rangle^{R} \) are the retarded correlation functions evaluated with respect to the unperturbed Hamiltonian as \(\hat{P} \) is already linear in the perturbations.

To evaluate Eq. (11) to leading order, we need various correlation functions of the decoupled spin-phonon system. As discussed above and checked below, for \(v_{p} < v_{s} \) and low \(T \), one needs the high-energy correlation function in the phonon sector but only the low-energy asymptotics of spin-correlation functions. To obtain the correct low-energy correlators in the spin sector, it is in general necessary to take into account the (unitary) scattering of the thermally excited quasiparticles using generalizations of Sachdev and Young’s semiclassical arguments\(^{6-6}\)—see the Appendix. For example, the correlator \(G_{P}(x,t) = \langle O_{P}(x,t)O_{P}(0,0) \rangle \) of the dimerization operator, which is related to the Majorana fields in a highly non linear and nonlocal way, is given by
\[G_{P}(x,t) = N \kappa_{0} \left(\Delta_{0}/u_{0} \right)^{1/2} e^{-\left(1/2\Phi\sqrt{3s/\xi_{s}^{3}/\nu_{s}} \right)}, \quad (12) \]
with \(N \) a nonuniversal prefactor, \(\Phi(x) = \int \frac{e^{x}(x)}{\pi} \), \(\kappa_{0} \) the modified Bessel function, \(\tau_{1} = \frac{\pi}{2} e^{\Delta_{1}/T}, \) and \(\xi_{s} = u_{1} \sqrt{\frac{\tau_{1}}{\tau_{1}^{2}} - 1} \). It will, however, turn out that the scattering from other thermally excited quasiparticles described by \(G_{P}(x,t) \) is not important as our problem is dominated by the spin-phonon scattering.

A generic umklapp memory-matrix entry at zero frequency can be cast in the form \(q^{2} \int \delta(t) \int dx e^{i\theta} G_{P} G_{o}, \) with \(q = G/2 \) or \(G \) and \(G_{(\nu)} \) the appropriate phonon (spin) correlator. At low \(T < v_{p} q \), we evaluate it in the saddle point approximation, by deforming the contour in the complex plane. The saddle point lies at one of the phonon propagator poles, \(v_{p} = \text{sgn}(q) x = -\frac{\alpha_{0}}{2} \) for a phonon propagator poler, \(v_{p} = \text{sgn}(q) x = -\frac{\alpha_{0}}{2} \) well within the spin light cone where there are no contributions from the spin-phonon scattering. Moreover, the semiclassical approximation for \(G_{P} \) is valid at the saddle point.

The memory matrix can be split into four contributions,
\[M = M_{N} + M_{pb} + M_{pp} + M_{S}, \quad (13) \]

corresponding to the relaxation processes described by terms (8), (6), and (7).

Generically, a memory-matrix entry bears an activated form at low temperature and thus can be specified by an activation gap and a prefactor. While the prefactor depends on nonuniversal, high-energy features of the spin system, in the soft phonon limit \(v_{s} < v_{p} \), only universal features of the spin system determine the activation gap. This is why we only give the leading, exponential behavior at low \(T \) for the various memory-matrix entries (with the exception of one limiting case, see below). These expressions involve different umklapp gaps,
\[E_{p} = \frac{v_{p} G}{2}, \quad E_{D} = \frac{v_{p} G}{4} + \frac{\Delta_{0}}{2} \sqrt{1 - \alpha_{0}^{2}}, \quad (14) \]
\[E_{b} = \frac{v_{b} G}{2} + \frac{\Delta_{0}}{2} \sqrt{1 - \alpha_{b}^{2}} \]
where \(\alpha_{0} = \frac{\alpha_{0}}{v_{s}} < 1 \) and \(b = 0,1 \) labeling the spin singlet and triplet excitations. These formulas have a simple interpretation: under the constraints of energy and momentum conservation, they are the lowest energies for processes where the momentum \(q = G \) or \(G/2 \) is absorbed by scattering a phonon from \(-q/2 \pm O(\Delta/v_{s}) \) to \(q/2 \pm O(\Delta/v_{p}) \) while scattering \(E_{p} \) or creating \(E_{p} \) a spin excitation. The simple form of the phonon energy scale appearing in Eq. (14) is a result of our simplified treatment of the phonon sector—high energy features thereof would modify this form but not the fact that it depends on a single scale \(E_{p} = \Theta_{p}^{2} \).

The leading \(T \) dependence of the various contributions to the memory matrix is summarized as follows. The phonon umklapp [Eq. (6)] gives rise to a single nonvanishing entry, \(M_{pp} = e^{-E_{p}/T} \). Entries due to normal processes are \(M_{N} = x_{0} + x_{1}, \) \(M_{kb} = -M_{pb} = x_{b}, \) and \(x_{b} = e^{-\Delta_{b}/T}. \) Spin-phonon umklapp processes with momentum transfer \(G \) entries are \(M_{G}^{0} = y_{0} \).
spin excitations. In the following, we follow a more physically transparent approach and present in detail the temperature dependence of κ as well as the physical mechanism explaining it, in different parameter regimes.

IV. RESULTS AND DISCUSSION

For the interpretation of our results detailed below, it is useful to rewrite the linear-response relation $\langle P_i\rangle = \sigma_i A_j$, where A_j is an external field coupling linearly to P_j. Using Eq. (4), we can identify it with $A_j = v_j^T \partial T - T^{-1} \partial (\hat{M} \hat{\chi}^{-1})_{ij} \langle P_j \rangle$, where we used $\chi_{ij} = \chi_t \delta_{ij}$. This equation has a simple interpretation: it is a rate equation for the momenta and $\hat{\chi}^{-1} = \hat{M} \hat{T}$ can therefore be identified with the matrix of relaxation rates. The matrix of conductivities can be extracted from the equilibrium solution of the rate equation.

We will now discuss our results in the three different regimes depicted in Fig. 1, assuming always $\Delta_1 < \Delta_0$ and $v_{\parallel} > v_{\perp}$. To investigate the relation to experiments, it is useful to define the magnetic contribution to κ,

$$\kappa_{\text{mag}} = \kappa - \kappa_{\phi}^0 = \kappa_{\text{ss}} + 2\kappa_{ps} + \delta \kappa_{pp},$$

where κ_{ϕ}^0 is the conductivity of a hypothetical system without magnetic degrees of freedom (estimated in experiments from fits to κ perpendicular to the spin ladders). Note that there is also a negative contribution from the change of the phonon conductivity $\delta \kappa_{pp} = \kappa_{pp} - \kappa_{\phi}^0$ due to scattering from spin excitations.

A. Regime I

We first investigate regime I of Fig. 1, where $E_{\parallel} < \Delta_1$ and the momentum relaxation is dominated by the phonon umklapp ($E_{\parallel} < E_1, \Delta_0$). As $\Delta_0 > \Delta_1$, we can neglect the singlet mode and focus on the 2×2 matrix describing the relaxation of phonon and triplet momentum to obtain

$$\kappa_{pp} = \frac{v_{\parallel}^4 \sigma_{pp}}{T} = \frac{1}{T} \chi_{pp} \frac{T}{\Delta_1} \sim \frac{v_{\parallel}^4}{T},$$

$$\kappa_{ss} = \frac{v_{\perp}^4 \sigma_{ss}}{T} = \frac{1}{T} \chi_{ss} \frac{T}{\Delta_1} \sim \frac{v_{\perp}^4}{T},$$

where $\chi_{ss} = \chi_t (\hat{\chi}_{ss} \delta_{ij})$ is diagonal in the momentum space.

We can neglect the singlet and triplet relaxation as well as the fictitious temperature gradient coupling only to the subsystem j. Using Eq. (10), we obtain

$$\frac{\partial}{\partial t} \langle P_j \rangle - \chi_{ij} v_j^T \partial T_j = - (\hat{M} \hat{\chi}^{-1})_{ij} \langle P_j \rangle,$$

where we used $\chi_{ij} = \chi_t \delta_{ij}$. The negative χ_{ij} represents the phonon conductivity.

We finally consider regime II of Fig. 1, where $\Delta_1 > E_{\parallel} < \Delta_0$. In this regime, formulas (17), (19), and (21) for κ_{pp}, κ_{ps}, and κ_{ss} remain valid.

B. Regime II

Next, we consider regime II of Fig. 1, where $\Delta_1 < E_{\parallel} < \Delta_0$. In this regime, κ_{ss} is the phonon conductivity κ_{ϕ}^0. Using Eqs. (9)–(11) and performing a straightforward matrix inversion yield the heat conductivity, which displays very different behaviors depending on the relative value of the magnetic gaps and Debye energy. In the following, we follow a more physically transparent approach and present in detail the temperature dependence of κ as well as the physical mechanism explaining it, in different parameter regimes.

$$\kappa_{ps} = \frac{\gamma^2 v_{\parallel}^2 \sigma_{ps}}{T} = \frac{\gamma^2 v_{\parallel}^2 \sigma_{ps}}{T} \sim \frac{v_{\parallel}^4}{T},$$

$$\kappa_{pp} = \frac{v_{\parallel}^4 \sigma_{pp}}{T} = \frac{1}{T} \chi_{pp} \frac{T}{\Delta_1} \sim \frac{v_{\parallel}^4}{T},$$

where $\chi_t = \chi_{\parallel} (\hat{\chi}_{pp} \delta_{ij})$ is diagonal in the momentum space.

Potential situations, $\Delta_0 > \Delta_1$, can be neglected, the singlet mode and focus on the 2×2 matrix describing the relaxation of phonon and triplet momentum to obtain

$$\kappa_{pp} = \frac{v_{\parallel}^4 \sigma_{pp}}{T} = \frac{1}{T} \chi_{pp} \frac{T}{\Delta_1} \sim \frac{v_{\parallel}^4}{T},$$

$$\kappa_{ss} = \frac{v_{\perp}^4 \sigma_{ss}}{T} = \frac{1}{T} \chi_{ss} \frac{T}{\Delta_1} \sim \frac{v_{\perp}^4}{T},$$

where $\chi_{ss} = \chi_t (\hat{\chi}_{ss} \delta_{ij})$ is diagonal in the momentum space.

Next, we consider regime II of Fig. 1, where $\Delta_1 < E_{\parallel} < \Delta_0$. In this regime, formulas (17), (19), and (21) for κ_{pp}, κ_{ps}, and κ_{ss} remain valid.

$$\kappa_{ps} = \frac{\gamma^2 v_{\parallel}^2 \sigma_{ps}}{T} = \frac{\gamma^2 v_{\parallel}^2 \sigma_{ps}}{T} \sim \frac{v_{\parallel}^4}{T},$$

$$\kappa_{pp} = \frac{v_{\parallel}^4 \sigma_{pp}}{T} = \frac{1}{T} \chi_{pp} \frac{T}{\Delta_1} \sim \frac{v_{\parallel}^4}{T},$$

$$\kappa_{ss} = \frac{v_{\perp}^4 \sigma_{ss}}{T} = \frac{1}{T} \chi_{ss} \frac{T}{\Delta_1} \sim \frac{v_{\perp}^4}{T},$$

where $\chi_t = \chi_{\parallel} (\hat{\chi}_{pp} \delta_{ij})$ is diagonal in the momentum space.

Next, we consider regime II of Fig. 1, where $\Delta_1 < E_{\parallel} < \Delta_0$. In this regime, formulas (17), (19), and (21) for κ_{pp}, κ_{ps}, and κ_{ss} remain valid.
change shown in the first panel of Fig. 1 is not observable in these samples.

V. CONCLUSION

Our results emphasize the richness of transport phenomena, the actual low T heat conductivity depending in a subtle way on the different scales present in the system. In particular, we find that in a clean system, the magnetic contribution to the conductivity does not display the trivial activated behavior with activation energy equal to the spin gap. An exception is the limit $E_p \to 0$, which mimics a situation where momentum predominantly relaxes via disorder in the phonon system, as might be the case in the cuprate systems of Ref. 2. We hope that there will be in the future more measures on spin-ladder materials allowing to prove the different regimes discovered by our study.

ACKNOWLEDGMENTS

The authors would like to thank S. Sachdev and A. Sologubenko for stimulating discussions and the German-Israeli Foundation (GIF), the DFG under SFB 608, and the NSF under DMR 0312495 for financial support.

APPENDIX: LONG DISTANCE SPIN CORRELATORS

In this appendix, we present the calculation for the low-temperature dimerization operator correlator, $G_D(x,t) = \langle O_D(x,t)O_D(0,0) \rangle$, which relies on the semiclassical approach developed in Ref. 6. We first recall the results obtained by Sachdev and Young for a single Ising model, and then apply these ideas to our system, which consists of four weakly coupled Ising models.

1. Single Ising model

The central idea of this approach is to exploit the fact that at low enough temperatures in a gapped system, $T<\Delta$, typical configurations of the system correspond to a very dilute gas of quasiparticles, with mean quasiparticle separation of the order of $e^{\Delta T}$, much larger than their thermal de Broglie wavelength $\lambda_B=\hbar \sqrt{m/\Delta}$. As shown in Ref. 6, a classical treatment of these quasiparticles is legitimate. Only the scattering rates of two particles (diluteness allows to consider only two-body collisions) has to be calculated from quantum mechanics. In one dimension, particles with a quadratic dispersion perfectly reflect for any repulsive potential in the limit of small momentum. Therefore, the two-body scattering matrix tends to its so-called superuniversal form, $S=-1$, irrespective of the form the two-body potential. Remarkably, these ingredients are sufficient to allow for a closed form evaluation of the Ising operator correlator, both in the ordered and disordered phase, with the result

$$G_{\text{ord}} = \langle \sigma(x,t)\sigma(0,0) \rangle = N^2 e^{-\Phi(x/t,\zeta,\tau)},$$

$$\Phi(x/t,\zeta) = \bar{x} \text{ erf} \left(\frac{\bar{x}}{1/\tau} \right) + \bar{\zeta} e^{-\tau^2/4},$$

(A1)

with $N=\langle \sigma \rangle$ the local $T=0$ magnetization, $\zeta=v \sqrt{\frac{\tau}{2\Delta}} e^{\Delta T}$, and $\tau=\frac{\sigma}{\Delta \Delta T}$. In the disordered phase, the correlator reads...
\[G_{\text{dir}} = \langle \sigma(x,t)\sigma(0,0) \rangle = \mathcal{A}K_0 \left(\frac{\Delta}{v} \sqrt{x^2 - v^2t^2} \right) e^{-\Phi(x/L,t)}. \]
\[\text{(A2)} \]

We are interested in the correlator of the dimerization operator \(\mathcal{O}_D = \Pi_{\alpha \beta} \sigma^\alpha \sigma^\beta. \) The crudest approximation consists of neglecting the interaction between the Ising models and leads to a simple product form, \(G_D = G_{D0} \Pi_{\alpha \beta} \sigma^\alpha \sigma^\beta. \) Of course, such an approximation is expected to fail to capture the correct long time and space limit since it neglects the scattering between quasiparticles on different Ising models. In reality, the Ising models are coupled—to lowest order, this coupling is given by the spin density–spin density coupling \(\Sigma_{a,\nu} \int \rho_0 \rho_0 \rho_0 \tilde{\rho}_L \)—and the scattering is relevant in the sense that it qualitatively affects the form of \(G_D \) at large \(t, x/v \gg \Delta^{-1}. \) We now proceed to take this interaction into account, in the limit of heavy singlet excitations, \(\Delta_0 > \Delta_1. \) This is \textit{a priori} the relevant physical regime since in actual realizations of the spin ladder, no indication for the existence of the singlet branch, at reasonably low energy, has ever been reported to our knowledge.

2. Weakly coupled Ising models

In the semiclassical approximation, field configurations contributing to the path integral representation of the correlation function are classical ones: quasiparticles follow straight lines, each given its corresponding Boltzmann weight. Then, the interaction between two particles is treated quantum mechanically, the \(S \) matrix bearing its superuniversal form \((k \to 0 \text{ limit})\): particles bounce on each other (hard core collisions) with a \(\pi \) phase shift \((S = -1)\). We now repeat Sachdev and Young6 line of reasoning including the inter-Ising model interaction; this amounts to have the straight lines representing the propagation of thermally excited states to “see” each other, i.e., the quasiparticles belonging to different Ising models to scatter, the \(S \) matrix being again the superuniversal one.

For the Ising models \(a \neq 0 \) that are in the ordered phase, quasiparticles are domain walls for the different Ising models that separate domains with different magnetizations. Each domain wall carries an index \(a \neq 0 \). Each time a domain wall \(a \neq 0 \) crosses the line joining the points \((0,0)\) and \((x,t)\), the operator \(\Pi_{\alpha \beta} \sigma^\alpha \sigma^\beta \) has its \(\pm 1 \) eigenvalue flipped. This allows us to conclude that its semiclassical correlator reads

\[\left\langle \prod_{a \neq 0} \sigma^\alpha(x,t) \prod_{a \neq 0} \sigma^\beta(0,0) \right\rangle = N_1 e^{-\Phi(3x_1, 3t_1/\gamma_1)}. \]
\[\text{(A3)} \]

It is the same as the correlator in a single ordered Ising model, the factor of 3 corresponding to the tripling of the density of excited states [the probability that a given excited state carrying momentum \(p \) crosses the line joining \((0,0)\) to \((x,t)\) is \(q = 3 \gamma = 3 |x - v_1(p)| t/L \), with \(L \) the system size and \(v_1(p) = \frac{d \epsilon_1(p)}{dp} \), where \(\epsilon_1(p) = \sqrt{\Delta^2 + p^2} \) is the one-magnon dispersion relation].

However, we are rather interested in the correlator of the dimerization operator which includes both singlet and triplet fields. The singlet Ising model being in its disordered phase,
D. In general, this is a tough problem. A simplification occurs in the case where masses are very different and, for our purpose, when the singlet mass is much greater than the triplet mass. Then, it is possible to neglect all contributions with dashed lines in the thermal background (see Fig. 2, right panel); the error is of the order of $\exp(-[\Delta_0-\Delta_1]/T)$.

Enforcing that configurations contributing contain no D-full line crossing amounts to the replacement of $(1 - q')^N$ by $(1 - q')^N$ in Eq. (3) of Ref. 6. Performing the average over p, we get

$$G_D(x,t) = AK_D \left(\frac{\Delta_0}{\nu_0} \sqrt{x^2 - u'^2} \right)^3 e^{-1/2(\phi x/\zeta_1 x)}$$ \hspace{1cm} (A4)

for $x, t > 0$.

We will also need to evaluate correlators involving derivatives of just one Ising spin of the kind $\langle \partial_x \sigma^a \partial_x \sigma^b (x,t) \rangle$. Of course, they are not all independent. It suffices for our purpose to compute

$$G'_D = \left(\partial_x \partial_x \prod_{a \neq b} \sigma^a (x,t) \right)$$ \hspace{1cm} (A5)

which we evaluate using $G'_D = \lim_{\epsilon \rightarrow 0} \left((\epsilon + \epsilon)^{3/2} \sigma^a (x,t) \right) / \epsilon$. Contributions to the first term are those with domain walls passing between $(x+\epsilon, t)$ and (x, t) but not crossing the line D (see Fig. 3).

The probability of having one single domain wall with momentum p passing is $q_2 = \Theta(v_1(p)-x)/L$ (with Θ the Heaviside function), and after calculation, we find

$$G'_D(x,t) = G_D(x,t) \lambda_1(x,t),$$

where $\lambda_1(x,t) = - \frac{3}{2} \int_{p_0}^{\infty} \frac{dp}{\pi} e^{-\epsilon/(\nu^2 \gamma T)}.$$ \hspace{1cm} (A6)

We note that $|\lambda_1(x,t)| < \frac{1}{2} \xi_0^{-1}$.

21. Scattering events preserving momentum and energy when a single phonon is involved, with momentum transfer of order G, force at least one magnon to carry momentum of order G and thus involve higher energy states.
22. This relation follows from $\mu'_p = v_p^2 P_p$ and the energy continuity equation for both subsystems. For a derivation in the context of the charge transport, see A. Rosch and N. Andrei, J. Low Temp. Phys. 126, 1195 (2002).