Metabolic Resource Allocation in Individual Microbes Determines Ecosystem Interactions and Spatial Dynamics

William R. Harcombe, William J. Riehl, Ilija Dukovski, Brian R. Granger, Alex Betts, Alex H. Lang, Gracia Bonilla, Amrita Kar, Nicholas Leiby, Pankaj Mehta, Christopher J. Marx, and Daniel Segre

SUMMARY

The interspecies exchange of metabolites plays a key role in the spatiotemporal dynamics of microbial communities. This raises the question of whether ecosystem-level behavior of structured communities can be predicted using genome-scale metabolic models for multiple organisms. We developed a modeling framework that integrates dynamic flux balance analysis with diffusion on a lattice and applied it to engineered communities. First, we predicted and experimentally confirmed the species ratio to which a two-species mutualistic consortium converges and the equilibrium composition of a newly engineered three-member community. We next identified a specific spatial arrangement of colonies, which gives rise to what we term the “eclipse dilemma”: does a competitor placed between a colony and its cross-feeding partner benefit or hurt growth of the original colony? Our experimentally validated finding that the net outcome is beneficial highlights the complex nature of metabolic interactions in microbial communities while at the same time demonstrating their predictability.

INTRODUCTION

Although often studied alone in well-mixed flasks, most microbial organisms live in multispecies, structured, and highly dynamic consortia (Denef et al., 2010; Dethlefsen et al., 2007; Lozupone et al., 2012; Ramette and Tiedje, 2007; Xavier and Foster, 2007). Interactions of microbes with each other and with the environment play a fundamental role in the evolution and dynamics of these communities. Many of these interactions are mediated by the uptake and excretion of small molecules, produced and degraded by the metabolic network encoded within each organism. In turn, the ensuing spatiotemporal changes of nutrients and by-products in the environment continually modify the conditions sensed by individual cells, causing transient niches and context-dependent interspecies interactions.

Given this complexity, one may ask whether a suitable mathematical modeling framework could help bridge the gap between metabolic strategies of individual species and ecosystem-level dynamics. Such a framework would be a powerful instrument for microbial ecology, with potential impact on research areas as diverse as biogeochemical cycles (Falkowski et al., 2008), the health-balancing role of the human microbiome (Lozupone et al., 2012; Turnbaugh et al., 2007), and synthetic ecology (Klitgord and Segre, 2011; Park et al., 2011; Shou et al., 2007). Moreover, fundamental questions on the stability (May, 1973; Mougi and Kondoh, 2012) and diversity (Curtis et al., 2002; Gudelj et al., 2010) of microbial ecosystems, the evolution of cooperation (Harcombe, 2010; Xavier and Foster, 2007), and the emergence of multicellularity (Pfeiffer and Bonhoeffer, 2003) lie precisely at the boundary between the metabolic requirements of individual species and the community-level implications of shared resources.

The past decade has seen the emergence of several novel experimental systems for investigating the dynamics of structured microbial consortia. For example, spatial structure was shown to be critical for maintaining diversity in systems with antagonistic interactions, ranging from chemical warfare (Kerr et al., 2002) to predator-prey behavior (Balagadde et al., 2008), as well as beneficial interactions (Kim et al., 2008). In terms of metabolism, a variety of novel, engineered mutualisms between
codependent strains have been developed (Harcombe, 2010; Hillesløand and Stahl, 2010; Shou et al., 2007). These include a laboratory-evolved costly cooperation between Salmonella enterica serovar typhimurium LT2 and an auxotropic Escherichia coli K12 strain (Harcombe, 2010), which we use as a starting point in the current work.

Although some qualitative results, such as the importance of spatial structure in a two-species system, are consistent with theory on the evolution of cooperation (Sachs et al., 2004), broader and more quantitative predictions such as species ratios or interactions between a larger number of players are unexplored experimentally and computationally. How predictable are consortia compositions in spatially structured environments, and how strongly are they affected by initial species frequencies? Can stable systems be engineered with more than two species? Can interspecies interactions in synthetic microbial consortia emerge as a consequence of individual species solving their own metabolic resource allocation problem?

From a theoretical perspective, these questions bridge multiple distinct scales, from individual intracellular reactions, up to the spatial distributions of multiple species and environmental metabolites (Gudelj et al., 2010; MacLean and Gudelj, 2006). Classical ordinary differential equation (ODE) models have been shown to recapitulate colony diameter and height as a function of time (Kamath and Bungay, 1988; Pipe and Grimson, 2008; Pirt, 1967; Rieck et al., 1973). Agent-based models have successfully shown how colony morphology arises as an emergent property of the behavior of individual cells or clusters of cells (Ben-Jacob et al., 1998; Kreft et al., 1998, 2001; Xavier et al., 2005). However, these approaches typically assume simple interspecies interaction rules rather than computing them based on detailed representations of intracellular biochemical networks.

In contrast, stoichiometric modeling, a class of systems biology methods with roots in metabolic engineering, has been shown to provide testable predictions of metabolic activity at the whole genome scale, with no need for the hundreds of differential equations and kinetic parameters typical of classical kinetic models. One of the most broadly used methods, flux balance analysis (FBA) (Orth et al., 2010) assumes steady state and optimality to predict metabolic rates (fluxes) of all reactions in the cell, including uptake and secretion fluxes, and the amount of microbial growth (Harcombe et al., 2013; McCloskey et al., 2013; Segrè et al., 2002). It is important to keep in mind that the simplifications that make FBA efficient and useful are also among the main reasons for its limitations, including the incapacity to predict intracellular metabolite concentrations, the reliance on a predefined metabolic objective, and the need for prior knowledge of biomass composition. Alternative uses of stoichiometric constrains (e.g., sampling of the feasible space [Bordel et al., 2011]), integration with high-throughput data (Becker and Palsson, 2008; Collins et al., 2012), and thermodynamics or economy-inspired theory (Fleming et al., 2012; De Martino et al., 2012; Reznik et al., 2013; Schuetz et al., 2012) are among the new directions being sought in order to overcome some of these limitations.

Recent efforts have shown how FBA can be extended to model metabolite-mediated interactions between different species in microbial consortia (Klitgord and Segrè, 2011), e.g., by searching for syntrophic compositions (Stolyar et al., 2007), interaction-inducing environments (Klitgord and Segrè, 2010), competition/cooperation balances (Freilich et al., 2011; Wintemute and Silver, 2010), or multilevel optima (Zomorrodi and Maranas, 2012) in multispecies joint stoichiometric models, or by implementing dynamic flux balance modeling of cocultures (Khandelwal et al., 2013; Salimi et al., 2010). Some of these approaches require a priori assumptions on how two species interact, e.g., a tunable ratio of the biomass production rates (Stolyar et al., 2007), a minimal growth rate for each species (Klitgord and Segrè, 2010), or different types of joint or multilevel objective functions (Freilich et al., 2011; Wintemute and Silver, 2010; Zomorrodi and Maranas, 2012). Most importantly, to our knowledge, these approaches have not been extended to multispecies communities in a structured environment, although a single-species model has been previously coupled with reactive transport (Scheibe et al., 2009).

Here, we introduce a multiscale modeling framework that computes ecosystem-level spatiotemporal dynamics based on detailed intracellular metabolic stoichiometry, without any a priori assumption on whether and how different species would interact. Our approach, named Computation of Microbiological Ecosystems in Time and Space (COMETS), implements a dynamic FBA algorithm on a lattice, making it possible to track the spatiotemporal dynamics of multiple microbial species in complex environments with complete genome scale resolution. We apply COMETS to the study of a previously built E. coli/S. enterica synthetic consortium (Harcombe, 2010) and to a new three-member consortium that incorporates Methylobacterium extorquens AM1 into the E. coli/S. enterica system.

RESULTS

From Genome Scale to Ecosystem-Level Spatiotemporal Models

COMETS uses dynamic flux balance analysis (dFBA) (Mahadevan et al., 2002) to perform time-dependent metabolic simulations of microbial ecosystems, bridging the gap between stoichiometric and environmental modeling. Simulations occur on a spatially structured lattice of interacting metabolic subsystems (“boxes”), providing at the same time insight on intracellular metabolic fluxes and on ecosystem-level distributions of microbial populations and nutrients. COMETS incorporates two fundamental steps (Figure 1; Experimental Procedures). The first step, cellular growth, is modeled as an increase of biomass at different spatial locations, using a hybrid kinetic-dFBA algorithm. Each box may contain biomass for an arbitrary number of different species. The second step consists of a finite differences approximation of the diffusion of extracellular nutrients and by-products in the environment, and of the expansion of biomass (see Experimental Procedures). Simple diffusion simulations in absence of growth behave as expected (Figure S1, related to Figure 1). We have incorporated multiple species into COMETS by importing the corresponding stoichiometric models, either from manually curated reconstructions, or from automated pipelines that construct models from annotated genomes and high-throughput data, such as Model SEED (Henry
et al., 2010). In addition, both spatially and molecularly complex environments can be designed by the user through an interactive toolbox (Figure S2, related to Figure 1) and simulation outcomes can be analyzed through a visualization tool (Figure S3, related to Figures 1 and 4).

COMETS Recapitulates E. coli Colony Growth on Different Substrates

A key step toward modeling growth of spatially structured communities is to make sure that the basic dynamics of colony growth can be well captured by our computational approach, with parameter values estimated from the literature (Table 1). As in any FBA model, COMETS does not require intracellular kinetic parameters. However, in analogy with previous dFBA formulations, COMETS estimates the upper bounds to metabolite uptake rates using a saturation curve, described through standard kinetic parameters \(V_{\text{max}} \) and \(K_M \). In the simulations presented below, we assumed these parameters to be the same for all metabolites. Substrate-specific values can be easily introduced if known (see Experimental Procedures), though theoretical considerations based on the diffusion-limited nature of uptake kinetics suggest limited substrate-to-substrate variation (Berg and Purcell, 1977). The effects of variations of either universal or substrate-specific uptake kinetics parameters are illustrated in Figure S4 (related to Figures 1 and 2), along with sensitivity to all free parameters in COMETS. Moreover, we show that COMETS simulations are invariant relative to small rescaling of the space and time units (Figure S5, related to Figures 1 and 2).

As a first benchmark for COMETS, we tested its capacity to reproduce the observation that colonies increase linearly in diameter over time (Cooper et al., 1968; Palumbo et al., 1971; Pirt, 1967; Wimpenny, 1979). Simulated colonies of E. coli followed this growth pattern with only small deviations from linearity as result of lattice discreteness (Figure 2A). Importantly, COMETS accurately predicted the rate of diameter increase on a variety of carbon sources (Figure 2B) as compared to previously published data by Lewis and Wimpenny (1981). These simulations with different carbon sources required only changes in the initial environmental conditions, with no need for parameter tuning.

Species Ratio Convergence in a Codependent Two-Species Consortium

We next tested the ability of COMETS to predict interactions between members of the E. coli/S. enterica synthetic consortium mentioned above (Harcombe, 2010). In lactose medium, Salmonella enterica Serovar typhimurium LT2 relies on carbon

![Figure 1. A Schematic Representation of the Key Steps of COMETS Simulations](image-url)
by-products from an Escherichia coli K12 metB mutant. Reciprocally, this auxotrophic E. coli requires methionine from its partner in order to grow in minimal medium. Stoichiometric models of each partner were modified to incorporate known genetic constraints (Figure 3A). For the E. coli strain, the metB mutation was incorporated by constraining to zero the flux through the corresponding reaction (cystathionine γ-synthase). In S. enterica, methionine excretion requires gain-of-function mutations in metA (homoserine transsuccinylase) (S.M. Douglas, W.R.H., C.J.M., unpublished data). This excretion was modeled as coupled to biomass, so that as cells grew they excreted observed levels of the amino acid. These genetic alterations created an obligate mutualistic interaction in silico consistent with that observed in the laboratory; neither species was able to grow in isolation on lactose minimal media, but growth was observed when both species were present (Figure 3B).

In order to assess whether COMETS could quantitatively capture community level behavior, we tested its ability to predict the impact of starting conditions on species ratio in our two-species consortium grown on solid medium (Figure 3C). COMETS predicted that, following a single 48 hr growth cycle, communities would converge in composition even when initial frequencies differed by two orders of magnitude (1%–99% E. coli). This convergence was indeed observed experimentally over 48 hr, in agreement with previous observations in other model ecosystems (Estrela and Brown, 2013; Shou et al., 2007). More surprisingly, COMETS also correctly predicted the species ratio to which the communities converged in the laboratory. COMETS predicted a composition of 79% ± 4% E. coli, which is not significantly different than the experimentally observed frequency of 78% ± 6% (mean ± SD, p = 0.67 with a two-tailed t test). As illustrated, for example, in Kerner et al. (2012), predicting species stability and convergence to specific ratios based on simple kinetic models is not a trivial challenge. Furthermore, previous implementations of constraint-based metabolic modeling have struggled to predict which pairs of E. coli mutants would coexist, let alone their equilibrium ratios (Wintemute and Silver, 2010).

Table 1. COMETS Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uptake V_{max}</td>
<td>10 mmol/g/hr</td>
<td>Gosset, 2005</td>
</tr>
<tr>
<td>Uptake K_m</td>
<td>10 μM</td>
<td>Gosset, 2005</td>
</tr>
<tr>
<td>Death rate</td>
<td>1%</td>
<td>Saint-Ruf et al., 2004</td>
</tr>
<tr>
<td>Metabolite diffusion</td>
<td>5 x 10^{-6} cm²/s</td>
<td>Stewart, 2003</td>
</tr>
<tr>
<td>Biomass diffusion</td>
<td>3 x 10^{-6} cm²/s</td>
<td>Korolev et al., 2011</td>
</tr>
<tr>
<td>Max. colony height</td>
<td>200 μm</td>
<td>Lewis and Wimpenny, 1981</td>
</tr>
<tr>
<td>Oxygen concentration</td>
<td>250 μmol/cm²</td>
<td>Peters et al., 1987</td>
</tr>
</tbody>
</table>

Like any stoichiometric model, COMETS does not require kinetic parameters for intracellular reactions. However, it does require a few parameters associated with the processes of diffusion, nutrient uptake, and carrying capacity of individual boxes. We set all these basic parameters based on values found in the literature.

An Engineered Three-Species Consortium Converges to a Stable Composition

As described above, one of the strengths of COMETS is its ability to handle arbitrarily complex ecosystems. We therefore challenged COMETS to predict the behavior of a tripartite obligate mutualism. Toward this goal, we experimentally engineered a synthetic consortium that incorporates M. extorquens AM1 into the previous E. coli/S. enterica system. This represents a significant advance in complexity relative to obligate consortia that have been previously engineered (Harcombe, 2010; Shou et al., 2007). M. extorquens is the best-studied model system for C₁ metabolism (Chistoserdova et al., 2009; Vullemeier et al., 2008) and has the ability to obtain energy, carbon, and nitrogen from methylamine. Here, we used a ΔhprA strain (Marx, 2008) that lacks a key enzyme (hydroxypyruvate reductase) for assimilating carbon from methylamine. In media with lactose and methylamine, the ΔhprA M. extorquens strain relies on acetate from E. coli, while providing the other two species with a source of nitrogen due to dissimilation of methylamine (Figure 4A). We identify a metabolically engineered obligate mutualism between three species (but see Miller et al., 2010 and Kim et al., 2008 for systems that were not metabolically engineered and Hernández-Sánchez et al., 2013 for a nonobligate system).

COMETS again made accurate predictions about the obligate nature of species interactions in the consortium (Figure 4B). Similarly to the E. coli mutant, a model of the engineered M. extorquens was created by constraining flux through HprA to zero. COMETS correctly predicted that no species—nor species pair—was capable of growth in lactose-methylamine media. Only when all three species were present was sustained growth observed both in the laboratory and in simulations.

Extending the analysis presented above for the two-species system, we investigated the ability of COMETS to predict the stability and steady-state community composition in our three-species mutualism. COMETS predicted that the community would converge to very similar species ratios from different starting conditions (Figure 4C); after five growth cycles each lasting

Cell Reports 7, 1104–1115, May 22, 2014 ©2014 The Authors 1107
96 hr, there was no significant difference between species ratios (E. coli p = 0.48, S. enterica p = 0.91, M. extorquens p = 0.50 with a two-tailed t test). Interestingly, COMETS predicted that M. extorquens would dominate the community despite having the lowest maximal growth rate. Experimental observation supported the predicted convergence of community composition over five growth cycles, and the dominance of M. extorquens (see also Figure S3, related to Figures 1 and 4).

The Metabolic Eclipse Dilemma: Benefit of a Competitor in Spatially Structured Mutualism

We used the two-species consortium to investigate the influence of spatial structure on competition in mutualistic systems. As a first step, we tested the growth of each partner as a function of increasing distance between them. Consistent with expectations, both the modeled colonies and the observations of the pair exhibited decreased growth as they were initiated further apart (Figure S6, related to Figure 5).

As growth of communities will rarely be as simple as pairwise interactions between microcolonies, we then asked how additional colonies influence pairwise interactions. When essential metabolites diffuse from a point source one might expect that colonies have an “eclipse” effect, casting a resource shadow that reduces the metabolites available to more distant colonies. Based on this logic, one would expect that the growth rate of a colony would be reduced if a competitor colony is placed between the colony and a mutualistic partner (Figure 5A). The extent of negative impact should scale with the rate at which the intermediate colony removes metabolites from the environment. On the other hand, one could argue for an opposite outcome, i.e., that the newly interposed colony, by helping the mutualistic partner, will ultimately benefit the original colony. Intuition alone cannot provide an answer to this conundrum, because its solution depends on the balance among the metabolic rates of the different species, the spatial organization of the colonies, and the diffusion rates.

We used COMETS to simulate the outcome of this gedanken experiment. COMETS predicted that a colony of wild-type S. enterica (whose model lacks the imposed methionine excretion of the mutualistic strain) would rapidly remove carbon from its surroundings and diminish the growth of a more distant colony of mutualistic S. enterica (Figure 5B). However, if the intermediate colony were another mutualistic S. enterica, then, based on COMETS, the growth of the distal colony would end up being larger than in the absence of an interfering colony. Though this effect is predicted to be time dependent, it holds over a substantial temporal window (Figure 5B).

We then tested the computational predictions experimentally and found that after 10 days a colony of S. enterica eclipsed by a methionine-excreting competitor produced more biomass than in the absence of a competitor (Figure 5C, p = 0.02 with a two-tailed t test). The intermediate colony increased the growth and excretion of a mutualistic partner, and this amplifying effect outweighed the influence of competition for carbon. In addition to correctly predicting these qualitative behaviors, COMETS also predicted the ratio of distal colony biomass in the three scenarios (Figure 5C). The difference in the timing at which these ratios were observed (experiment, 240 hr; model, 110 hr) may be partially ascribed to the fact that COMETS does not take into account lag time nor changes in diffusion due to plate drying over this long period.

Thus, based on both the model and the experiment, the metabolic eclipse has the nonintuitive outcome of benefiting the colony that is being eclipsed. Additional insight on the details of this phenomenon would require experimental measurements of metabolite concentrations at different points in space and time, e.g., using imaging mass spectrometry (Louie et al., 2013; Watrous and Dorrestein, 2011). Although this is beyond the scope of the current work, we can use COMETS to provide some preliminary theoretical insight, by taking advantage of its capacity to record simulated fluxes and metabolites at any given time and location for all organisms. This is best illustrated in the heatmaps of Figure 6, which display snapshots of key intracellular transport fluxes (for acetate, methionine, and oxygen), and of the corresponding environmental metabolite concentrations, across different organisms, spatial locations, and time points. The maps provided putative mechanistic insight.
into how heterogeneity in metabolic phenotypes determined local community composition and function, ultimately driving ecosystem-level dynamics. For example, is it possible to see how acetate uptake/secretion rates diverge over time, matched by methionine fluxes in the opposite directions, and rising levels of oxygen consumption. Helpful insight on the eclipse dilemma results indicate that this robust behavior extends to the three-species consortium. Here, there was a potential tension between mutualistic interactions and direct competition for limiting nutrients, such as S. enterica and M. extorquens competing for acetate, and E. coli and S. enterica competing for ammonia. Particularly surprising was the accuracy of the prediction that the three-species consortium would be dominated by M. extorquens—the strain with the slowest maximal growth rate. Whereas the potentially rapid E. coli and S. enterica faced dual limitations (methionine and N or acetate and N, respectively), M. extorquens could access N and energy from methyamine, and the limiting acetate was only required for assimilation. These results are noteworthy in light of the exciting possible opportunities of using synthetic ecology to design microbial consortia for biomedical and metabolic engineering applications. For this goal to come to fruition, it is critical to be able to predict how synthetic communities behave through time, even in heterogeneous environments, such as the lining of a human gut, or the architecture of a leaf. We demonstrated here that the dynamics are repeatable not only within replicates, but between treatments with different starting conditions.

Our experiment on the metabolic eclipse provided a specific, subtle example of COMETS arbitrating between the positive and negative effects that arise from the spatial organization of colonies at a given scale. That proximity of a conspecific competitor could be an advantage due to the stimulation of a shared mutualistic partner highlights the utility and importance of spatially explicit experiments when investigating the nature of interactions in microbial communities. More broadly, the balance between positive and negative effects that arise from local interactions determines changes in community properties such as composition and function and has important implications for the evolutionary dynamics of microbial systems. For example, whether cooperation is selected in structured environments critically depends not only on the qualitative existence of benefits and

DISCUSSION

Our results demonstrate that interspecies interactions and microbial community dynamics can emerge as the consequence of individual species locally optimizing intracellular resource allocation. We have used synthetic two- and three-species consortia whose growth depends upon metabolic exchange to experimentally test the predictions of a computational framework that is based entirely on this individual optimality postulate. This approach requires very few free parameters and no a priori assumptions on whether or how species would interact. One notable exception is the need to impose that S. enterica secretes methionine as it grows. This requirement, not unlike other flux constraints added in FBA models to match empirical knowledge (such as the maintenance flux), is a consequence of the fact that the specific strain used in the experiment has evolved this secretion capacity as a new trait. Such a trait could not possibly be captured by the standard S. enterica FBA model. This current limitation could be addressed by adding in COMETS the capacity for organisms to evolve, i.e., undergo mutations (e.g., in the form of random changes in constraints) and selection (competition between newly emerged variants).

Data from both two- and three-species consortia confirmed predictions that they would repeatedly converge to a steady-state composition even from different starting conditions. The convergence of the two-species consortium is similar to
across many different conditions. Future work could explore fully represent the possible spectrum of metabolic strategies. Indeed, it is unlikely that any single objective function could faith- and analyses (Harcombe et al., 2013; Schuetz et al., 2012).

The increasing flow of metagenomic sequencing data pro-vides top-down observational insight into the taxonomic and while increasing at most linearly in computational complexity. any number of species (including genetically modified strains), conditions. Along the same line, COMETS can be extended to additional assumptions or effort, other than modifying the initial metabolic interdependencies. For example, as shown here, ex- interaction, COMETS can be extended to arbitrarily complex tion needs to be made about which nutrients may mediate an ecosystem dynamics. Although no preliminary assump- to explore whether metabolic interactions are sufficient to explain ecosystem dynamics. Although no preliminary assump-

The prominent role of optimization in flux balance in general, and in COMETS in particular, deserves further reflection. In COMETS, each organism operates based on its own objective (maximization of biomass, in the current work) given the surrounding nutrient availability. Note that the same species in different spatial locations (in the same in silico experiment) may utilize re-sources differently (e.g., oxygen-limited biomass in one location will have different physiology than carbon-limited biomass in another). This is an important difference from approaches that optimize the interests of the group and is a central component of COMETS’ ability to accurately predict species ratios. However, even the assumption that evolution has acted on a population to optimize a simple objective has been challenged by new data (maximization of biomass, in the current work) given the surround-

In COMETS. The fraction of acetate is the total uptake of the distal colony divided by the total acetate excretion of its partner. The amount of acetate is the total moles taken up by each colony during the first 89 hr (i.e., before any E. coli start to utilize acetate). costs, but on the quantitative balance between these interactions (Bull and Harcombe, 2009). COMETS has the capacity to evaluate the impact of conflicting types of interactions. For example, the observed dichotomy between fractions and amounts of exchanged nutrients between different species (Figure 5D) may provide a useful starting point for studying the complexity of cross-feeding interactions in natural ecosystems. Moreover, although in this work we focus on interspecies interactions, COMETS can be used to study phenotypic diversity and meta-bolic heterogeneity within individual colonies. The 3D version of COMETS (under development) will enhance this type of analysis, because it will explicitly account for changes in diffusivity for different molecules (including oxygen) through the colony itself.

The prominent role of optimization in flux balance in general, and in COMETS in particular, deserves further reflection. In COMETS, each organism operates based on its own objective (maximization of biomass, in the current work) given the surrounding nutrient availability. Note that the same species in different spatial locations (in the same in silico experiment) may utilize resources differently (e.g., oxygen-limited biomass in one location will have different physiology than carbon-limited biomass in another). This is an important difference from approaches that optimize the interests of the group and is a central component of COMETS’ ability to accurately predict species ratios. However, even the assumption that evolution has acted on a population to optimize a simple objective has been challenged by new data and analyses (Harcombe et al., 2013; Schuetz et al., 2012). Indeed, it is unlikely that any single objective function could faithfully represent the possible spectrum of metabolic strategies across many different conditions. Future work could explore how COMETS predictions change upon implementing alternative condition-dependent objective functions. Such objective functions could be linear or quadratic (Segre` et al., 2002) and could include constraints associated with genetic regulation (Becker and Palsson, 2008, Collins et al., 2012).

Future elaborations of COMETS can be envisioned to incorpo-rate additional aspects of microbial physiology that play an important role in microbial ecosystems, such as chemotaxis, quorum sensing, and antibiotic warfare. For example, chemo-taxis could be modeled using nonisotropic diffusion, as a func-tion of specific metabolite gradients. Toxins or antibiotics could be modeled as additional diffusible molecules that affect the death rate of specific organisms. The fact that COMETS performed so well despite lacking these important components is likely a consequence of our use of communities designed to strongly rely on metabolic-based interactions. At the same time, metabolism plays a fundamental role in many microbial systems, and it will be interesting to use COMETS as a null model to explore whether metabolic interactions are sufficient to explain ecosystem dynamics. Although no preliminary assumption needs to be made about which nutrients may mediate an interaction, COMETS can be extended to arbitrarily complex metabolic interdependencies. For example, as shown here, ex-tending a consortium from two way to three way requires no additional assumptions or effort, other than modifying the initial conditions. Along the same line, COMETS can be extended to any number of species (including genetically modified strains), while increasing at most linearly in computational complexity.

The increasing flow of metagenomic sequencing data pro-vides top-down observational insight into the taxonomic and
The basic linear programming problem of FBA (for species a) can be written as follows:

Maximize $Z^v = \sum_{j=1}^{n} S_{aj}^v v_j$

Subject to $S^v v_j = 0$

$LB_{aj}^v \leq v_j \leq UB_{aj}^v$, $j = 1, \ldots, n$

where Z defines the objective function, taken to be by default maximization of biomass production (see Discussion). The vectors LB^v and UB^v correspond to the lower and upper bounds to all fluxes respectively. As detailed below, the dynamic calculation of these bounds is an important aspect of COMETS.

In the dFBA formulation of COMETS, each step, for each species, consists of two main processes:

1. Calculation of upper bounds for uptake rates. In line with previous FBA computations, exchange fluxes balance inflow and outflow of each metabolite. What is unique to the dFBA formulation of COMETS is the implementation of additional environment-dependent constraints on these uptake/excretion fluxes. Upper bounds on uptake fluxes for the dFBA calculation are estimated based on a concentration-dependent saturating function, in analogy with Michaelis-Menten kinetics (Feng et al., 2012). Given an environmental concentration C_m of m (in a given box), the upper bound u_m is given by the following saturation curve:

$$\frac{V_{max,m} C_m}{C_m + K_{M}^m}$$

where n is a Hill coefficient (currently set to 1), $V_{max,m}$ is the maximal rate, and K_{M}^m is a binding constant.

2. Solution of FBA problem and update of biomass and extracellular metabolite levels. Upon setting all upper bounds based on the
dynamically changing environmental concentrations, an FBA problem is solved for each species in each box, as described in Equation 1. Next, the abundances of biomass (for all species) and environmental metabolites are updated in each box, according to the following discrete update rules:

\[\frac{B_{m}(t+\Delta t)}{B_{m}(t)} = B_{m}(x,y)(t) + B_{m}(x,y)(t) \cdot \nu_{\text{growth,m}} \cdot \Delta t, \]

\[\frac{Q_{m}(t+\Delta t)}{Q_{m}(t)} = Q_{m}(x,y)(t) + \nu_{\text{uptake,m}} \cdot B_{m}(x,y)(t) \cdot \Delta t, \]

where \(\nu_{\text{growth,m}} \) is the growth rate of the corresponding species (in that specific box, \(x,y \)), and \(\nu_{\text{uptake,m}} \) is the rate of uptake/secretion of metabolite \(m \) by species \(s \).

Thus, starting with a user-defined initial condition, a dFBA time step is performed on each box in the grid. Each box is updated independently. If there are multiple species present in a single box, they compete for media and space (i.e., a preset total carrying capacity per box). In this case, the order in which FBA is done is randomized among the species in each box.

In addition to biomass increase due to cellular growth, at each time cycle COMETS evaluates the extent of biomass reduction, due to dilution or cell death.

Diffusion

Diffusion steps are alternated with growth steps, predicting how biomass and extracellular metabolites propagate across the lattice. COMETS numerically computes approximate solutions to the standard two-dimensional diffusion equation on a 2D lattice, by using an alternating direction implicit (ADI) scheme with a central difference formulation (Peaceman and Rachford, 1955) as used in similar individual-based models (Chung et al., 2010; Gerlee and Anderson, 2008) (see Figure S1). This diffusion step is applied to biomass and media with substantially different diffusion coefficients. If the different species in the model are not allowed to exist in the same box (an option set by the user), then they undergo diffusion in random order; all boxes occupied by other species are treated as Neumann boundaries. Diffusion is applied separately to each medium component. Although metabolite-specific diffusion constants may be introduced if known, here we use the same value for all metabolites. Some boxes may represent physical barriers, which could be used to model different environmental topologies (e.g., Petri dish or a microfluidic device).

COMETS Download

COMETS executables, code, instructions, and examples can be downloaded at http://comets.bu.edu (see also Figure S2, related to Figure 1).

In Silico Experiments

We tested the predictive power of COMETS with metabolic models of E. coli (JOU_1366) (Orth et al., 2011), S. enterica (RRR_1083) (Raghunathan et al., 2009), and M. extorquens AM1 (Kiltz et al., 2010). Standard FBA models were converted to COMETS format with the script provided on the COMETS website. Mutant E. coli and M. extorquens models were constructed by constraining flux through knocked out reactions to zero. A mutant S. enterica model was constructed that excreted methionine at a rate consistent with empirical observations. To achieve this, we added on the right side of the growth reaction 0.5 mmol/gDW of excreted extracellular methionine, balanced by an equal amount of intracellular methionine consumed (at the left side of the reaction equation). A ΔhprA M. extorquens model was constructed by constraining flux through the knocked out reaction to zero.

In silico environments were consistent with carbon limited minimal media (Table S1). Square lattices were constructed with individual boxes either 0.02 (Figure 2) or 0.05 cm a side (Figures 3, 4, 5, and 6). The amount of carbon under each box was calculated based on standard 25 ml plates (for example, 5 g/l glucose media was implemented as 0.0088 mmol/cm²). Oxygen depletion has been observed inside colonies (Peters et al., 1987; Wimpenny and Coombs, 1983) so oxygen concentrations were constrained to 0.25 mmol/cm². Trace metals and other minor components of media were provided at a concentration of 1,000 mmol/box so that they were not limiting.

Simulations were executed with parameters based on published values (see also Table 1). Metabolite diffusion was set to 5 × 10⁻⁶ cm²/s in agreement with sugar diffusion in Stewart (2003). Biomass diffusion was set to 3 × 10⁻⁴ cm²/s for most simulations based on Korolev et al., 2011. The colony expansion simulations were run with a biomass diffusion of 3 × 10⁻⁴ cm²/s because they were carried out on 1.5% agar plates rather than the 0.8% agarose used in all other experiments. Michaelis-Menten parameters were set to canonical values of \(K_m = 0.01 \) mM and \(V_{max} = 10 \) mmol g⁻¹ hr⁻¹ for all metabolites, well within the range of observed values (Gossel, 2005). An upper bound on biomass per box on the lattice was set based on the observation that E. coli colonies do not exceed a height of approximately 0.2 mm (Lewis and Wimpenny, 1981). Cell death rate was set to 1% per time step (Saint-Ruf et al., 2004).

Strains Used Experimentally

The experimental data we collected involved strains of E. coli K-12, S. enterica LT2, and M. extorquens AM1. The E. coli was an isolate from the Keio collection (ΔmetB CGSC# 10824, [Baba et al., 2006], erroneously referred to as ΔmetB in Harcombe, 2010) with the lac operon replaced via conjugation with E. coli HfrH PO1 relA1 thi-1 spoT supQ80 nad57::Tn1. The methionine excreting S. enterica LT2 mutant was created through a combination of engineering and selection (Harcombe 2010). The ΔhprA M. extorquens was created previously (Max, 2009).

** Colony Expansion Comparisons**

The E. coli colony growth dynamics were compared to results from Lewis and Wimpenny (1981). They made minimal media plates with 15 g/l bacto-agar and 0.5% (w/v) of glucose, lactate, or acetate. Plates were inoculated with a glass needle technique, incubated at 37°C, and measured microscopically. Average profiles were determined and used to calculate the radial growth rate. These data were compared against COMETS by simulating growth of a colony on each of the carbon sources. Colonies were initiated with 3 × 10⁻⁴ g biomass in the center of a 50 × 50 lattice with a box width of 0.02 cm. The diameter at various time points was based on the number of boxes with more than 10⁻³ g biomass/box across a 25 × 25 horizontal line through the center of the colony.

** Two-Species Consortium**

The two-species ratio tests involved mixed cultures grown as a lawn on petri dishes or in simulations. Experimentally, E. coli and S. enterica were grown overnight in permissive media and then mixed at a ratio of 1:99 and 99:1. Five microliters of these mixtures was spread on 5 mm plates of lactose Hypho minimal media (2.92 mM lactose, 7.26 mM K₂HPO₄, 0.88 mM NaH₂PO₄, 1.89 mM [NH₄]₂SO₄, 0.41 mM MgSO₄, 1 ml of a metal mix based on Delaney et al., 2013 [recipe in Table S2]). The plates were allowed to grow for 2 days at 37°C. At the end of this time, colony-forming units (cfus) were determined by washing and scraping plates with 720 μl of minimal medium and then spreading dilutions on LB plates. On LB, both E. coli and S. enterica can grow independently, and X-gal (5-bromo-4-chloro-3-indoly-L-D-galactopyranoside) was included in the plates so that blue E. coli colonies could be distinguished from white S. enterica colonies. Comparison to COMETS was carried out by randomly distributing 100 boxes in the relevant species ratios each with \(3 \times 10^{-4} \) biomass across a 25 × 25 lattice (individual box width = 0.05 cm). Cell overlap was allowed and the total biomass of each type was determined after 48 hr of simulated growth. Three replicate simulations were carried out for each treatment.

The impact of space and orientation on the consortium involved detailed placement of cells. Wet lab experiments were carried out with overnight cultures of E. coli and S. enterica that were washed and concentrated to ~10⁶ cells/ml. Cells were added to wells in a 384-well plate in the desired layout. A 384-pin head was then used to stamp the cells onto a petri dish so that E. coli was inoculated 10 mm from distal S. enterica, and when relevant intermediate S. enterica was exactly halfway between. Different treatments were separated by 30 mm. These plates were grown at 37°C with high humidity for 10 days. The biomass produced in the eclipse experiment was assayed by cutting colonies out of the plate, breaking up the agar, vortexing extensively, plating on permissive LB plates, and counting colonies. COMETS
comparisons were carried out in a 50 × 140 lattice of 0.05 cm boxes. Boxes were inoculated with 2 × 10⁻⁶ g of biomass at the appropriate distances.

Three-Species Consortium

Experiments with the three-species consortium involved very similar protocols to those with the two-species consortium. Each species was grown in permissive media, and then the species were combined volumetrically at ratios of 1:100:100 or 100:1:100. E. coli/S. enterica/M. extorquens. Ten microliters of one of the mixtures was added to each of three replicate methylamine-lactose minimal medium plates [Ni(H₂)₂SO₄ replaced with 1.9 mM Na₂SO₄, and 2.5 mM methylamine × HCl added]. After 96 hr incubation, the surface of the plates was soaked with 720 µl of minimal media. An aliquot of 5 µl of the resultant suspension was then transferred to a fresh plate, spread, and incubated for 96 hr. A total of five transfers were completed, and at each transfer the ratios of the three species were determined from their cfu concentrations.

This process was emulated in COMETS by randomly distributing 100 boxes in the relevant species ratios each with 3 × 10⁻⁷ biomass across a 15 × 15 lattice (individual box width = 0.05 cm). The initial ratios based on cfu data were 1:8:92 and 16:1:83. A new lattice was then randomly populated with the initial amount of biomass in the new ratios to mimic the laboratory transfer regimen. Three replicate simulations were carried out for each of the treatments.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures, six figures, and two tables and can be found with this article online at http://dx.doi.org/10.1016/j.celrep.2014.03.070.

AUTHOR CONTRIBUTIONS

D.S., C.J.M., W.R.H., and W.J.R. designed the study and wrote the manuscript; W.J.R. and I.D. wrote the COMETS code; W.R.H. implemented the engineered ecosystem simulations and experiments; A.B. contributed to the experiments; B.R.G., A.H.L., G.B., A.K., N.L., and P.M. contributed specific portions of the computational analysis; and D.S. coordinated the project.

ACKNOWLEDGMENTS

This work was supported by the Office of Science (BER), U.S. Department of Energy (grant DE-SC0004962 to D.S.), D.S., W.J.R., I.D., B.R.G., and A.K. were supported also by the NASA Astrobiology Institute (NNA08CN84A) and NIH (5R01GM089978 and 5R01GM103502-06). G.B. was supported by IGERT NSF DGE-0654108. W.R.H. was supported also by NIH NRSA 1F32GM090760 and DOE award to C.J.M. (DE-SC0006731). N.L. was supported by NSF GRFP DGE-1247312. P.M. was partially supported by NIH K25 GM086909. A.H.L. was supported by NSF DGE-0741448. The authors are grateful for useful conversations with Niels Klitgord, Melanie Muller, and with members of the Segre and Marx labs.

Received: August 14, 2013
Revised: February 1, 2014
Accepted: March 28, 2014
Published: May 1, 2014

REFERENCES

