1. Jackson 8.2, parts (a),(b),(c)
A transmission line consisting of two concentric circular cylinders of metal with conductivity σ and skin depth δ is filled with a uniform lossless dielectric (μ, ε). A TEM mode is propagated along this line.

(a) Show that the time-averaged power flow along the line is

$$ P = \frac{\mu}{\varepsilon} \pi a^2 |H_0|^2 \ln \left(\frac{b}{a} \right) $$

where H_0 is the peak value of the azimuthal magnetic field at the surface of the inner conductor.

(b) Show that the transmitted power is attenuated along the line as

$$ P(z) = P_0 e^{-2\gamma z} $$

where

$$ \gamma = \frac{1}{2\sigma \delta} \sqrt{\frac{\mu}{\varepsilon}} \ln \left(\frac{b}{a} \right) $$

(c) The characteristic impedance Z_0 of the line is defined as the ratio of the voltage between the cylinders to the axial current flowing in one of them at any position z. Show that for this line

$$ Z_0 = \frac{1}{2\pi} \sqrt{\frac{\mu}{\varepsilon}} \ln \left(\frac{b}{a} \right) $$