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Photon's trajectories are identified with realizations of the quantum Cauchy process
found in the previous paper. Assuming that they survive an analytic continuation in time,
they exhibit instanteneous jumps and stops which can explain EPR paradox and other
weirdness of Quantum Mechanics.

"Every physicist thinks he knows what a photon is. | spent all my life trying to
understand what a photon is, and haven't understood it by now"

A. Einstein

1. INTRODUCTION

| have learned something surprizing about photon’s behaviour which follows
from the Maxwell equations, as the first-order in time Schrédinger equation for the
Riemann-Silberstein vector f composed of the electromagnetic free field, [1]. Its
motion is described by the quantum Cauchy process which is composed of
instantaneous jumps of a random size intertwined with stops of a random duration.
Together they can mimic the straight linear shift with the effective velocity v = c.
Let us briefly recapitulate the main points of my previous paper referred to as "Part 1":

f=E+iB (1.1)



ihof = c(S-p)f (1.2)

Vef=0 (1.3)

Here p = -iAV and S*, k=1,2,3 are 3x3 spin-one matrices. The Hamiltonian
A = c(S-p) = ch/=2aA (A - helicity operator) generates the time evolution

O(t) = exp(-LLH) = exp(-ict/=A A) =

= cos(cty=A )13 - isin(cty=2A) A (1.4)
The photon-antiphoton system is represented by 6 the dimensional vectors

£
F= %[ - } (1.5)

which leads to the matrix block structure of the following equations. In particular
the evolution matrix becomes

w0 0@
U(t)—[ 0 U+(t)J (1.6)

The states of a given helicity are given by the vectors

IFa) = ﬁ[ ;ﬂ ] =), i =1 (1.7)
A



In particular, the matrix elements of the evolution operator are
MUMIAY = LUy, ICdy,) + F,ICHT S, (1.8)
with the notations

Cur,r') = C(r, t;r',0) = ict{x[|r-r'|? - (ct - ig)]}2 (1.9)

t >0, rreR3

The right-hand side of (1.8) is given by the formula (3.14) of Part 1. It shows that C, is
an integral operator with the kernel given in (1.9).

One recognizes here the probability amplitude density of the quantum Cauchy
stochastic process in R3. It does not depend on £, and also on photon’s energy
or helicity. It is a function of photon’s coordinates and time, only.

The same construction can be carried out for any matrix element of the second-
quantized free electromagnetic field

foy = (al EIB) + ia|B |B) (1.10)

hence, the quantum Cauchy process underlies, both, the single photon case as

outlined above, and the second-quantized field of an arbitrary collection of them, as well.

2. AN ANALYTIC CONTINUATION TO THE EUCLIDEAN DOMAIN

We replace the Minkowski time t with the imaginary Euclidean time =




t = -it, T=h82>0

(2.1)

Since we are working interchangely in, both, Minkowski and Euclidean domains, we
will use the Greek alphabet in the latter case while the Latin alphabet in the former, in order

to avoid a confusion. We get for the analytically continued transition density

C(r, -ir; r', 0) = C(r, 7; r', 0) = ce{n[|r - r'|? + c2r2]2}2

C*(r,-it;r,0) = -C(r,7; 1, 0)

Alternatively, in the probabilistic terms

d*r &(r, 7; 0, 0)peyy =P{r<c, <r+dr| co =0}y

I

= d3r C(r, t;0,0) = Prob. Ampl. {r<c; <r+drl ¢y =0}
or
d’r C(r, t; 0, 0)j—yr = Prob. Ampl. {r<c; <r+dr| co = 0}

= drC(r,7;0,0) = P{rc<c,<r+dr| ¢, =0)

t>20, 20, reR3

(2.2)

(2.3)

(2.4)

On the right "P" stands for the probability of the event. The c; represents the quantum
Cauchy process, while ¢, represents the classic Cauchy process as is customerily studied




in the theory of probability. In the three dimensions it is a vector composed of the three
independent components, viz. ¢, = (c!l, c2, ¢)7, and similarly for two-dimensional case.
The vector ¢;; stands for a position of a point-like photon at time t, while ¢, represents the
same but in the Euclidean time..

The analytic continuation leaves the trajectories unchanged (probability amplitudes
of events are being replaced by their probabilities) so they can be studied using a theory
of the classic stochastic processes, as it is in the Feynman-Kac formula case.

3. CONNECTION BETWEEM THE PHOTON PROPAGATORS FROM THE

FIRST AND THE SECOND QUANTIZED THEORIES

As it is well known, [3] one gets the photon’s propagator in terms of the operator
valued 4-potentials A#(x)

OITIA*(x)A*(y)]|0) = ig"Dr(x-y)  (Feynman gauge) (3.1)
where (g#¥) = diag(1,-1,-1,-1), ¢ = 1 and

Dr(x) = - (2m)~ [d*k(K? + ie)exp(-ikx) = [4n?i(x>- ig)]™! (3.2)

we find from here the connection
ZoDr(r, t; 1, 0) = ict{z[|r-r'|2 - 22 +ig]}2 = C(r, t; r', 0) (3.3)
Integrating over time and using (3.2), we get from here the relation

2Dx(r, t; r',0) = i272r-r' |2} + cj';dsC(r, s;r', 0), r+r (3.4)



The sum of the probability amplitudes on the right indicates the alternatives which all
lead to the passage of a single photon from r' att =0, to r at the time t. The photon can
either jump at the instance 0 to its final destination r, and stay there for the duration of t,
or can wait at the initial point until the time t and then jump, (the first, static term). The
doubling of events, which is also true for the second term, explains the factor of 2 in front
of Dr. The photon can jump at the instant s to its final destination and stay there, or can
wait until the instant s and then jump and wait at its final destination r for the remaining
time t - s. Covering the distance |r - r'| in time s (0 ¢ s <t) and waiting for t-s, both lead
to the effective velocity v = ¢. This balance of the instantaneous jumps with the waitng
periods appears mysterious. It may point out to the very structure of space itself.

Since we are dealing here with the pure vacuum, the effective speed is equal ¢

V=c (3.5)

This granular, highly discrete type of behaviour of a photon gets completely obscured
when dealing with the electromagnetic potentials satisfying the second order d' Alembert
equation. The whole process is graphically represented by a segment of straight line
connecting the initial r' and the final points r. This, toghether with well established view
that "light only knows straight lines" forms a formidable psychological barrier towards
understanding photon’s connection with the purely jump Cauchy process.

To clarify this further, we pass to the Euclidean time by the replacement

t = - (3.6)

In the one-dimensional case, we will have for the transition probability density

(d=1) Cx,7;y,0) = ctlr(x-y|* + 22 X, YeER, 720 (3.7)

For the two spatial dimensions, we get

(d=2) Cix,7;y,0) = cef2aflx -y + 2?2, x,yeR?, 20  (3.8)

For the three-dimensional case




(d=3) Cx,7;y,0) = cr{rx-y|* + 23} | x,yeR3 720 (3.9)
In the case of a general d-spatial dimensions the density is, [11]
Cx, 75y, 0) = T(4L)eeln(x-yI2 + )™, xyeR?, 720  (3.10)

Since the paths structure in classical and quantum case are the same, we are going to
review well established mathematical facts regarding the classic Cauchy process. We
invoke here the Feynman-Kac formula, [16], that deals with probabilities of various paths
rather then with probability amplitudes as in the Feynman integral case. The path
themselves stay the same, we assume.

We shall to demonstrate the main features of Cauchy process using the simplest
one-dimensional case. For example, the mean value is undetermined unless one
requires that the principal value of the integral is calculated, which yields zero

24}

2 — an arbitrary real number (3.11)

E{CT} = C_;I_w PERPOR
All the higher-order moments are divergent

Elc?} = o, nz?2 (3.12)

The transition density satisfies the Chapman-Kolmogorov equation which assures
the existence a probability space (2, &, P) on which the Cauchy process {c.: r = 0} is
defined. The process belongs to a larger family of Markovian processes called - Le’'vy
processes

4. SOME MATHEMATICAL FACTS REGARDING CAUCHY PROCESS

The Cauchy process {c. ; r = 0} with values in R, has the following main properties:



1. P{co = 0}= 1 (the process starts at zero, almost surely = a. s.)
trajectories that do not start from zero are exceptions, they form a set of zero measure.

2. The process has independent increments (forany 0<7; <7, <..<7, <
the random variables ¢(z1), c(z2) - ¢(z1), ... , ¢(zs) - C(ts-1) are independent).

3. The process has stationary increments [c(z,) - ¢(t4-1)] has the same
distribution as c(ty - 74-1)]

4. The trajectories ; {c(r, w) e R ; 72 0, w - fixed } are a. s. right continuous
with left limits. That is, they possess the cadlag property (French acronym from:
"continu a droite, limites a gauche").

The first three properties are shared with those of the more familiar Brownian motion
process (describing a massive particle), the fourth one is characteristic for the massless
photon and thus we would like to explain it in some detail,

limssoc(z +¢€) = c(r), €20 (right continuity) 4.1)
limssoc(z - €) exists foranyz 20 (left limits exist) (4.2)

The point is that the last limit might not be equal c(r) in which case the trajectory has a
jump at the instant ¢

Jr = Ac(z) = c(7) - limgoc(z - &), €20 (4.3)

It is essential to notice that any Cauchy process has the cadlag version (which we
can substitute for the original process under the E-sign). In plain English it means that the
continuous trajectories (as commonly used in the geometric optics) are exeptional and
can be omitted from general considerations as they form a set of zero measure. A photon
can disappear at one point to be instantaneously recreated at some other point. The




spooky action at a distance, Einstein’s nightmare, seems to be real after all. In order
to see it more clearly, we need to mention a notion of the infinite divisibility of the c..
Using the property #3, we get the equivalence under the E-sign

C; = Cs -+ (Cza - Ca) +...+ (C, - C(n_l)s) -~ nGCs (4-4)

5= L, neN (4.5)

The probability law of ¢, is n-time convolution of that of ¢;. Since n is arbitrary, it
has an interesting analytic consequence in the limit when n— «, as encapsulated in
the Le'vy-Khinchine formula

E{exp[iU(Pr +cr)]} = expl-cry(u)] (4.6)
with the characteristic exponent
p(u) = -iu+ [ (1-e™ +uxd q)v(dx) 4.7
The Le'vy measure - v has no - type singularity at zero and satisfies the conditions

a. ji1x2v(dx) (o0

(4.8)
b. VR-L, 1)} = [~ v(dx) + |7 v(dx) ¢ oo

The measure can be found from the trasition density as the weak limit




v(dx) = limo4+C(x, 7; 0, 0)dx = e xeR (4.9)

x2

For a general d-dimensional case, we obtain

d+l

v(dx) = D) {r[(x)? +...+x)2 % dx'...dx? , xeRY (4.10)

The conditions (4.8) are satisfied by the Cauchy process
a  [Lxv(dx) = 2 (o (4.11)
b.  WR\(-1,1)} = 2jj°v(dx) =2 (o (4.12)

The measure does not contain any terms like §(x) or its derivatives (has no "atom"
at x = 0, in mathematicians parlance) thus v{0} = 0 and v qualifies as the Le'vy
measure. Finally, we calculate the Le'vy measure of the whole space R

VR) = [ v(dX) = 2["% = o ‘ (4.13)

This means that the process’ activity is high; the amount of jumps in any finite
time interval is countably infinite. Aimost all trajectories of ¢, have the countable
infinite number of jumps in any compact time interval. In the sequel we shall consider
the sum of a relativistic shift, X! = ¢z and the Cauchy process, ¢, = X®=N, . The
second component, X = 6B, is usually reserved for the Brownian motion which is
absent in our case. Finally, the last piece in the Le'vy-Itd decomposition, X, is
reserved for, so called, compensated compound Poisson process, which again, is
also absent here.

The exponent in the Le'vy-Khinchine formula (4.7) can be rewritten in the form

w(u) =-iu+ (the shift) (4.14)

10




o (- ™) gy S (big jumps) (4.15)

+4 IR(1 - e™ 4+ jux)1 (|x|<1)‘fx2‘ (small jumps) (4.16)

The split into the big jumps and small jumps follows the argument of the indicator
function 1,4. All three pieces are generated by two independent processes: the linear
(non-random) shift, X{ = ¢z, and the compound Poisson process, N, for the big jumps,
and the small jumps combined; (Le'vy - Itd decomposition: X, = X + X® + XP4 x@®
where all components are independent from one other). Both, X{" and X have
continuous trajectories, while X and X are jump processes with dicontinuous
trajectories. '

So called stable processes display the fractal structure of their trajectories manifested
in their scalling properties

baf e ﬁ b‘[ (4.17)
Car ~ AC; a0 (4.18)

It is perhaps worth mentioning that in the quantum case, when a = ;, the (4.17) actually
expresses the process in terms of the familiar classic Brownian motion. The right
covariance is reproduced which leads to the right higher-order momenta, [15].

For a general Le'vy process with the stability parameter a < [0, 2), we have

a) oy (@)
L@ . gl (4.19)

To clarify the structure of the Le'vy processes, we need to review some basics
regarding the Poisson process. We start with the Poisson random variable N, first.
It assumes equidistantly spaced discrete values, only. Its distribution function is
given by the formula

11




e*d x=n=0,1,2,..,
PIN<x} = (4.20)
0 otherwise
So the distribution function vanishes for x ¢ 0, and it is supported on the naturals.

The only parameter A = 0 is called the random variable intensity. The random variable
N possesses the characteristic function

Efe™N} = > E{e"NIN =n}e"* 4 = 3% eNeti- = exp[i(e™ - 1)] (4.21)

uelR

We can find from here any moment of N by differentiating and equating the parameter u
to zero. For example, the mean value of N is

E(N} = - i < exp[A(e™ - )]0 = A (4.22)

Next, we shall consider the Poisson process {N.: 7= 0} where each N,
is the Poisson variable. It shares the properties 1- 4 of the Cauchy process listed
above. In addition, for each 7> 0, N, is equal in distribution to a Poisson random
variable with the linear intensity Act. Therefore, its characteristic function is given by

E{fe"N:} = explctA(e™ - 1)] , ueR,7>0 (4.23)

Next, we would like to introduce the compound Poisson process which is defined
as a random sum of the form

~

N, = 30 di, t=0 (4.24)

where {N. ; z = 0} is the Poisson process with intensity Acr and {J; ; k=1, 2, ...} is a familly




independent, identically distributed random variables that are also independent of the
Poisson random variables N, . Their common probability law is denoted F and describes
the distribution of the size of jumps, and it is assumed further that it has no "atom" at zero.
The compound Poisson process {N; ; t 20} has stationary independent increments, and its
characteristic function, for ¢ = 0, can be found as follows:

Efe N} = 357 E{expliu}" JiN, = nje-+ 4" _

n=0 nl
. _ }' "
= Z:’:O(E{equl})ne Ar :J)

= 2 olf e F(dx)ree ak

nl

= exp{-cTA[[ R (1 - €™)F(X)]} (4.25)

The Poisson process, much like the Brownian motion process for a massive particle,
both are main processes out of which various other processes can be constructed.

The integration can be divided over the regions: {| x | = 1} and {| x |« 1} in order to
facilitate the comparison with (4.15) and (4.16), respectively.

E{e™} = expf-celd[” (1- €)1 pnF(dx) + A[" (1 - @)1 F(X)]} (4.26)

Comparing the first term in the exponent we find that the probabilistic measure F(dx)
and the intensity A are given by (cf. (4.12))

Fldx) = sl = & jump-size distribution (4.27)

13



viR\(-,1)} = 4 = 2 time intensity of jumps (4.28)

The last term, (4.16), coincides with the second term in (4.22) since the term linear
in x does not contribute due to the symmetry considerations (we assume here the
principal value of the otherwise singular integral,(4.16)). Hence, we have

p(u) = -u+ 2| (1-et)4 (4.29)

Using Euler formula, discarding the sin(ux) term due to its antisymmetry, and applying
the basic trigonometric identities, the last integral's principal value is of the form

. 0 ain?
F[ (-2 = ju % [ dx (4.30)
Integrating by parts, we find, [14]

Iw sin’x dx = J'°° SInX_ o z (4.31)

0 ¥ 0 x

Hence, we obtain for the characteristic exponent
w(u) = -iu+ |y (4.32)

which corresponds to the sum of the relativistic shift and the Cauchy process, [9].
This justifies our choice of the principal value prescription when dealing with the last
part of the integral (4.16).

5. CONCLUDING REMARKS

14



Bell’'s theorem and quantum entanglement seemed to suggest that one could
use quantum theory to act at a distance, instantly. Nudge a particle here and its
partner would instantaneously dance over there, regardless of whether it was nano-
meters or light-years away.

J. S. Bell

The instantaneously jumping photon is acting here. Baas, A. et al., [25], testing
the speed of spooky action at a distance concluded that if the photons had communicated,
they must have done so at least 100,000 times faster than the speed of light.

The teleportation has been established over large distances (over 150 km).Needless to
say that we feel encouraged in our speculations by these mind boggling experimental
findings.

Our analysis of the corpuscular aspect of a single photon relies on Maxwell equations
and employs rather advanced (Le'vy-Ité decomposition) probabilistic tools. Not quite
Einstein's favored, one might add ("God does not play dice"). Getting out of the long
shadow casted by the master will be facilitated by better teaching practices in explaining
probability theory mainly to physicists, coupled with further honning the experimental
techniques of reliably handling the single quanta.

Omitted proofs of various statements can be find in the cited mathematical literature
concerning Le'vy processes. The relevant Internet websites are also recommended.

It goes without saying that one needs to investigate further the matter outlined above.
At may age (of nearly 77), | have decided to make my thoughts public.

APPENDIX

In view of their possible practical relevance, we would like to work out the basic
formulae for the two and three spatial dimensions. Using the formula (4.9) we get from (3.8)

v(dx, dy) = —22 - F(dx, dy), X,ye R (A1)

2”(x2+y2)3/2

We need to check the conditions:

2n 1
A [ 2 OCHYAVAXdy) = 2 [ "dO] dp = 1 <o (A2)
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b. RAG )21} = 4 = L [*do [ = 1o (A.3)

Since, in addition, v does not contain of any - type singularities at zero, it qualifies
as a Le'vy measure. The resulting Cauchy process on the plane is of high activity
since the following integral diverges

R} = [ vidx dy) = 3 [[d0[7 % = w (A4)

The third term in (4.16) does not contribute due to the anti-symmetry of the integrand.
We shall consider the superposition of a relativistic shift in a direction of a unit vector n,
and the (symmetric) Cauchy random jump process. We look for its characterictic function

E{exp[iu-(cnt + ¢/} = exp[-cty(u)] , ueR? (A.5)
w(u) = -iuen + IR2[1 - exp(iu-z)]v(d?z) (A.6)
z=(xy)

Again, discarding the sin(u-z) term on account of the symmetry considerations,
we find the last integral using polar coordinates

” © 2 u
Jal - cos(u2)lv(d?z) = 4 [¥do jodpﬂ%ﬂ (A.7)
where we denoted ||u|] = u, and we replaced the integral over the full period 2x

with four integrals over the first quadrant. This is permissible since the sign of cosf
plays no role under the sin? function. Changing the variables of integration over p



p%COSQ = X (A.8)

we find with the help of (4.28)

w(u) = -iu-n +u, ueR? (A.9)

us= J)?+@?)? = [u}+u (A.10)

which validates our calculations and shows independence of the relativistic shift
and the superimposed pure jump Cauchy process.
In the three-dimensional case we use the formula (4.10) atd = 3

v(dx, dy, dz) = —(-‘gﬁ—z) X,V,zeR (A.11)

Checking the conditions (A.2) and (A.3), we find in the spherical coordinates

X = rsinf cosg, y = rsind sing, z = r cosd
0<r<w, 0<6<m, 0<¢<2n

dx dy dz = r2dr sind do d¢

a. fm (X2 +y2 + z2)v(dx, dy, dz) = 4< o0 (A.12)
b. v{RNrc1)} = v{rz1}=1 =4 (0 (A.13)
These, together with the absence of an "atom" at the origin, assures that v

17



is indeed a Le'vy measure. The Cauchy process is of high activity since
v{R%} = [, v(dx, dy, dz) = o (A.14)

As before, we consider the superposition of the relativistic drift in a direction
given by the unit vector n and the pure jump Cauchy process ¢,

X; =cmn+e,, 120 - (A.15)

We would like to find the characteristic function of this process as given by the
Le'vy-Khinchine formula

E{exp[ius(ctn + c;)]} = exp[-cty(u)] (A.16)
where the characteristic exponent is given by the formula like (A.6)
w(u) = -iun + IR3[1 - exp(iusv) + jusv 1(,,(1)]v(d3v) (A.17)
where we have denoted
v=(xY 2 Fo= vl = (+y?+22)1 (A.18)

The last term can be dropped on the account of the symmetry considerations
while the remaining integral can be brought to the form

3
[ul1 - expuV)v(d®v) = 2 [ sin*(Luv)Lr (A.19)
Choosing the z-axis along the vector u, we obtain without the loss of generality

18




Uy=uU,=0 and u, = |ju|]| = u (A.20)
Passing to the spherical coordinates and using the substitution in the integral over r
uv = urcosf = 2¢ (A.21)

, and the result (4.28), we find easily that the integral (A.19) equals u. Hence,

y(u) = -iun+u (A.22)

as expected. Finally, the probability distribution of photon's jumps becomes

F(dx, dy, dz) = A-lv(dx, dy, dz) = L —%b& (A.23)

A (x24p2422)2

Using the measure F, we can estimate the average size of a jump. In the all

three cases (4.24), (A.1), and (A.23) we find that mean jump is an arbitrary
real number

Er{J} = [7 xF(dx) =1 J© 4% = an arbitrary real number (A.24)

and similarly for the jumps mean size inthe y and z directions. This is another
way of saying that an issue of a position operator for a photon is not a simple matter.
An evolution of the notion of the localizability of quantum systems can be found in
in [26], [27], [28], and [29]. ‘

Recent review of a role of the Riemann-Silberstein vector in electromagnetism
,and especially for the wave function aspect of a photon see [30].
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