New Scaling in an Old Earthquake Model

C. A. Serino and W. Klein

Greater Boston Area Statistical Mechanics Meeting
10 October 2009
$N_{GR} (M_0 > m) = A m^{-b}$
Empirical Scaling

• Gutenberg & Richter observe the now-famous relation [Gutenberg and Richter, Ann. Geophys. 9, 1 (1956)]:

\[N_{GR} (M_0 > m) = A m^{-b} \]

where \(M_0 \) is the magnitude of the event and the exponent is referred to as the “b-value”.

• Scaling occurs over fault systems, not single faults and \(b \) is determined from a cumulative distribution.
Empirical Scaling

\[N_{GR} (M_0 > m) = A m^{-b} \]

where \(M_0 \) is the magnitude of the event and the exponent is referred to as the “b-value”.

• Scaling occurs over *fault systems*, not single faults and \(b \) is determined from a *cumulative* distribution.

• Typical b-values lie in \(0.8 \leq b \leq 1.2 \) but can vary outside this region [Frohlich and Davis, *J. Geophys. Res.* 98, 631-644 (1993)].
OFC Model

OFC Model

OFC Model

OFC Model

OFC Model

- These dynamics yield “cluster scaling”

\[N(s) \propto s^{-\tau} \] with \(\tau = 3/2 \) where \(b = \tau - 1 \).
Introduce Damage

- We can “freeze in” a certain fraction of damaged sites, $1 - \phi$, that cannot receive stress from their neighbors.
• We can “freeze in” a certain fraction of damaged sites, \(1 - \phi\), that cannot receive stress from their neighbors.
We can “freeze in” a certain fraction of damaged sites, $1 - \phi$, that cannot receive stress from their neighbors.
Reduced Scaling Regime

\[N(s) = L \]

\(\phi = 1 \)

\(\phi = 0.9 \)

\(\phi = 0.8 \)

\(\phi = 0.5 \)
\(\phi = 0.1 \)

\(\phi = 0.2 \)

\(\phi = 0.3 \)

\(\phi = 0.4 \)

\(\phi = 0.5 \)

\(\phi = 0.6 \)

\(\phi = 0.7 \)

\(\phi = 0.8 \)

\(\phi = 0.9 \)

\(\phi = 1 \)

\(N(s) \)

\(s \)
\[\phi = 0.1 \]

\[\phi = 0.2 \]

\[\phi = 0.3 \]

\[\phi = 0.4 \]

\[\phi = 0.5 \]

\[\phi = 0.6 \]

\[\phi = 0.7 \]

\[N(s) \]

\[s \]
“New” Scaling

![Graph](image)

- $N(s)$ vs. s
- Axes: 10^0 to 10^7 for $N(s)$ and 10^0 to 10^4 for s
"New" Scaling

\[\tau = 2.073 \pm 0.001 \]

\[b = 1.1 \]

\[\chi^2/d.o.f = 5.3 \]
Summary

- Seismologists have observed that the frequency of earthquakes scales as a power-law with respect to the size or magnitude of the event.

- Empirical evidence suggests that most exponents, b, lie in a small window about $b = 1$.

- The OFC model gives rise to scaling with $b = 0.5$.

- The modified OFC model with damage produces new scaling with exponent $b = 1$.
Thank You

Further information:

C. A. Serino et. al. arXiv:0905.3860 [cond-mat.stat-mech]