Silicon Trigger Cluster Card

Meenakshi Narain

W. Earle, E. Hazen, U. Heintz, S. Fatakia (BU)
R. Perry, H. Wahl + engineering students (FSU)
STC Functionality

• **What are we expected to do?**

 – Find clusters in the Silicon detector associated with the outer track

 • **Inputs:**
 – receive SMT data
 – receive L1CTT roads

 • **Functionality:**
 – find hit clusters
 – filter axial hits in track roads

 • **Data output**
 – send filtered hits to TFC
 – send ALL hits to L3
 – send 90° hits to ZVC
 – collect stats for monitoring
 – send all internal info for unbiased events
Where do we fit in?

Six fold STT symmetry ⇒ 9 STC cards in each crate (72 SMT ladders on 36 fibers)

Current cabling scheme suggests 6 out of 36 fiber will have data mixed across 30° sectors.
Implementation

From FRC

To TFC

To ZVC

Initialization and Monitoring

From SMT (4 fibers)
SMT Data Input Stage

- Read in SMT strip information
- suppress bad channels
- apply gains and pedestal corrections (by chip)

Send data to cluster finder

Raw/corrected data available for L3 readout on unbiased events

2/21/00

Meenakshi Narain
Clustering Stage

- Combine contiguous strips above a threshold into clusters
- Compute cluster centroid based on peak with the highest pulse height and its $\pm 2(1)$ neighbours
 - Centroids sent to Hit Filter and L3 FIFO
- Compute dE/dx thresholds
Clustering & Centroid Algorithm

- Keep L2STT clustering same as Offline
- Limit centroid calculation to 5 *central strips*

Resolution for offline algorithm

Resolution for 5 strip centroid algorithm
Clustering & Centroid Algorithm

- Resolution for clusters with hits from multiple tracks

Resolution for offline algorithm

Resolution for 5 strip centroid algorithm
Event Controller and Hit Filter

- **Event Controller read in data from FRC**
 - Event information
 - (Evt #, SCL info, Level1 Qualifiers)
 - Read L1CTT tracks
 - (send necessary info to hit filter)

- **Hit Filter**
 - convert L1CTT road to SMT roads
 - collect all centroids in a given road
 - send centroids in road to TFC
Data Output

<table>
<thead>
<tr>
<th>Data type</th>
<th>L3 (normal)</th>
<th>L3 (unbiased)</th>
<th>TFC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raw</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected</td>
<td></td>
<td>1 of 8</td>
<td></td>
</tr>
<tr>
<td>Cluster (incl strips)</td>
<td></td>
<td>1 of 8</td>
<td></td>
</tr>
<tr>
<td>Centroids Axial, 2-deg, 90-deg</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Centroids In roads</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>L1CTT info</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bytes/event</td>
<td>160</td>
<td>630</td>
<td>136</td>
</tr>
</tbody>
</table>
Configuration and Monitoring

- **Monitor**: (on CollectStatus L1_QUAL send the following to the CPU)
 - error counts for all 8 STC channels/card
 - 8-bit histogram of channel hit
 - Total # of axial/ 2°/ 90° centroids for each channel
 - Time spent in various processing states
 - # of hits transferred to TFC

- **Configuration**:
 - look up tables
 - gains, pedestal, road conversion, various thresholds
 - `begin run’ download:
 - bad channel list
 - L3 and monitor readout data-type
Functional Simulation

• clustering algorithm and centroid computation
 (June’99 version)

 – Resource allocation for device EPF10K50EQC208-1
 • assume: 1 MHz Clock, Single Chip, No bad/skipped channels

 Total logic cells used: 1433/2880 (49%)
 Total embedded cells used: 40/160 (25%)
 Total EABs used: 8/10 (80%)
 Average fan-in: 3.24/4 (81%)
 Total flipflops required: 481

 – Static Timing Analysis of Baseline Design showed 30MHz Maximum Clock Freq
 – Performance limited by Clustering Module.

 – Beginning Revision 2 Design...
 • Add Hit Filter
 • Add 3 or 5 strip cluster finder option
 • Examine PCI bus interface
 • Add L3 buffer/monitoring requirements.
STC development and test platform

PC-MIP card

development platform

PC mother board

commercial adapter board
Summary

• Specifications near completion
• Functional simulation started to assess the timing and resources needed
 • Expect to start layout by 6/1/00
 • Prototype next fall