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Abstract

We show that the phenomena explained by Quantum Mechanics can alter-
natively be explained as a breakdown of Probability Theory without the need
for wave-particle duality or the idea that a particle does not have a unique
path in space. The single particle Lagrangian consistent with the reformu-
lated Quantum Mechanics is derived and specialized to the Schrodinger and
Klein—Gordon theories. The usual paradoxes of Quantum Mechanics are ex-
plained. A connection to gravity is proposed. Probability Theory is restored
in the classical limit.



1. Introduction

Ever since the invention of Quantum Mechanics, there have been problems in the inter-
pretation of the theory. Although predictions of the theory have been uniformly successful,
basic questions such as

What is the meaning of the wave-particle duality?
What happens when a wavefunction collapses?
What constitutes a measurement?

What is the role of the observer?

continue to be puzzling. This basic confusion is made flesh by the various “paradoxes” such
as the Einstein—Podolsky—Rosen(EPR) paradox! and the paradox of Schrédinger’s cat.?
There have been many attempts to answer these questions by either changing Quantum
Mechanics or by changing it’s interpretation.? These include Hidden Variable theories,*
Semi—classical theories,® Collapse Interpretations,® the Many Worlds Interpretation,7 Ad-
vanced Action Interpretations,8 Non-Local Models,9 the Consistent Histories Modell¥ and
Quantum Logics.11 Here, rather than attempting to work within the framework of standard
Quantum Mechanics, a reformulated theory is proposed which is shown to give the same
predictions as the standard Quantum Theory and is shown to give satisfying answers to the

paradoxes.

2. The Two Slit Experiment

Quantum Mechanics is sometimes motivated by the well known two slit experiment. In
this situation, a source emits particles of a particular energy and type, one at a time, towards
a barrier with two slits. Behind the barrier is a screen and a detector which can be moved in
the transverse (z) direction and which can be used to count the number of particles which
arrive at each x position. With either of the slits blocked, the frequency profile in z is smooth
with one peak. To predict what happens when both slits are open, consider the following
proposition:

Proposition A: Each particle either goes through slit #1 or it goes through slit #2.

If Proposition A is true, then the frequency profile with both slits open must be the sum of
the profiles with one or the other of the slits blocked. Since the actual result is an interference
pattern with many peaks, Proposition A must be false.



This analysis of the two slit experiment leads to the conclusion that particles have a
“wave nature” and that each individual particle goes through both slits at once. However,
there is an alternative interpretation of the experiment where Proposition A is accepted as
true and the interference result is explained as a breakdown of Probability Theory itself,
rather than due to new properties of the particle. A failure of Probability Theory could
result in

P(x) # P(x and slit#1) + P(x and slit#2)

which would avoid a contradiction. Thus, rather then introducing new mechanics as such,
we explore the alternative of modifying Probability Theory.

3. Axioms and Definitions

Probability Theory can be axiomized as follows. Consider a set of propositions P closed
under and(A), or(V) and not(—). Thus, P is a set of questions with definite yes or no
answers. A probability is a function mapping P x P into the interval [0, 1] satisfying

P(b A cla) = P(bla)P(c|la A D),
P(bla) + P(—bla) =1,
P(—ala) =0

for all a,b,c € P, where “P(bla)” is the probability that b is true given a, etc. These axioms
are highly constrained by the following, even more primitive assumptions:

P(bAcla) = F(P(bla), P(cla Ab)) for some fixed function F,
P(=bla) = G(P(b|a)) for some fixed function G.

With these assumptions, R.T. Cox has shown that the structure of P leads, almost unam-
biguously, to the standard axioms.12 The simplest way to introduce complex numbers into
the theory while maintaining the primitive assumptions of Cox is to replace the interval [0, 1]
with the set of complex numbers (C). To distinguish the modified Probability Theory from
the original, introduce an arrow “—” to signify a binary function mapping P x P into C.
The new complex probability satisfies

(@a—=bAc)=(a—b) x(aNb—c)
(a—=b)+(a— —b)=1
(a— —-a)=0

for all a,b,c € P. We take this modified probability theory to be the reformulated Quantum
Mechanics. To avoid confusion, the term “probability” will refer to a standard probability
and the term “amplitude” will be used for the complex probability.

Many of the familiar results of Probability Theory follow easily from the new axioms.
For example, for all a,b,c € P,



e) If (a — b) #0, then (a Ab—¢) =(a— ¢)(aNc—b)/(a— b) (Bayes Theorem)

where “T"” is the question whose answer is always true and where “F” is the question whose
answer is always false. Note that the new “amplitude” is not the same as the amplitude in
standard Quantum Mechanics. For example, it is not generally true that (¢ — b) = (b — a)*,
and |a — b|? is not generally a probability.

In order to make a dynamical description of a given system, choose P to contain questions
ordered with a parameter ¢ € [0,T]. Such questions are denoted “a,?” meaning “a is true at
time ¢.” Since P is closed under the standard boolean operations, questions such as a, tAb, ¢/
are also included, even if ¢t # t'. In addition to a global choice of questions about a system,
it is useful to define what it means for a set of questions to form a complete specification. A
set, of questions Py = {x,t: 2z € U,t € [0,T]} C P is complete if, for all z,t € Py, x,t' € P,
y,t € Py, a,t € P and bt € P:

a)x#y=ux,tNyt=F,
b) (a,t = b,t") = (a,t = (Ve z. ') Ab ") if ¢ € (¢,17),
¢) (a,t Ayt — b, ") = (x,t' — b, ") if ' € (¢,17).

As a concrete example of a complete set of questions, let Q = {z,t : © € R3,¢t € [0,7]}
be the set of questions about a single scalar particle in three dimensions. Informally, Q
is complete if (a) the particle cannot have two positions at once, (b) if the particle moves
from time ¢ to time ¢”, it must have a position = € R? at any intermediate time #' and (c)
the future amplitudes of a particle are determined by it’s last known position and the past
amplitudes of a particle are determined by it’s earliest known position.

4. Single Particle Dynamics

Consider a single particle in d-dimensions and assume that
1) The global set of propositions P includes all questions about the position of the particle
in RY specified at a particular “time” ¢ € [0,7],
2) Py = {a,t:x eR% t €[0,T]} C P is complete.
We wish to calculate (a,t( — x,t) where a is some prior statement about the system known

to be true at time ¢y < ¢t. The desired amplitude can be expanded using the axioms and
completeness into

(a,to = x,1) = (a,t0 = (Vg a1.11) A1)



= Zml(a7t0 — x1,t1 Az, t)

= Zml (a,to — Il,tl)(a,to Nx1,t1 — x,t)

= Zml (a,tg — x1,t1)(x1,t1 — =, 1)

=D Yowy o Doy (@0 = @1, 1) (21,1 = w9, t0) - (T 1ty 1 > T, Tn)

where x1, x9,...1,_1 are summed over R, with z,, = z, t, = t and where tjiv1—tj =7
for j = 0,1,....,n — 1. Thus, (a,tg — x,t) is given by a path integral (see Refs. 13-15) of
products of the form

Oz, z,7) = (xr,t > x+2,t+7T)

where we have assumed that ¢ is independent of absolute time. Let each time interval 7 be
further divided into N sub-intervals with e = 7/N and

p(x, z,€) = (x,t = x4+ 2, + €)

where p is the “microscopic amplitude.” As with the path integral above, ¢ can be expanded
into N convolutions of p. Assume that 7 can be chosen small enough that u(x, z, €) can be
taken to be independent of x within each term of the original path integral. Then

O, u,7) = iz, u, N
wherel® fi(z,u,e) = [d% u(z,z,e)e™% and bz, u,7) = [d%% ¢z, z,T)e ™%, After ex-
panding ji: u(z, 2, €) = 0(2) + epe(x, 2,0) + O(e?) and introducing the moments

vo(z) = / 02 pie(x, 2,0),

V](x) = /ddz Mﬁ(xaza O)Zja

vip(z) = /ddZ pe(z, 2,0)zj 2,
the € — 0 limit of ¢ can be written as

67'V0 1

d(z,z,7) = 20 /ddu exp(—iu;zj + 7(iujvj — §Ujukyjk)).

If vjj can be diagonalized, a complex orthogonal matrix M can be found!” such that
ngjkMkm = Oy /wi. Letting Wip = MyM}w, and o(z) = det[M(z)] € {+1,-1},
then

¢z, 2,7) = 7 exp(— (2 — Tvj) Wi (2 — Tv) + T10)
2

det[V] 27



is the general form of the propagator. Equating the exponent of the propagator with 7 times
the action over an interval 7 and assuming that o and det[v] are constant, the most general
single particle time independent Lagrangian consistent with quantum mechanics is
i .
Lz, v) = 5(vj = vj)Wj(vg — vg) — g
where v; = z;/7 is the velocity and where (), vj(z) and Wjj(x) are moments of the

microscopic amplitude.
If d =3 and Wjj, = d;,w(x), then det[v] = w(z)~ and the definitions

w(z) = —im,

v(z) = —igeo(z),

vje) = L4;(),
result in the Lagrangian for the Schrodinger equation with a particle of mass m, charge g,
with a vector potential A;(x) and a scalar potential ¢g(x). Thus, any microscopic amplitude
consistent with real scalar and vector potentials and a constant mass leads to the Schrodinger
equation where the mass, vector and scalar potentials appear as moments. Notice that all
the gauge invariant terms are present.

Given any mass, vector and scalar potentials, there is a microscopic amplitude such that
(a,tg — x,t) is a solution of the Schrédinger equation with initial condition ¢gy(x) = (a,tg —
x,tg). Conversely, a given solution ¢(z,t) of the Schrédinger equation can be made into an
amplitude by normalizing 1) so that fOT dt [ d% +(z,t) = 1. Any difficulties caused by
wavefunctions with [ dz Y(z,t) = 0 can be avoided either by making a slight change in the
initial conditions or by normalizing ¢ in a finite volume.

As an example and as a test of consistency, Bayes Theorem can be used to add new
information to an existing wavefunction. The resulting amplitude must also be a solution of
Schrodinger’s equation. Given that a particle is at « € R% at time to and that the particle
is in a volume Ry C RY at time to + A, we wish to compute the amplitude for the particle
to be at a position z € R? at a later time to + 2A. To simplify notation, suppress the time
specifications and denote the statement that the particle is in Ry at the intermediate time
by “in Ry.” Using Bayes theorem,

(x Az —in Ry)
(x — in Ry)

(x ANin Ry — 2) = (x — 2)

and since

(xANz—=in Ry) =(x ANz — \/ (yAy € Ry)) = Z(:E/\z—>y)
yERd YER,



and since Bayes theorem and completeness implies that

(x ANy — 2) (y — 2)
A = A .o AN
(xAz—=y)=(z—y) &= 2 (x—>y)(x_>z)
the desired amplitude can be written
. 1
(x/\lnRy—%z):m Z (x = y)(ly = 2)
4 yeR,

provided that (z — in Ry) and (z — z) are nonzero. Thus, since (y — z) is a solution to
the Schrodinger equation, then so is (z Ain Ry — z). Similarly, the amplitude to arrive at
z and to be in Ry at the intermediate time is given by

(x = in Ry A z) = Z (x = y)(y = 2)
YyER,

which is also a solution to the Schrodinger equation.

The above considerations for the Schrodinger equation also apply to the four dimensional
case with ¢ identified as a path length parameter rather than the fourth component of x.
The choice of moments w(z) = 1, vo(z) = —%(g2AJ~ (z)Aj(z) + m?), and vi(z) = igA;(z)
results in the Lagrangian for Klein-Gordon equation if, as usual, the path length parameter
is integrated out. Notice that without the arbitrary choice of vy(x) to cancel the photon
mass term, the theory would violate gauge invariance.

5. Restoration of Probability Theory

The restoration of standard Probability Theory can be illustrated by taking the classical
limit of the amplitude for a particle to be found in a volume V' C R? at some time ¢ > to-
Given that ¢ is known at time ¢g, the amplitude to find the particle in a volume V' C RY at
time ¢ is given by the marginal amplitude

Gtg A\ zmt—=inVit)=> (itg—>z,t)/ > (i.tg— 1)
zeR? zeV zeR?

If, in the classical limit of Quantum Mechanics, a particle can be described by a wave packet
which follows the classical trajectory!® and if the volume V is much larger than the size of
the wave packet, then the amplitude to find the particle in V' at time ¢ is 1 if it contains
the classical trajectory and zero otherwise. If the initial knowledge of a classical particle can
be described by a probability distribution in position—momentum phase space, this situation
can be represented as a sum of wave packets with positive weights. The amplitude to be



in a region V' is then just the sum of the weights for the wave packets which are contained
by V' at time £. Thus, in this limit, the amplitude has been reduced to a standard positive
probability.

In some Quantum theories, a conserved current can be constructed from the wavefunction
with a positive current density. The density |w(ac,t)|2 in the original Schrédinger theory is

an example of this. Outside the classical limit, the probability meaning of the amplitude
does not interfere with a probability interpretation of |i(z,t)|? since negative or complex
probabilities cannot have a frequency interpretation. In the classical limit as described
above, either the amplitude or the magnitude of the wavefunction squared can be interpreted
as a probability density. Since, in the latter case, the initial weights would have been
replaced by their square roots, and since the initial wave packets remain separated, the two

interpretations give identical results.

6. The Meaning of the Microscopic Amplitude

In general, extracting dynamics from this theory can proceed from a choice of a complete
set of questions. Given a complete set of questions P; describing a system at “time” ¢, any
desired amplitude can be expanded into a path integral. Repeated application of a micro-
scopic amplitude then results in a propagator and an effective Lagrangian where masses and
background fields emerge as moments. This emergence of an effective Lagrangian depending
only on the lowest moments is just a version of the Central Limit Theorem. Simplifying
assumptions on the form of the microscopic amplitude may also simplify the form of the
Lagrangian. The formulation of the theory does not depend on the metric structure of R
and could be formulated on a suitably smooth manifold or on a discrete set.

In both the Schrodinger and Klein-Gordon theories, constraints have been imposed on the
microscopic amplitude in order to avoid unwanted terms in the effective Lagrangian. Since
there is no other mechanism for keeping ij(x) constant, it is tempting to attribute this
feature to the flatness of space-time and to equate Wy (x) with the space-time metric g, ()
from General Relativity.lg This would then result in a quantum theory of a scalar particle
in a static gravitational field. In any case, since ¢(z, z,7) is the most general single particle
time independent propagator consistent with Quantum Mechanics, ¢ must also describe a
scalar particle in a static gravitational field, assuming that such a theory exists.

7. Multi-Particle Systems



The Quantum Mechanics of multi-particle systems can be described by choosing new
complete sets of questions. In the case of two distinguishable scalar particles in ]Rd, choose

Pr = {1, 29, : 21,79 € R}

where “ry,x9,t” is shorthand notation for “particle 1 is at x7 and particle 2 is at xo at time
t.” On the other hand, if the particles are identical, this must be reflected in a different set
of questions needed to describe the system:

Pr = {{z1,22},t: 21, 22 E]Rd}

where “{x1,x9},t” is short for “the positions of the two particles are {x1,z2} at time ¢.” It
is easy to verify that the case of n distinguishable particles in d-dimensions, with

P = {z,t:2 € RH"},

is isomorphic to a single particle in n x d dimensions, so the results of section 4 can be used
in this case. From this point of view, a natural starting point for scalar field theory is the
set of questions Py = {¢,t : p continuous, ¢ . RY —R}.

8. The Bayesian View of Amplitudes

With the results of the last sections, it is clear that the reformulated version of Quantum
Mechanics has the predictive power of ordinary Quantum Mechanics, at least for a scalar
particle. With the assumption that this is correct, then, we are in a position to understand
the well known “paradoxes” of Quantum Mechanics such as the Einstein—Podolsky—Rosen
paradox and the meaning of the collapse of the wavefunction.

The key to understanding these problems is to realize the status of the amplitudes with
respect to the real physical system. Just as in the Bayesian view of probabilities,2 our
amplitudes do not constitute the “state of the system,” they only constitute the best estimate
of various truths given some prior information. An amplitude such as (¢ — b) is the best
estimate of the truth of b given that a is known. All of the mysterious aspects of the Quantum
paradoxes are due to mistaking the wavefunction for the state of the system. Unfortunately,
this mistake is enforced by the language of standard Quantum Mechanics e.g. a vector in a
Hilbert space is called a “state vector.”

It is easy to see how the Bayesian viewpoint resolves the usual paradoxes, since the “col-
lapse of the wavefunction” then has no more significance than the “collapse of the probability
distribution” when a die is thrown. The difficulties in analyzing the EPR experiment are
only due to the fact that the two observers have different information about the system and
describe the system by two different wavefunctions. This “knowledge” explanation of the



20,21 ip) the context of standard Quantum Mechanics.

paradoxes has been suggested before
Here we add a demonstration that, under suitable conditions, our “knowledge of the system”
obeys Schrodinger’s equation.

Armed with the reformulated Quantum Mechanics and with the Bayesian interpretation

of amplitudes, reconsider the questions raised in the introduction:

What is the meaning of the wave-particle duality?
There is no need for a wave-particle duality. The apparent wave nature of particles can
be explained by a breakdown of Probability Theory.

What happens when a wavefunction collapses?

The collapse of a wavefunction is not something which happens within the system. It is
simply a change in the description of the system which is made when new information
becomes apparent.

What constitutes a measurement?

A physical process is called a “measurement” when information from that process has
been used as known information in estimating amplitudes. In all other respects, a mea-
surement is a physical process like any other.

What is the role of the observer?
There is no particular role for an observer in the theory besides the person who decides
what information to use in constructing the wavefunction.

In addition to resolving paradoxes, the Bayesian interpretation of amplitudes may have an
importance in practical applications. With the realization that the wavefunction represents
only our knowledge comes the freedom to make use of prior information to systematically
improve the amplitudes using the complex version of Bayes Theorem. The analogous program
in Probability Theory has had spectacular practical successes.20

It may be important to point out that the results so far do not depend on the existence
of any random phenomenon. Cox’s result shows that the axioms of either Probability The-
ory or Quantum Mechanics are just a consistent calculus for reasoning about propositions,
whether or not those propositions are questions about a random variable and whether or
not the question corresponds to a frequency. Thus, even though we are describing Quantum
Mechanics by a modified Probability Theory, this does not imply that there is any random

phenomenon associated with Quantum Mechanics.

9. Summary and Further Developments

We have shown that the effects of Quantum Mechanics can be explained as a failure
of standard Probability Theory without assuming that a particle has a “wave nature” and



travels by more than one simultaneous path, as in the two slit experiment. Even though
we have assumed that a unique path for a particle exists, this does not imply that we can
determine what that path is. In fact, it remains true that in the two slit experiment, one
cannot determine which slit a particle has gone through without destroying the interference
pattern since this analysis follows from the propagator corresponding to the Schrodinger
equation.14 In addition to the considerations in section 2, Bell’s inequalities can be quoted
in support of the view that Probability Theory must be altered since, otherwise, experimental
evidence forces the conclusion that Quantum Mechanics violates locality.

In order to accommodate Quantum phenomena, Probability Theory is modified by simply
by replacing the interval [0,1] with C in the Bayesian axioms. This complex Probability
Theory is consistent with the primitive assumptions and analysis of Cox and is proposed as
a reformulation of Quantum Mechanics. The view that the amplitudes represent knowledge
rather than the state of the system is used to explain the standard paradoxes associated with
the collapse of the wavefunction and the role of the observer in the theory. The realization
that amplitudes represent knowledge only also suggests the use of the complex Bayes theorem
to improve calculations of amplitudes just as the ordinary Bayes theorem is used to improve
probability distributions in Bayesian Inference. Although Quantum Mechanics is proposed
as a Probability Theory, our analysis does not require any randomness.

Given the basic theory, dynamics for a single scalar particle in d-dimensions is determined
by choosing a “complete set of questions” parameterized by a time-like parameter . An
arbitrary choice for the “microscopic amplitude” (z,t — = + z,t + €) then results in an
effective Lagrangian where the particle mass and the background fields emerge as moments.
We have found the most general single particle time independent Lagrangian consistent with
the reformulated Quantum Mechanics. In the case of d = 3, the Schrodinger equation is
derived, including all of the gauge invariant interaction terms. Similarly, d = 4 leads to the
Klein-Gordon equation. In the case of the Klein-Gordon equation, a gauge violating photon
mass term may be present, depending on the choice of vy(z). Other than that, only gauge
invariant terms appear in the effective Lagrangian. In the classical limit, the amplitudes
can be chosen to be real and positive which implies the restoration of standard Probability
Theory. Multi-particle dynamics is discussed and the problem of n distinguishable particles
in d dimensions is identified with the solution for a single scalar particle in n x d dimensions.
In order to explain constraints on the moments W]—k(x), we have suggested identifying these
moments with the metric g, (x) from General Relativity.

Although development of the theory so far has proceeded without problems, there are
many avenues of investigation which remain open including spin systems, the Dirac equation,
development of multi-particle systems, Field Theory and the significance of any connection to
Gravity. An understanding is needed of the relationship of gauge invariance to the constraints



implied by Quantum Mechanics alone. The complex version of Bayes theorem should have
practical applications.
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