
Early View publication on www.interscience.wiley.com 
(issue and page numbers not yet assigned;
citable using Digital Object Identifier – DOI)

Fortschr. Phys., 1–22 (2006) / DOI 10.1002/prop.200610303

Quantum phenomena via complex measure:
Holomorphic extension

S. K. Srinivasan∗, ∗∗

Department of Mathematics, Indian Institute of Technology Madras, Chennai 600036 India

Received 13 January 2006, accepted 27 March 2006
Published online 16 May 2006

PACS 3.65.-w, 3.65.Ta, 42.50-p, 05.10.Gg, 05.90+m

The complex measure theoretic approach proposed earlier is reviewed and a general version of density matrix
as well as conditional density matrix is introduced. The holomorphic extension of the complex measure
density (CMD) is identified to be the Wigner distribution function of the conventional quantum mechanical
theory. A variety of situations in quantum optical phenomena are discussed within such a holomorphic
complex measure theoretic framework. A model of a quantum oscillator in interaction with a bath is analyzed
and explicit solution for the CMD of the coordinate as well as the Wigner distribution function is obtained.
A brief discussion on the assignment of probability to path history of the test oscillator is provided.
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1 Introduction

The object of this contribution is to show that the complex measure density studied in earlier contributions
[22,23,27] admits of a special holomorphic extension that leads interestingly to a general version of density
matrix and Wigner distribution function. To demonstrate the power of the technique we show how explicit
expressions can be derived in a variety of situations in quantum optical phenomena. We also show how
the Caldeira -Legget model can be elegantly handled thus paving the way for answering many interesting
questions related to the past history in quantum phenomena.

In earlier contributions [22–25, 27, 28] complex measurable processes and their extensions were stud-
ied with the specific objective of describing various facets of quantum phenomena. The sole motivation
for the search for an alternative structure is to examine the possibility of a framework that incorporates
nondeterminism right from the beginning and is also possibly divergence free. The very complex nature of
the measure structure built into the system is sufficient to accommodate interference and ensure violation
of Bell’s inequalities. Of course the violation of Bell’s inequalities had been dealt with earlier from many
angles; however the work most pertinent to our approach is that of Sudarshan and Rothman [30] wherein it
is shown that the relaxation of the constraint of positive definiteness for probabilities ensures violation of
Bell’s inequalities. In a parallel contribution Yousseff [31–33] has advocated the use of ‘exotic’ probability
theory wherein conditional complex probabilities are introduced thus accommodating violation of Bell’s
inequalities in a natural manner. The idea that a modified version of probability theory may be the appro-
priate tool to arrive at a theory of quantum phenomena is not entirely new and perhaps goes back to Dirac
(see [34]). Our approach based on complex measures/measurable processes and their extension is direct
and simple in the sense that it accommodates interference and internal motion ensuring at the same time
(consistency with ) the violation of Bell’s inequalities. Thus a frame work containing these basic ingredients
called the complex/extended complex (quaternion )measure theoretic framework (CMTF/QMTF) is used
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2 S. K. Srinivasan: Quantum phenomena via complex measure: Holomorphic extension

for the study of the harmonic oscillator of the free as well as forced type that has yielded interesting and
useful results for the general formulation of quantum phenomena (Srinivasan [22,23] referred to as I and
II hereafter). Since the electromagnetic field can be viewed as a linear sum of harmonic oscillators, the
analysis of the forced harmonic oscillator leads, just as in path integral theory, to an elegant method of
handling Lamb shift; however unlike path integral approach, it turns out that there are no divergences and
hence no need for the ultra violet cut off, the estimate of the non-relativistic Lamb shift being very close to
that obtained by using the renormalization theory and Feynman cut off. The general analysis presented in
II essentially makes full use of the fact that the square root of the complex measure density (CMD) being
square integrable provides a natural L2-setting; thus a Hilbert space can be constructed and the properties
of many of the CMD’s can be established elegantly. In this connection it is worth mentioning that while the
analysis by the construction of the Hilbert space generated by the CMD’s rather the square roots enables us
to perform with ease the necessary computations, the basic frame work is essentially a complex/extended
measure space. However in another context when we deal with the coherent state and its ramifications
(Srinivasan [24] referred to as III), the connection to the Hilbert space operator approach is direct and in
some instances the results flowing from CMTF may appear identical with the conventional operator theory
despite the fact that CMTF does not contain the basic ingredients of Fock space. In view of these devel-
opments it is considered worth while to examine whether the notion of density matrix in a more general
form can be constructed and more particularly whether a holomorphic extension of the CMD can describe
various facets of quantum phenomena in relation to the coherent state.

At this juncture it is worth mentioning that the idea that the complex probability or parameters can be
useful in the description of physical phenomena has a long history. Quite early in the last century Fürth [10]
noted the formal analogy between a real Brownian motion and the Schrödinger equation by using a complex
diffusion coefficient. In an entirely different context, Cox [4] introduced complex probabilities in the classical
theory of stochastic processes; he was primarily concerned with an interpretation of Erlang distribution in the
study of renewal processes. Lavenda and Santamato [17,18] following Fürth introduced complex measurable
processes using Ito’s concept of generalized uniform complex measures [14, 15]. Ito rather provided a
mathematical structure to the Feynman path integrals and also had shown how complex measurable processes
arising therefrom can be interpreted in a generalized sense thus providing a justification for the interpretation
of Feynman path integrals particularly by Gelfand andYagolam [11]. Lavenda and Santamato [18] essentially
made use of these results to interpret the complex measures to arrive at the propagating kernel and make
connection to the formula obtained by the use of Feynman path integral. In recent times Yousseff [31–33]
has used complex probabilities for reformulation of quantum mechanical postulates and advocated the use
of exotic probability for the description of quantum phenomena.

The layout of the paper is as follows. In Sect. 2 we make a quick survey of the basic features of CMTF
and show how the notion of the density matrix can be introduced in CMTF in a rather more general form. In
particular the conditional density matrix is used thus providing a useful generalization. Then in Sect. 3 we
deal with the harmonic oscillator and demonstrate how the holomorphic complex measure density reduces
to the Wigner distribution. The coherent state is given a new representation in the holomorphic framework
and the density matrix is introduced in a natural way with its characteristic property of the diagonal element
coinciding with Wigner distribution. Then we deal with a number of interesting situations in quantum optical
phenomena and demonstrate how computations can be performed with great ease. Then in Sect. 4 we show
how the Caldeira-Legget model of a test oscillator in interaction with a bath can be handled elegantly. The
final section contains a summary and a discussion of the various results obtained.

2 Complex measure density and its properties

We now make a short review of the basic features of the complex measure theoretic framework (CMTF).
The starting point is a measurable space (Ω,B); if µ1 and µ2 are any two signed measures defined over
(Ω,B), the complex measure λ is defined by λ = µ1 + iµ2. We introduce random variables and stochastic
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processes in the same manner as in the case of standard probability theory. A detailed account is provided
in an earlier contribution [27]. In the case of complex measurable processes we impose the constraint
λ(Ω) = 1 to ensure that in the case of Markov processes Chapman Kolmogorov relation can be expressed
as a differential equation under further appropriate constraints. Further we impose |λ(A)| < ∞ for any
complex measurable set A ∈ B. Contact with physics of quantum phenomena by regarding the coordinate as
a complex measurable process. Thus we can denote by {X(t)} the complex measurable process in question
and impose the Markov constraint on it; the process is then characterized by its transition complex measure
density f2(x, t|x0, t0) which is the CMD of X(t) conditional on X(t0) = x0. If we further assume that the
moment functions of the transition CMD defined by

an(y, t, ∆) =
∫

(x − y)nf2(x, t + ∆|y, t)dx (2.1)

satisfy

lim
∆→0

a1(y, t, ∆)/∆ = a(y) , (2.2)

lim
∆→0

a2(y, t, ∆)/∆ = b(y) , (2.3)

lim
∆→0

an(y, t, ∆)/∆ = 0 , n > 2 , (2.4)

then f2 satisfies the Fokker Planck equation

∂f2(x, t|x0, t0)
∂t

= − ∂

∂x
[a(x)f2(x, t|x0, t0)] +

1
2

∂2

∂x2 [b(x)f2(x, t|x0, t0)] . (2.5)

The above equation is easily extended to cover the case when {X(t)} is a vector process. The solution
of (2.5) yields in general the CMD; to relate the CMD to actual physical situation at ground reality when
experimental results relate to frequency ratios, we need to make a measure transformation. There are two
measures that are positive definite as discussed earlier [27]; the first known as the modulus measure is
defined for any set A ∈ B by

|λ|(A) = sup |
∫

A

fdλ|, (2.6)

where the supremum is extended over f for all functions f such that |f(x)| ≤ 1. It had been shown in II that
from CMTF point of view this is the appropriate measure that is consistent with the Born interpretation of
the conventional operator theory. The second is the so called modulus square measure and can be introduced
in an analogous way by starting from the modulus measure. This measure can be used in the case of quasi-
stationary states where the total measure is zero, a property which enables us to define measures for the
individual states essentially in a relative sense. Next we note that the square root of the CMD is square
integrable over (−∞,∞) by virtue of the constraint |λ(A)| < ∞ and hence we have a natural L2-setting; in
fact a Hilbert space can be constructed thus paving the way for an efficient analysis that can lead to tangible
results.

Next we consider some specific CMD’s that correspond to quantum harmonic oscillators; there are two
choices of a(x) and b(x) that cover a wide variety of quantum phenomena:

(i) a(x) = −iωx , (2.7)

(ii) a(x) = −iω(x − α), α a complex parameter. (2.8)

We take b(x) to be a constant equal to i�/m; the primary motivation for this choice is to make a very early
contact with physics of quantum phenomena. The detailed analysis leading to the solution of (2.5) for the

www.fp-journal.org c© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



4 S. K. Srinivasan: Quantum phenomena via complex measure: Holomorphic extension

choice (2.7) is provided in paper I; it is sufficient to note that in this case f2 is a function of t − t0 only.
Setting t0 = 0 and defining π(x, t|x0) by

π(x, t|x0) = f2(x, t|x0, t0) (2.9)

the final solution is explicitly given by

π(x, t|x0) =
(

1
2πσ2

) 1
2

exp
{

−(x − x0e−iωt)2/2σ2
}

(2.10)

where

σ2 = (�/2mω) (1 − e−2iωt). (2.11)

The expression on the r.h.s. of (2.9) takes an elegant form when expressed in terms of the familiar Hermite
functions; this is done in paper I where the connection to the Schrödinger approach is also provided. At this
juncture it is pertinent to note that (2.9) has a limit as t → ∞ (on the understanding ω → ω − iε) given by

lim π(x, t|x0) = π(x) =
(mω

π�

)1/2
exp

(
−mωx2

�

)
(2.12)

which represents the complex measure density of the coordinate corresponding to the ground state. In this
case the measure density is positive definite coinciding with the modulus measure density. It also follows
that the ground state is stationary in the strict probability sense which can be verified by multiplying both
sides of (2.10) by π(x0) and integrating over x0.

We next consider the CMD corresponding to the choice (2.8); this corresponds to the displaced oscillator
which occupies a pivotal position in coherent state theory. A detailed analysis of the F-P equation and its
connection to the coherent theory is provided in [24] (referred to as III in what follows); the conditional
CMD is given by

f2(x, t|x0, t0) =

(
mω

π�[1 − e−2iωt]

) 1
2

exp
{

−mω

�
[(x − α)eiωt − (x0 − α)]2/(e2iωt − 1)

}
(2.13)

where we have used t in the place of t − t0 for notational convenience. The stationary solution which is
also the limit as t → ∞ of f2 (under ω → ω − iε) takes the form

lim f2 ≡ π(x, α) =
(mω

π�

)1/2
exp

(
−mω

�
(x − α)2

)
. (2.14)

We note that π is still a genuine CMD. Setting m = 1 we note that the coherent state wave function [12,29]

can be obtained by taking the square root of CMD with the replacement α → ( 2�

ω

)1/2
α. In what follows

we choose � = ω = 1 and introduce φα(x) by

φα(x) = Nπ(x, α) , (2.15)

π(x, α) =
(

1
π

)1/2

exp −(x − α
√

2)2 , (2.16)

where N is so chosen to render the total modulus measure unity:

N = exp− (2(Imα)2
)
. (2.17)
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It is worth noting that the square root φ
1/2
α (x) of φα(x) is an element of the L2-space mentioned earlier.

We render it a Hilbert space through the inner product corresponding to two CMD’s; if f and g are any two
CMD’s, the inner product is defined by

(f1/2, g1/2) =
∫

f1/2(x)g1/2(x)dx . (2.18)

Thus if two elements corresponding to coherent states are labelled by α and β, then the inner product is
defined by

(φ1/2
β , φ1/2

α ) = exp
{

αβ − 1
2

|α|2 − 1
2

|β|2 + iα1α2 − iβ1β2

}
(2.19)

in agreement with the Glauber–Sudarshan formula except for the phase factors. The occurrence of the
phase factors is a unique feature of the CMD’s in CMTF following from the basic assumption that the total
complex measure λ(Ω) is unity. It should be specially noted that the operators in CMTF arise from Hilbert
space vectors and possible transformations and have no other physical meaning. We will use the notation
|α〉 to denote the vector and interpret it as φ

1/2
α through the definition

〈x|α〉 = φ1/2
α (x) . (2.20)

In the more general case if f is any CMD, the element f1/2 of the Hilbert space is denoted by |f1/2〉 with
the definition

〈x|f1/2〉 = f1/2(x) . (2.21)

Equally well we can have the momentum representation by dealing with the Fourier transform of f1/2(x);
as explained in II, Plancharel theorem ensures that this leads to a properly normalized modulus measure
density function in the momentum representation. It is also to be noted that in CMTF there is no scope for
the introduction of Fock space as in the standard operator theory; however since the Hermite functions φn

belong to this Hilbert space, we can deal with the projections on the same. For instance we can define

〈n|β〉 = (φ1/2
β , φn) (2.22)

where the r.h.s can be evaluated using the definition of the inner product. Next we note that the outer product
|α〉〈α| can be formed and through it the concept of density matrix for the pure state introduced:

ρ = |α〉〈α| . (2.23)

The diagonal element corresponding to the coordinate x or momentum p is easily identified as the modulus
measure density (MMD) function; moreover the r.h.s of (2.23) when integrated over the complex plane α
can be shown to lead to the identity element by simply taking the matrix element of ρ corresponding to
(β, γ) where β and γ are arbitrary complex parameters. A more general version of the density matrix for
mixed state is introduced by

ρ =
∫

P (α)|α〉〈α|d2α (2.24)

where P is an arbitrary complex-valued function of α. In the general setting of CMTF there need be no
restriction on P except that it be measurable with total measure equal to unity. Thus the tinge of classicism
that is generally ascribed to the density matrix (see in this context [21]) can be removed by keeping P (.)
to be genuinely complex-valued. However to be in conformity with the standard operator theory we can
restrict it to be real-valued to render it Hermitian. Of course it is a moot question in CMTF whether any
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purpose is served in keeping P (.) more general, since it is necessary in order to define expectation values,
to impose a change of measure leading to positive definiteness of the P -function. Finally we note that
while the diagonal elements are easily identified as the MMD’s, the non-diagonal elements are products of
projections. In CMTF these projections are easily interpreted as weight coefficients of appropriate complex
measures and hence can be identified as elements that go to define conditional measures/measure densities.

It is worth noting that superpositions of independent streams can be handled in this formalism. For
instance the P -function of the stream corresponding to two independent streams with P -functions P1(.)
and P2(.) is just the convolution of P1(.) and P2(.). To illustrate we consider a simple optical phenomena
when a light beam corresponds to the superposition of an arbitrary stream with a thermal stream of light. The
problem had been dealt with by Loudon and Shepherd [20] using operator theory. The statistical properties
of the photon number in the resulting stream can be nicely handled in the present formalism; in order to
maintain the continuity of the discussion, the details of the analysis are relegated to appendix A.

Next we note that it is possible to introduce the concept of a conditional density matrix. This is best
done by modifying the P -function. Thus if P is generalized to be a function of α and α0 we can define the
conditional density matrix ρc by

ρc(α0) =
∫

P (α, α0)|α〉〈α|d2α . (2.25)

A simple example of such a conditioning is provided by

P (α, α0) =
1
π

exp
(

− |α − α0|2
N

)
(2.26)

where N is a positive-valued parameter. This corresponds to the coherent state representation of (amplitude)
mixture of thermal and coherent light beams, the parameter N being interpreted as the expected number of
quanta in the thermal stream. The idea that the density matrix can be made conditional is due to Accardi [1];
in our approach the coherent state representation renders the formulation rather direct and simple. For
instance if we have a superposition of a thermal stream and a stream with arbitrary characteristics specified
by the P -function P1(α0), then the P -function corresponding to the superposed stream is obtained by
multiplying the r.h.s of (2.26) by P1(α0) and integrating over α0, a process which is very natural in CMTF
as contrasted with the standard operator theory where the superposition principle has to be invoked. An
example of a conditional structure which has no parallel in the operator formalism is provided in the next
section in the form of a conditional Wigner distribution.

3 Holomorphic extension

So far the discussion centred round a complex measurable process {X(t)} and the CMD’s are with respect
to a real valued random variable like coordinate or momentum. In other words we associate a complex
measure density for the random variable in question or more precisely a complex measure for Borel subsets
of the real line. It is quite natural therefore to explore the possibility of assigning a complex measure
density for the complex coordinate. We have already stated that at the level of Fokker–Planck equation
(2.5) extension is possible to cover the case when {X(t)} is a vector process. In the theory of classical
stochastic processes, complex Gaussian processes are studied (see for example [13]) on the understanding
that the real and imaginary parts are independent and identically distributed. The primary motivation for
the strong condition is just to arrive at the properties of complex Gaussian systems very similar to those of
real Gaussian systems. It turns out that when such a strong condition is imposed in CMTF, we obtain an
interesting class of processes that are capable of describing a variety of quantum phenomena. For brevity
we call such a complex measure theoretic framework a holomorphic version of complex measure theoretic
framework (HCMTF).

c© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.fp-journal.org



Fortschr. Phys. (2006) 7

As in the previous section we will be mainly interested in harmonic oscillators. If {Z(t)} is the stochastic
process where for each t, Z(t) = X(t)+ iY (t) we are interested in the conditional measure density function
π(z, t|z0) of Z(t) under the condition Z(0) = z0. As before we assume that {Z(t)} is a Markov process
satisfying the conditions

lim
∆→0

E[Z(t + ∆) − Z(t)|Z(t) = z]/∆ = a(z) , (3.1)

lim
∆→0

E[{Z(t + ∆) − Z(t)}{Z(t + ∆) − Z(t)}|Z(t) = z]/∆ = 4D . (3.2)

As before we are interested in the two cases

(i) a(z) = −i ω , (3.3)

(ii) a(z) = −iω (z − α) , (3.4)

which model respectively the free and displaced harmonic oscillator. The diffusion constant 2D is set equal
to i�/m as in the earlier case. The CMD π(z, t|z0) corresponding to the free harmonic oscillator now
satisfies the Fokker-Planck equation

∂π(z, t|z0)
∂t

=
∂

∂z
(iωzπ(z, t|z0)) +

∂

∂z
(iωzπ(z, t|z0)) + 4D

∂2π(z, t|z0)
∂z∂z

. (3.5)

The above equation is best solved by the method of characteristics and we have

π(z, t|z0) =
mω

π�
exp

(
−mω

h

(zeiωt − z0)(zeiωt − z0)
(e2iωt − 1)

)
. (3.6)

The only stationary state, as before, is the ground state and is the limit as t → ∞ of π(z, t|z0) (under
ω → ω − iε) given by

πH(z) =
mω

π�
exp

(
−mω

�
|z|2
)

. (3.7)

If we set m = 1 and identify the coordinate and momentum by

X = Q( coordinate), mY = P ( momentum) , (3.8)

we can rewrite (3.7) in the form

πH(ẑ) =
2
π

exp −|ẑ|2 , (3.9)

where

X̂ = Q
( ω

2�

)1/2
, Ŷ =

P

(2�ω)1/2 , (3.10)

and {Ẑ(t)} denotes the stochastic process with stationary CMD πH(ẑ) which now coincides with the
Wigner distribution with variances of the coordinate and momentum normalized to 1

4 . From now on we
write z in the place of ẑ for notational convenience.

Next we note that the displaced oscillator defined by the usual diffusion function and drift by (3.4) can
be handled in exactly the same way. The solution in explicit form for the CMD can be obtained from the
expression on the r.h.s. of (3.6) by the replacement z → z − α and z0 → z0 − α. The stationary solution
corresponds to the displaced ground state and the CMD is given by

styπH(z) ≡ πH(z, α) =
1
π

exp
(
−(z − α

√
2)2
)

(3.11)
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where we have preferred to normalize the variance to the original level 1
2 . If on the other hand we use the

normalized variables (3.10) as the basis for discussion, then the CMD takes the Wigner form

πH(z, α) =
2
π

exp
(
−2|z − α|2

)
. (3.12)

If at this stage we make the transformation

z = µζ + νζ, µ = coshs, ν = eiθsinhs (3.13)

where s is an arbitrary real parameter, then using z in the place of ζ for convenience, we have

πH(z, β) =
2
π

exp[−2|µ(z − β) + ν(z − β)|2]

=
2
π

exp
[
− 1

2(1 − ρ2)

{
(x − Rlβ)2

σ2
X

+
(y − Imβ)2

σ2
Y

−2ρ
(x − Rlβ)2(y − Imβ)2

σXσY

}]
(3.14)

where

β = µα − να ,

σ2
X =

1
4

(µ − ν)(µ − ν) =
1
4

(
e2s sin2 θ

2
+ e−2s cos2

θ

2

)
,

σ2
Y =

1
4

(µ + ν)(µ + ν) =
1
4

(
e2s cos2

θ

2
+ e−2s sin2 θ

2

)
,

ρ = − sinh 2s sin θ

4σXσY
. (3.15)

The transformation (3.13) is generally used on the quadrature variates of a coherent stream of light, the
transformation converting the coherent stream into a squeezed coherent stream. The expression as given by
(3.14) had been derived by Dodunov et al. [5] who identify the resulting state as a correlated state. The results
relating to variance and other properties were obtained by Caves [3] and Yuen [35]; we have preferred to
express the final form (3.14) in the notation of Loudon and Knight [19]. Now from the CMTF point of view
it is worth noting that the holomorphic version of the CMD of the displaced ground state (oscillator) goes
over into the CMD of the squeezed coherent state under the transformation (3.13). The variances of the real
and imaginary parts of the complex process are no longer equal, although their product remains invariant
under the transformation. This result acquires profound significance from the quantum phenomenal point
of view since squeezed streams can be generated physically by parametric amplifiers [7]. For instance
the transformation (3.13) induces a measure transformation on the CMD; thus the interaction implied by
the parametric amplifier is just a manifestation of the complex probability measure transformation. It is
interesting to compare this result with the one in an earlier contribution [26] wherein the Dirac equation of
the electron in a uniform magnetic field is derived in the quaternionic measure theoretic framework; in such
a situation it turns out that a transformation of the quaternions induces a transformation on the quaternionic
measure density which in turn eliminates the magnetic field.

Next we consider the collection of CMD’s of complex- valued random variables {Z}. These random
variables need not be restricted to the class introduced in the beginning of the section, since they can be
made more general by a transformation of the type (3.13) or other types of transformations. We call this
process of enlarging the collection of CMD’s holomorphic extension and the resulting measure theoretic
framework holomorphic CMTF (HCMTF). The square roots of the CMD’s are square integrable and hence
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they form an L2-space. The inner product can be introduced in a manner similar to (2.19); we finally render
it a Hilbert space by completion. If f and g are two CMD’s then the inner product between f1/2 and g1/2

is defined by

(f1/2, g1/2) =
∫

f1/2(z)g1/2(z)d2z , (3.16)

where d2z stands for dxdy and the integration is over the entire (x, y) plane.We shall, as before, use the
notation |f1/2〉 to denote the element of the Hilbert space and define for any z ∈ C

〈z|f1/2〉 = f1/2(z) . (3.17)

Next we consider the collection of CMD’s corresponding to the displaced ground state as α varies; the
square root functions belong to the Hilbert space. We replace α by α

√
2 in (3.11) and define the element of

the Hilbert space corresponding to the displaced ground state CMD to be |α〉 so that we have

〈z|α〉 = π
1/2
H (z, α

√
2) = (πH(z, α

√
2))1/2 . (3.18)

It follows that the scalar product between any two elements |α〉, |β〉 is given by

〈β|α〉 = (π1/2
H (z, α

√
2), π1/2

H (z, β
√

2)) = exp
(

− 1
2

|α − β|2
)

. (3.19)

At this juncture there is a small problem in notation; we have to distinguish between (3.18) and (3.19).
While the latter is a scalar product, the former is the square root of the CMD evaluated at z. A similar
kind of problem exists even in the standard approach through the Fock space (see for example [16, p. 105])
except for the fact that it is more pronounced in our case. We overcome this by using Roman character
to distinguish the square root of the CMD from the scalar product for which we use Greek symbols. In
passing we note that the value of the scalar product (3.19) is the same irrespective of the normalization of
the variance ( 1

2 or 1
4 ).

We next define the density matrix in the holomorphic representation; for the pure state it is simply

ρ = |α〉〈α| . (3.20)

The diagonal element in the complex coordinate representation just gives the Wigner distribution

〈z|ρ|z〉 = |〈z|α〉|2 =
2
π

exp −2|z − α|2 (3.21)

where we have normalized the variance to 1
4 . This result has no parallel in the standard coherent state theory.

The density matrix for the general case (mixed state) can be defined as in CMTF by

ρ =
∫

P (α)|α〉〈α|d2α (3.22)

where P (.) is an arbitrary CMD in α with the only restriction that P be real valued in order that ρ be
Hermitian; however it can be taken to be more general without such a restriction as in CMTF. The interesting
aspect is that the introduction of P is most natural in HCMTF unlike the situation in CMTF where P enters
merely as a weight coefficient. The most remarkable property is that the diagonal element yields the Wigner
distribution

〈z|ρ|z〉 =
2
π

∫
P (α) exp

(−2|z − α|2) d2α . (3.23)
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10 S. K. Srinivasan: Quantum phenomena via complex measure: Holomorphic extension

An important property having no parallel in the standard operator theory is that the r.h.s. is a convolution
of P with the Wigner distribution corresponding to the coherent state. It is to be specially noted that many
of the computations generally performed to bring out the features of quantum optical phenomena can now
be done with extraordinary ease. Normally the P -function does not seem to play a significant role (see for
example [35]) in the standard operator theory; this is no longer so in HCMTF. It follows from (3.23) that
the complex Fourier transform of the Wigner distribution defined by

W̃ (η) =
∫

W (z) exp(zη − zη)d2z (3.24)

is now given by

W̃ (η) = P̃ (η) exp
(

− |η|2
2

)
(3.25)

a result well-known in operator theory as the relation connecting the Weyl characteristic function to the
Fourier transform of P -function. However in HCMTF, W̃ (.) has no other interpretation than it being the
complex Fourier transform of the holomorphic density function.

We consider two simple situations in quantum optical phenomena. The first is the process of thermalizing
a squeezed coherent stream of light (see for example [7]). By an extension of the argument used above, it
follows that the Wigner distribution is just a convolution of the P -function of the thermal stream and Wigner
distribution of the squeezed vacuum

W (z) =
2

π2N

∫ {
exp

(
− |α|2

N

)}{
exp

(−2|ξ − β|2)} d2α (3.26)

where

ξ = µz + νz , β = µα + να . (3.27)

The integral is evaluated by a change of variable to β and we obtain

W (z) =
2

πA exp − 2
A2 {[1 + 2N(µ2 + |ν|2)]|ξ|2 − 4µN(νξz + νξ

2
)} (3.28)

where

A = [(2N + 1)2 + 8N |ν|2]1/2 . (3.29)

The thermalization of vacuum is manifested in the r.h.s. of (3.26). If on the other hand we wish to thermalize
a squeezed coherent stream, all that we need do is to replace α by α − α0 where α0 is the parameter
characterizing the coherent stream. The integrand also shows in a transparent manner that thermalization is
just a process of superposition of a thermal stream with squeezed vacuum. The P -function can be identified
by an inspection of the integrand on the r.h.s. of (3.26) or by using the relation (3.24). After some straight
forward evaluation, we obtain

P (α) =
1

π[Q(N)]1/2 exp
[{

−(N + |ν|2)|α − α0|2 − µ

2
(ν[α − α0]2 + ν[α − α0]2)

}
/Q(N)

]
(3.30)

where

Q(N) = N2 + (2N − 1)|ν|2 . (3.31)

The P -function as displayed above also manifestly shows its singular nature when N = 0; the characteristics
corresponding to the squeezed coherent stream can be obtained from the above representation by explicit
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use of it and then passing to the limit as N → 0. Thus we have an essentially physical way of arriving at a
representation of the squeezed coherent P -function which exists in a generalized sense.

The next interesting optical phenomena is the process of squeezing a thermal stream [7]. This is com-
paratively straight forward; all that we need to do is to start with the Wigner distribution of the thermal
stream

W (z) =
2

π2N

∫ {
exp

(
− |α|2

N

)}{
exp

(−2|z − α|2)} d2α . (3.32)

We next note that squeezing in HCMTF is simply making the transformation z → µz + νz; thus we finally
have

W (z) =
2

π(2N + 1)
exp[−2|µz + νz|2/(2N + 1)] . (3.33)

All the characteristics of the squeezed thermal light can be on the basis of the above formula. The P -function
in this case is given by

P (α) =
1

π[Q(N)]1/2 exp[−{N +(2N +1)|ν|2}|α|2 +(2N +1)µ(να2 +να2)/2}/Q(N)] (3.34)

where

Q(N) = N2 − (2N + 1)|ν|2 . (3.35)

We note that the P -function corresponding to the situation when there is a coherent component can be
obtained by the replacement α → α − α0.

So far the discussion centred round the Wigner distribution function; however the photon number is also
an interesting characteristic of the stream of light. To arrive at the number distribution we have to resort to
indirect methods since CMTF is not operator based. However the holomorphic measure densities can be
expanded in terms of complex Hermite functions which besides being a complete orthonormal set belong to
the same Hilbert space as the measure densities. In paper III we have provided explicit representation for the
displaced ground state oscillator CMD’s; however there is a small problem since the representation involves
vectors (n1, n2). We can use Hida’s theorem on the direct sum decomposition of the space (see [13, p. 244])
to arrive at the scalar representation. Thus we can deal with the diagonal elements of the density matrix in
this representation; the final result is the same as in CMTF namely that the photon number is conditionally
Poisson distributed with parameter |α|2. Using this result it is indeed possible to express the generating
function of the photon number distribution in terms of the Wigner distribution (see Eqn. A.11 in appendix
A); the generating function G(u) by

G(u) =
∑

unpn (3.36)

for the two cases discussed in the above paragraph are:
(i) Thermalization of squeezed coherent stream:

G(u) =
1

[A(u)]1/2 exp
[{

−|α0|2(1 − u)[1 + (η + |ν|2)(1 − u)] − µ

2
(να2

0 + να0
2)(1 − u)2

}
/A(u)

]

(3.37)

where

A(u) = 1 + 2(1 − u)(η + |ν|2) + (1 − u)2(η2 + [2η − 1]|ν|2) , (3.38)

www.fp-journal.org c© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



12 S. K. Srinivasan: Quantum phenomena via complex measure: Holomorphic extension

(ii) Squeezed thermal stream:

G(u) = [1 + (u − 1){[N2 − (2N + 1)|ν|2](u − 1) − 2[N + (2N + 1)|ν|2}]−1/2 . (3.39)

The first two moments of the photon distribution have been obtained by Fearn and Collet [7] and are in
agreement with those obtained from (3.38) and (3.39).

Finally we note that it is possible to introduce a conditional structure on the Wigner distribution. Just as
in CMTF, we can replace P (α) by P (α, α0). Such a conditional Wigner distribution will naturally lead to
the notion of conditional density matrix in a natural way. There is yet another way by which we can arrive
at the conditional Wigner distribution. We note that (3.6) itself a distribution conditioned by Z(0) = z0.
This is rather a trivial example of a conditional Wigner distribution which is genuinely complex-valued. A
more illuminating example can be obtained by conditioning the initial state; thus multiplying both sides of
(3.6) by πH(z0, α) as given by (3.11) and integrating over z0, we obtain

πgdd(z, α, t) =
1
π

exp
(
−{(z − αe−iωt)(z − αe−iωt)}

)
. (3.40)

The density matrix that corresponds to this Wigner distribution is easily computed:

ρ(x, x
′
, α, t) =

1√
π

exp


−



(

x + x
′

2
− α1e−iωt

)2

− iα2e−iωt(x − x
′
) +

(
x − x

′

2

)2



 (3.41)

where α = α1 + iα2. The function ρ as given by (3.41) is the conditional density matrix and has no parallel
in the standard operator theory; needless to emphasize that neither ρ nor πgdd is positive-definite.

4 Test oscillator in a bath

Now we are comfortably placed to discuss the various aspects of a test (harmonic) oscillator in interaction
with a collection of oscillators consisting a bath. Normally the study of interacting oscillator is a complex
one; however in our case we make the (drastic) bath approximation so that the test oscillator feels the effects
of the bath substantially with the bath itself being unaffected by the presence/interaction of the test oscillator.
Such an oscillator had been the subject of investigation from various angles by numerous authors including
Feynman and Vernon [8], Ford et al. [9] and Caldeira and Legget [2]. The model had been elegantly handled
by the path integral method by Feynman and Vernon [8] treating the distinguished (test) oscillator as a forced
harmonic oscillator, the forcing term arising from its interaction with the bath. Dowker and Halliwell [6]
had discussed this problem with special reference to the general aspects of quantum mechanical history and
decoherence. We here show how the model can be handled in CMTF and many interesting properties can
be brought out in a simple and direct manner.

We note that the motion of the distinguished (test) oscillator in interaction with the bath is best visualized
as a forced harmonic oscillator with the bath characteristics included in the forcing term. In CMTF, we can
introduce the bath characteristics (B) as some kind of a conditioning; denoting the conditional CMD by
π(x, t|x0, t0; B) we note that π satisfies the Fokker–Planck equation (2.5) where b(x) is the usual complex
diffusion coefficient i�/m and a(x) which is now a function of t also is specified by

a(x) = −iωx + β(t) , (4.1)

β(t) =
∫ t

0
e−iω(t−s)f(s)ds , (4.2)

f(t) = −
∑

k

CkRk(t) . (4.3)
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The additional term β(t) in the drift function a(x) brings out in a transparent manner the linear coupling
(of the distinguished oscillator) with the coordinate Rk(t) of the typical oscillator of the bath. The Fokker–
Planck equation (2.5) for the choice of the choice of the drift function a(x) for a very general β(.) has been
analyzed in detail in papers I and II in connection with the classic problem of interaction of light with matter;
for our present discussion we just take over the solution and consider it in detail when f(.) is specified by
(4.3). Thus the conditional CMD π(x, t|x0, t0; B) is given by

π(x, t|x0, t0; B) =

(
mωe2iωt

π�(e2iωt − 1)

)1/2

exp

{
− mωe2iωt

e2iωt − 1

[
x − x0e−iωt − F (t, t0)

]2}
(4.4)

where

F (t, t0) =
1
ω

∫ t

t0

f(u) sin ω(t − u)du . (4.5)

In the ultimate analysis we consider a continuous assembly of oscillators constituting the bath; however
to obtain results in a rather simple way, we note that if we deal with one oscillator, then f(u) in (4.5)
can be replaced by −CR(u) whose CMD has a Gaussian structure. The process of summing over the
different oscillators constituting the bath is analyzed in Appendix B where details of analysis leading to the
determination of the statistical characteristics of F (t, t0) are given; the final result is given by

πfinal(x, t|x0, t0) ≡ EB[π(x, t|x0, t0; B)]

=
{

2π

[
A +

�

2mω
(1 − e−2iω(t−t0))

]}−1/2

×

× exp −
(
x − x0e−iω(t−t0)

)2
/

[
2A +

�

mω

(
1 − e−2iω(t−t0)

)]
(4.6)

where EB denotes the expectation over the bath variables and A is given by

A =
∑

n

C2
n�

MΩnω2

[
I1(n) +

(
coth

Ωn�

2kT
− 1
)

I2(n)
]

. (4.7)

The above expression is for the most general case corresponding to independent evolution of the oscillators
of the bath, each starting from a thermal equilibrium state with temperature T. If however we use the
same approximation as the one used by Caldiera-Legget or Dowker and Halliwell [6] then r.h.s. simplifies
considerably since the oscillators of the bath are assumed to be in thermal equilibrium for all time; in such
a case

I1(n) = I2(n) =
2
ω2 sin2 ω

2
(t − t0) . (4.8)

Following Caldeira and Legget if we choose a continuum of oscillators with density ρD(Ω), we simply
make the replacement

∑
n

→
∫

dΩρD(Ω), Cn → C(Ω)

so that we finally have

A =
2�

Mω4 sin2 ω(t − t0)
∫ ∞

0
C2(Ω)ρD(Ω)coth

Ω�

2kT
dΩ . (4.9)
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14 S. K. Srinivasan: Quantum phenomena via complex measure: Holomorphic extension

The complex representation of A even in its most general form (4.7) provides an easy interpretation of the
main characteristics of the test oscillator; besides renormalization of the frequency the dissipation due to
bath is apparent from (4.6). Next we note that (4.6) corresponds to the situation when the test oscillator is
initially constrained at a fixed position x0; if on the other hand we take the initial configuration to correspond
to the coherent state α, then defining

p(x, t|α, t0) = π(x, t|α, t0)|normalized , (4.10)

π(x, t|α, t0) =
∫

πfinal(x, t|x0, t0)
(mω

π�

)1/2
exp

[
−mω

�
(x0 − α)2

]
dx0 , (4.11)

we find that p(x, t|α, t0) can be expressed neatly in terms of the phases φ, γ respectively of the complex
parameters �

2m + A, α;

p(x, t|α, t0) =
(

N

π

)1/2

exp

(
− cos φ

2| �

2mω + A|

{
x − |α| cos[ω(t − t0) + φ + γ]

cos φ

}2
)

, (4.12)

where

N = cos φ/

[
2| �

2mω
+ A|

]
. (4.13)

Next we provide an explicit expression for the two time CMD of the test oscillator which is conditioned to
be in a coherent state labelled by α. We note that the test oscillator has Markov character conditional on
bath (variables); introducing π(x2, t2; x1, t1|α, t0; B) as the conditional CMD that X(t) = x1, X(t) = x2
we find

π(x2, t2; x1, t1|α, t0; B) = π(x1, t1|α, t0; B)π(x2, t2|x1, t1; B) . (4.14)

Making repeated use of (4.4) and (4.11) and using the general arguments presented in Appendix B particu-
larly the Gaussian nature of the bath coordinates we note

π(x2, t2; x1, t1|α, t0) = EB[π(x2, t2; x1, t1|α, t0)]

=
∫

π(x2, t2; x1, t1|α, t0; B)
1√

2πAB − C2
×

× exp − AB
2(AB − C2)

{
z2

A +
w2

B − 2
Czw

AB
}

dzdw (4.15)

where the random variables (Z, W ) corresponding to (z, w) are given by

Z = F (t1, t0), W = F (t2, t1) (4.16)

where

A = A(t, t0),B = A(t2, t1) . (4.17)

The explicit expressions of A follow from (4.7) or (4.9) depending on the level of approximation em-
ployed.The function C is little bit complex in its structure; nevertheless an expression for the same can
be obtained in an exactly same way as A. However if we assume that the bath variables are in thermal
equilibrium for all times, then

C =
∑

n

2�C2
n

ω4MΩ
sin2 ω(t2 − t1) sin2 ω(t1 − t0)coth

Ω�

2kT
. (4.18)

c© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.fp-journal.org



Fortschr. Phys. (2006) 15

On performing the integration over (z, w) we finally obtain

π(x2, t2; x1, t1|α, t0) =
(N1N2)1/2

π[(2N1A + 1)(2N2B + 1) − 4N1N2C2]1/2 ×

× exp − (A + 1
2N1

)(B + 1
2N2

)

2[(A + 1
2N1

)(B + 1
2N2

) − C2]

{
Q2

B + 2N2
+ P 2

[
1

(A + 1
2N1

)
+

e−2iω(t2−t1)

(B + 1
2N2

)

+
2Ce−iω(t2−t1)

(A + 1
2N1

)(B + 1
2N2

)

]
− 2PQ

[
C

(A + 1
2N1

)(B + 1
2N2

)
+

e−iω(t2−t1)

B + 1
2N2

]}
(4.19)

where

P = x1 − αe−iω(t1−t0), Q = x2 − αe−iω(t2−t0) ,

N1 =
mω

�
, N2 =

mω

�(1 − e−2iω(t2−t1))
.

(4.20)

All the relevant properties of the correlation function can be readily inferred from the above expression.
We finally attempt to find an explicit expression for the Wigner distribution using the idea of holomorphic

extension of CMTF. We start with the forced harmonic oscillator in complex coordinate representation; all
that we need to do is to modify the expression for drift as given by (3.3) or (3.4). We simply take the
complexified version of (4.1)

a(z) = −iω(z) + β(t) (4.21)

where β(t) is still given (4.2) and (4.3); Rk(t) now takes the complexified form:

Rk(t) = Pk(t) + iQk(t) . (4.22)

The diffusion function as defined by (3.2) is set equal to i�/m as in the earlier case. The resulting Fokker
Planck equation is solved in exactly the same manner as (3.5) and we finally obtain

π(z, t|z0, t0; B) =
mω

π�(1 − e−2iω(t−t0))
× (4.23)

× exp

[
− mω

�(e2iωt − e2iωt0)
(zeiωt − z0eiωt0 −

∫ t

t0

β(s)eiωsds)(zeiωt − z0eiωt0 −
∫ t

t0

β(s)eiωsds)

]
.

The average over the bath variables is easily done by noting that the solution as given by (3.6) in the previous
section describes the evolution of the typical bath variable; all that we need to do is to modify the initial
condition so that each variable is in thermodynamic equilibrium at temperature T ; thus the solution as given
by (3.6) when averaged over x0 takes the form

π(z, t| thermal equilibrium)

=
MΩ
π�

1
[1 − e−2iΩ(t−t0)](1 − coth Ω�

2kT )
exp −|z|2 ΩM

π[1 − e−2iΩ(t−t0)](1 − coth Ω�

2kT )
. (4.24)

We next note that the averaging over the bath variables follow exactly in the same manner as in the case of
real random variable Rk; thus we have an expression analogous to (4.6):

πfinal(z, t|z0, t0) = EB[π(z, t|z0, t0; B)]

=
1

2π[A + �
2mω (1 − e−2iω(t−t0))]

exp − (z − z0e−iω(t−t0))(z − z0e−iω(t−t0))
2[A + �

2mω (1 − e−2iω(t−t0))]
(4.25)
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16 S. K. Srinivasan: Quantum phenomena via complex measure: Holomorphic extension

where A is the state given by (4.7). Thus we have an interesting result; if the initial condition for the test
oscillator is specified by the Wigner distribution function w(z0, z0) (this fits in very well with HCMTF since
this is just the initial condition for the holomorphic density for the coordinate) then the final holomorphic
density for the test oscillator which is interpreted to be the Wigner distribution function is now given by

πH
testoscillator(z, t|t0) =

∫
d2z0w(z0, z0)

2π[A + �
2mω (1 − e−2iω(t−t0))]

× (4.26)

× exp
{

−[|z|2 + |z0|2e−2iω(t−t0) − (z0z + z0z)e−iω(t−t0)]/2[A +
�

2mω
(1 − e−2iω(t−t0))]

}
.

This is the HCMTF analogue of equation (5.44) of Dowker-Halliwell [6]. If we express w(z0, z0) in terms
of its complex Fourier Transform Q(η, η) the above result can be put in a more compact form:

πH
testoscillator(z, t|t0) (4.27)

=
1
π

∫
Q(η, η) exp

{
eiω(t−t0)(zη − zη) − 2[A +

�

2mω
(1 − e−2iω(t−t0))]|η|2e2iω(t−t0)

}
d2η .

The above result can be the basis for further discussion of correlation structure of the test oscillator. In an
analogous way the two time correlation of the coordinate of the test oscillator can be arrived at. However
it should be noted that modulus measure of the two time distribution does not exist in the ordinary sense
since this is one of the cases where the variational measure is to be interpreted in a generalized sense [15].
In this context it is worth noting that no such correlation can exist from an observational point of view and
at best it can only be defined in a sequential way which takes into account the interference effects.

Next we briefly discuss the method of arriving at probabilities of paths in a situation where the oscillator
is constrained to pass through a couple of gaussian slits. We start with (4.11); defining

p(x, t|α, t0) = π(x, t|α, t0)|normalized (4.28)

π(x, t|α, t0) =
∫

πfinal(x, t|x0, t0)
(mω

π�

)1/2
exp

[
−mω

�
(x0 − α)2

]
dx0 , (4.29)

we find that p(x1, t1|α, t0; B) is given by

p(x1, t1|α, t0, B) = π(x1, t1|α, t0, B)|mod

=
(mω

π�

)1/2
exp

{
−mω

�
[x1 − α1 cos ω(t1 − t0) − α2 sin ω(t1 − t0) − F (t1, t0)]2

}
. (4.30)

Next we pass the oscillator through a slit centered at x at time t1 to obtain

p(x, t1|α, t0, B) =
(

π{σ2 +
�

mω
}
)−1/2

exp

{
− [x − Fα(t1, t0)]

2

σ2 + �
mω

}
. (4.31)

We next note that under the assumption that each of the bath oscillators is under thermal equilibrium,a
major simplification arises namely the measure density p continues to be positive real valued even after the
conditioning of the bath variables are removed by virtue of A remaining positive real valued(see (4.9)).
Thus removing the conditioning,we obtain

p(x, σ, t1|α, t0) =
(

π{σ2 +
�

mω
}
)−1/2 ∫

(2πA)−1/2 exp
(

− z2

A
)

×

× exp

{
− [x − α1 cos ω(t1 − t0) − α2 sin ω(t1 − t0) − z]2

σ2 + �

mω

}
dz
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=
(

π[2A + σ2 +
�

mω
]
)1/2

exp

{
− [x − α1 cos ω(t1 − t0) − α2 sin ω(t1 − t0)]2

2A + σ2 + �
mω

}
. (4.32)

It is interesting to note that the function p(., σ, t1) is not a density in as much as the probabilities correspond-
ing to two different but close enough values of x are not exclusive; nevertheless the integral of p(x, σ, t1)
with respect to x yields unity by virtue of the special form of the function fW (.). In conventional quantum
mechanical approach as contrasted with CMTF, this aspect goes unnoticed in as much as all vectors in the
Hilbert space are automatically chosen to have norm equal to unity.1We shall presently see the gravity of
the situation when we deal with passage through two slits. Anyway the elegant formula (4.32) is one of the
significant results following from CMTF and can be used as a test of the theory itself.

It is needless to repeat the remarks made in the earlier section which are quite pertinent in the present
context. The probability density function of X(t2) conditional on the oscillator having passed through the
slit centered at x at time t1 can be evaluated; we first arrive at the conditional CMD π(x2, t2|x, σ, t1; α, t0, B)
using elementary arguments:

π(x2, t2|x, σ, t1; α, t0, B) (4.33)

=
(

L

π

)1/2

exp


−L


x2 − F (t2, t1) − e−iω(t2−t1)

mωσ2

�
+ 1

{x +
mωσ2

�
+ Fα}




2



where L is given by

L =
mω

�

mωσ2

�
+ 1

mωσ2

�
+ 1 − e−iω(t2−t1)

. (4.34)

Thus the conditional probability is given by

p(x2, t2|x, σ, t1; α, t0, B) =
(

mωK

π�

)1/2

exp
{

−mωK

�
[x2 − Hα]2

}
(4.35)

where K is defined by

K =

(
mωσ2

�
+ 1
)(

mωσ2

�
+ 2 sin2 ω(t2 − t1)

)

(
mωσ2

�
+ 2 sin2 ω(t2 − t1)

)2

+ 4 sin2 ω(t2 − t1) cos2 ω(t2 − t1)

(4.36)

and Hα is given by

Hα = F (t2, t1) + {x +
mωσ2

�
Fα}G (4.37)

where again G is defined by

G =
(

mωσ2

�

)
cos ω(t2 − t1)


 1

( mωσ2

�
+ 1)( mωσ2

�
+ 2 sin2 ω(t2 − t1))


 . (4.38)

1 However Dowker and Halliwell [6] did observe the overlapping while introducing projectors for Gaussian slits and had conse-
quently taken into account the overlap while providing constraints for decoherence
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It thus follows that the conditional probability of passage through the second slit is given by

p(y, ρ, t2|x, σ, t1α, t0, B) =
(

π{ρ2 +
�

mωK
}
)−1/2

exp




(y − Hα)2

ρ2 + �

mωK


 . (4.39)

Again we note that despite the fact that the probabilities corresponding to two distinct values of y overlap,the
function p(y, ρ, t2|x, σ, t1α, t0, B) is normalized in the sense the integral of p over y is equal to one.Although
the CMD π given by (4.33) can lead to some kind of a complex probability of passage through the slit,it
is not a complex measure in a technical sense and hence no variational measure can be extracted out of it
and this is the main reason why we first obtained a positive measure density from π and then proceeded to
evaluate the probability of transit through the slit. Thus the question of assignment of consistent probabilities
does not arise. In fact the probability of passage through the slit as given by (4.39) can be used as a crucial
test for CMTF itself. Another noteworthy point is that we have a framework to define in a consistent way
a sequence of measurements(corresponding,in this case, to a sequence of passages through the slits) since
the interference of each measurement is describable as a conditional measure in the first instance. Again
this result can be put to test if the gadenken for the Gaussian slit can be realized physically.

5 Summary and conclusion

In this contribution we have provided a detailed analysis of the various characteristics of the complex density
function introduced earlier. In particular we have demonstrated how the analysis through the Hilbert space
constructed from the natural L2-space of the collection of square root of the CMD’s enables us to deal
with the coherent states and thereby introduce the P -function in a general context. The notion of density
matrix in its most general form follows in quite a natural way; since CMTF is probability based, we are
able to extend the concept of density matrix under conditional events. The very complex-valued nature of
the CMD enables to introduce a holomorphic framework by a natural holomorphic extension of the CMD.
Such an extension leads to the Wigner distribution quite generally. The density matrix is introduced in the
holomorphic frame work and it turns out that the diagonal element corresponds to the Wigner distribution.
This leads to an enormous simplicity in computations and we have demonstrated how quantum optical
phenomena can be handled in such a frame work. In particular we have shown how computations leading to
the determination of the characteristics of the photon number distribution can be handled; explicit expression
for the generating function of the photon number distribution in the case of squeezed thermal light and the
stream obtained by thermalizing a squeezed stream. We believe that the new representation for the coherent
state and its ramification in the holomorphic frame work may prove to be useful in the general formulation
of various problems of quantum phenomena. Finally we have analyzed the Caldeira-Legget model of an
oscillator in interaction with a bath and provided explicit expressions for the CMD of the test oscillator.
Using the Markov nature of the coordinate in the presence of the bath, obtained an explicit expression for the
joint complex measure density of the coordinate at two different time points. We believe that this may pave
the way unraveling many of the features relating to observation at one time point and its interference effect
at a later time point. We have demonstrated this in a very limited context of passage of the test oscillator
through two Gaussian slits, thus providing an interpretation of the probability of paths corresponding to
the passage through the slits. The holomorphic extension of the CMD of the test oscillator is an interesting
result by itself since it can throw light on the evolution of Wigner distribution starting from a given set of
conditions.

Finally the author acknowledges with pleasure several discussions with E. C. G. Sudarshan spread over
several summer months of the past several years on general aspects of holomorphic extension and the
problem of test oscillator in a bath.
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A Appendix

We note that the diagonal element of ρ in the number representation (as defined by (2.22)) represents the
modulus measure and hence represents the probability of the corresponding number of photons. Now the P -
function corresponding to the superposition of a thermal stream with an arbitrary stream whose P -function
is P0(.) is now given by

P (α) =
1

πN

∫
P0(β)e− |α−β|2

N d2β . (A.1)

We next note that

〈n|β〉 =
βn

(n)1/2 exp
(

− |β|2
2

− iβ1β2

)
(A.2)

from which it follows that the distribution of the number of photons in a stream is conditionally Poisson with
parameter |β|2; it also follows that the conditional factorial moment of order n of the number of photons
is just |β|2n. Denoting by Ns, Nar and N0 respectively the number of photons in the superposed, arbitrary
and thermal streams we find the factorial moment of order n of Ns is given by

E[N (n)
s ] =

∫
P (α)|α|2nd2α . (A.3)

We next substitute for P (α) from (A − 1) to find

E[N (n)
s ] =

1
πN

∫
P (β)e− |α−β|2

N

n∑
m=0

n∑
k=0

(
n

m

)(
n

k

)
(α − β)m(α − β)kβn−mβ

n−k
d2βd2α

=
1

πN

n∑
m=0

n∑
k=0

∫
P (β)e− |α|2

N βn−mβ
n−k

αmαkd2βd2α . (A.4)

We note that in view of the occurrence of |α|2 in exponential the integral vanishes unless k = m. This
simplifies the expression on the r.h.s. and we find

E[N (n)
s ] =

1
πN

n∑
m=0

∫
P (β)|α|2n|β|2(n−m)[

(
n

m

)
]2e− |α|2

N d2αd2β

=
n∑

m=0

[
(

n

m

)
]2E[N (n−m)

ar ]E[N (m)
0 ]

=
n∑

m=0

[
(

n

m

)
]2m!NmE[N (n−m)

ar ] (A.5)

in agreement with the result obtained by Loudon and Shepherd [20]; Loudon and Shepherd used the operator
technique and also made use of the pure random nature of the phase of the amplitude of thermal stream. Next
we note that the probability generating function G(u) of the number of photons can be obtained explicitly
in CMTF by using the conditional Poisson structure of the distribution. Thus it follows from (2.24) that

G(u) =
∞∑

n=0

∫
P (α)e−|α|2 |α|2n

n!
und2α

=
∫

P (α)e−|α|2(1−u)d2α . (A.6)
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It is also possible to derive an alternate formula for the case where the stream is characterized by an arbitrary
CMD f(.). By taking the projection on an arbitrary coherent state α

〈α|f1/2〉 = f̃1/2(α)e− 1
2 |α|2 (A.7)

we can identify the diagonal element of the density matrix

〈α|ρ|α〉 = |〈α|f1/2〉|2 . (A.8)

From the above relation we can easily show

G(u) =
1

uπ

∫ ∫
f̃1/2(α)f̃1/2(α)e− |α|2

u d2α . (A.9)

Finally we note that the Wigner distribution can be connected to the P -function from the relation (3.25).
Using the relation

〈α|ρ|α〉 =
2
π

∫
W (z)e−2|z−α|2d2z (A.10)

it follows from (A.9)

G(u) =
2

π(1 + u)

∫
W (z)e−2 (1−u)

(1+u) |z|2d2z . (A.11)

B Appendix

Our objective is to obtain the CMD of the test particle coordinate process; in other words we wish to
remove the conditioning on the CMD and this can be achieved only by averaging over the coordinates of
the oscillators of the bath. This is best done in a subtle way; we note that F (t, t0) is a Gaussian process (in
complex measure theoretic sense) and hence all that we need is its variance for arbitrary t or mean square
value since the mean value is zero. Now for a single (fixed) oscillator with coordinate R(t), the variance of
F (t, t0) is given by

V arF (t, t0) =
C2

ω2

∫ t

t0

∫ t

t0

sin ω(t − u) sin ω(t − v)E[R(u)R(v)]dudv . (B.1)

To obtain the correlation function we note that the conditional measure density as given by (2.11) with
suitable change of parameters will yield the required result. It follows from (2.11)

E[R(v)|R(u)] = R(u)e−iΩ(v−u) . (B.2)

Thus we have

E[R(v)R(u)] = E{[R(u)]2}e−iΩ(v−u), v > u . (B.3)

Next we note that if the bath oscillator is initially maintained in equilibrium at temperature T then it follows
that the CMD π(x, t|equilibrium at T, t0) is given by

π(x, t|equilibrium at T, t0) = exp−MΩ
�

x2

[(coth Ω�

2kT − 1)e−2iΩ(t−t0) + 1]
. (B.4)
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Hence it follows that

E{[R(u)]2} =
1
2

�

MΩ

[
(coth

Ω�

2kT
− 1)e−2iΩ(t−t0) + 1

]
. (B.5)

Thus the variance of F (t, t0) is now given by

VarF (t, t0) =
C2

�

ω2MΩ

[
(coth

Ω�

2kT
− 1)I2 + I1

]
, (B.6)

where

I1 =
∫ t

t0

du

∫ t

u

sin ω(t − u) sin ω(t − v)e−iΩ(v−u)dv , (B.7)

I2 =
∫ t

t0

du

∫ t

u

sin ω(t − u) sin ω(t − v)e−iΩ(v−u)−2iΩ(u−t0)dv . (B.8)

On evaluation of the integrals we have

I1 =
1

ω2 − Ω2

{
i
Ω
2

[
(t − t0) − sin 2ω(t − t0)

2ω

]
− 1

2
sin2 ω(t − t0)

+
ω

ω2 − Ω2

[
e−iΩ(t−t0) {−iΩ sin ω(t − t0) − ω cos ω(t − t0)} + ω

]}
(B.9)

I2 =
1

2(ω2 − Ω2)2
[iΩ sin ω(t − t0) − ω cos ω(t − t0) + ωe−iΩ(t−t0)]2 . (B.10)

The above results correspond to a typical oscillator of the bath; to obtain the variance corresponding to the
bath, we note that we simply make the replacements C → Cn, Ω → Ωn and sum over n. Thus we have

VarF (t, t0)|Bath =
∑ C2

n�

ω2MΩn

[
coth

Ωn�

2kT
I2(n) + I1(n)

]
(B.11)

where I1(n) and I2(n) are simply obtained from (B − 9) and (B − 10) by the replacement Ω → Ωn. Thus
the average value of CMD over the bath is now given by

πfinal(x, t|x0, t0) = E[π(x, t|x0, t0; B)] (B.12)

=

(
mω

π�(1 − e−2iω(t−t0))

)1/2(
1

2πA
)1/2

×
∫

exp − z2

2A exp

{
− mω

�(1 − e−2iω(t−t0))
[x − x0e−iω(t−t0) − z]2

}
dz . (B.13)

On performing the integration we have

πfinal(x, t|x0, t0) =
{

2π[A +
�

2mω
(1 − e−2iω(t−t0))]

}−1/2

×

× exp
{

−[x − x0e−iω(t−t0)]2/[2A +
�

mω
(1 − e−2iω(t−t0))]

}
(B.14)
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