
Prospects for Category Theory in Aldor

Saul Youssef
Center for Computational Science

Boston University
youssef@bu.edu

December 22, 2008

Abstract

Ways of encorporating category theory constructions and results
into the Aldor language are discussed. The main features of Aldor
which make this possible are identified, examples of categorical con-
strutions are provided and a suggestion is made for a foundation for
rigorous results.

1 Introduction

Category theory[1, 2, 3] is one of the most important unifying ideas in math-
ematics. It is both a candidate for the foundations and provides the large
scale structure relating separate areas of mathematics. Naturally, one would
expect that the elements of category theory, including objects, morphisms,
categories, functors, natural transformation and adjoints, would be basic
indispensible elements of modern mathematical software. The high level or-
ganization of mathematical software libraries would naturally be categorical
and would allow category theory to relate separate areas and allow results
from category theory to be encorporated across their entire domain of appli-
cability. It is very striking to the author that this picture has not emerged
at all, in spite of the fact that the mathematical importance of category the-
ory has been understood since the 1940s and even though category theory
plays a significant role in computer science[4, 5, 6, 7]. Before discussing the

1



prospects for following this program using the new language Aldor[8], we
attempt some explanation as to why this has not happened already.

The most obvious computational difficulty with category theory is the
variety of categories of interest. The following categories, for example

objects morphisms
sets functions
groups group homomorphisms
elements of a preorder ≤
integers n,m n×m matrices over a ring
points x, y in a topological space paths from x to y modulo homotopy
categories functors
functors F,G from category C to C ′ natural transformations from F to G

are all of interest. It is hard, however, to find a language construction for
which these are all special cases. For instance, in a typical object oriented
language, one would certainly want to be able to treat the objects satisfying
some base class as objects in a category. Morphisms, however, are then not
member functions and already don’t naturally fit into the object oriented
framework or even have the same type. Even in the cases when these diffi-
culties have been overcome in C++[9] and the functional language ML[10],
success in implementing category theory has not lead to attractive general
purpose mathematical software. We can suppose that even if category the-
ory is implemented correctly, a particular system may be too awkward or
constraining to keep up with the free flow of mathematical ideas in a more
general setting. It is important, then, to understand “awkwardness.” How-
ever, as with poorly understood diseases, we have no cause or mechanism,
we only have symptoms. The symptoms are simple constructive mathemat-
ical facts which can only be expressed in the system with difficulty. To keep
this problem in mind it helps to remember some selection of representative
categorical and non-categorical facts such as

1. An associative algebra can be considered to be a Lie algebra where
[x, y] = xy − yx.

2. Every vector space has a dual. A finite dimensional vector spaces is
isomorphic to its dual.

2



3. Fix an objectX in category C. Let objects be morphisms with codomain

X and let morphisms from A
α→ X to B

β→ X be morphisms A
φ→ B

such that β ◦ φ = α. This is again a category.

4. The composition of two functors is again a functor.

5. Right adjoints preserve limits, left adjoints preserve colimits.

One of the main reasons that Aldor is particularly interesting in this context
relates to “awkwardness” as much as to category theory. We have noticed
how often the combination of parametric polymorphism, curried functions,
dependent types and extends turns an awkward fact into an easily express-
ible fact. For example, if A is an associative algebra in Aldor, 1) above is
completely expressed in Aldor by

extend A: LieAlgebra == A add { bracket(x:%,y:%):% == x*y - y*x }

Aldor offers the hope that its new features may contain key missing elements
needed for general purpose software that includes category theory.

2 Foundations

There are several potential ways to implement category theory in Aldor. It
is helpful to first focus on a restricted solution where morphisms are required
to be Aldor functions. More general approaches along the same lines are
discussed in Section 9.

Consider an Aldor category with no signatures

Domain:Category == with

Let objects in the mathematical sense be Aldor domains satisfying Domain. If
A and B are such domains, let Hom(A,B) be the collection of Aldor functions

with signature A → B. Let the composition of A
f→ B and B

g→ C be the
Aldor function

(a:A):C +-> g f a

and let the identity morphism of an object A be the Aldor function

(a:A):A +-> a

3



we claim that this is, in fact, a category. Although we have no proof, we
are confident of this claim because of expected properties of Aldor functions
and Domains. We expect, for instance, that composition of Aldor functions
is associative. This suggests that

• PreAxiom: Domain is a category.

be taken as part of our “model of computation.” In more detail, we expect

• Axiom: Domain is a category with finite products, coproducts, initial,
final and exponential objects.

based on expected properties of the Aldor functions, “Record” and “Union”
types. If Axiom is sufficient for rigorous arguments, it would be especially
satisfying since the definition of a category could serve as the foundation
for “regular” mathematics[1] and the existence of a particular such category
could serve as the foundation for computation.

Given Axiom we consider a “Set” to be any domain satisfying

Set:Category == Domain with

=: (%,%) -> Boolean

where “=” is an equivalence relation. Morphisms in this category are Aldor
functions f:A->B where x=y implies f x = f y. Since each Set is a Domain
and each Set morphism is an Aldor function, we only have to prove that
composition of Set morphisms is a Set morphism and that identities are
Set morphisms to prove that Set is a category. Note that in introducing
a category like Set, one is implicitly establishing the convention that the
authors of domains satisfying Set must provide a “=” function which is, in
fact, an equivalence relation. This convention is required because the Aldor
compiler itself has no way of checking whether “=” has the required property.
Similarly, we are forced to introduce the convention that the author of any
Aldor function f from Set A to Set B must insure that it is, in fact, a Set
morphism. The same story repeats for more complicated categories. The
fact that domains G,H satisfying

Group:Category == Set with

*: (%,%) -> %

inv: % -> %

1: %

4



are really groups and that any f:G->H is really a group homomorphism is,
by necessity, a convention[11]. These conventions imply that there is exactly
one mathematical category for each Aldor Category. For example, if one
wants to consider, for some reason, the category with groups as objects and
Aldor functions as morphisms, one should define a new

Group2:Category == Group with

to avoid confusing Group morphisms (group homomorphisms) with Group2
morphisms (Aldor functions). Fortunately, this kind of distinction seems to
be rarely needed. The reliance on these conventions is less unsatisfactory
than it might seem because both objects like G and H and morphisms like f
will normally be produced by free construction or other functors where one
does have a proof that one is producing groups and group homomorphisms.

Composition of morphisms can be done with native Aldor function com-
position, but it is sometimes convenient to also have composition and iden-
tities via functions as in

Id(Obj:Category):Category == with

id: (A:Obj) -> (A->A)

default

id(a:A):(A->A) == (a:A):A +-> a

Compose(Obj:Category):Category == with

compose: (A:Obj,B:Obj,C:Obj) -> (A->B,B->C) -> (A->C)

default

compose(A:Obj,B:Obj,C:Obj)(f:A->B,g:B->C):(A->C) ==

(a:A):C +-> g f a

MathCategory(Obj:Category):Category == Id Obj with Compose Obj

For each category like Group, we will have an Aldor category Group and
and an Aldor “package” GroupCategory which inherits at least MathCate-
gory(Group) and has extra exports such as products and coproducts (section
4) according to the extra categorical properties of the particular category of
groups.

5



3 Functors and Adjoints

Given objects as Aldor domains and morphisms as particular types of Aldor
functions, a functor from category ObjA to category ObjB can be most
directly represented as a domain constructor with signature Arrow ObjA ->

Arrow ObjB where

Arrow(Obj:Category):Category == with

Domain: Obj

CoDomain: Obj

morphism: Domain -> CoDomain

represents a single morphism together with its domain and codomain. Not
any such function will do, of course and, as usual, the author of a functor is
responsible for insuring that any such domain constructor preserves diagram
shapes and commuting diagrams.

Although the above solution works in Aldor, it is preferable to have a
less direct treatment of functors and to informally refer to any Aldor domain
constructor L : ObjA → ObjB as a “functor” from ObjA to ObjB with the
understanding that L has an adjoint R : ObjB → ObjA with natural iso-
morphism HomObjB(L A,B) ' HomObjA(A,R B). The point is that functors
usually come in adjoint pairs and if the adjoint isomorphism is known, then
the action of L and R on morphisms is provided by the category defaults of

Adjoint(ObjA:Category,ObjB:Category, L:ObjA->ObjB, R:ObjB->ObjA):

Category == with

>>: (A:ObjA,B:ObjB, L A -> B ) -> ( A -> R B )

<<: (A:ObjA,B:ObjB, A -> R B ) -> ( L A -> B )

unit: (A:ObjA) -> ( A -> R L A )

counit: (B:ObjB) -> ( L R B -> B )

left: (X:ObjA,Y:ObjA,X->Y) -> ( L X -> L Y )

right:(X:ObjB,Y:ObjB,X->Y) -> ( R X -> R Y )

default

unit (A:ObjA):( A -> R L A) == >>( A, L A, id L A)

counit(B:ObjB):(L R B -> B) == <<(R B, B, id R B)

left (X:ObjA,Y:ObjA,f:X->Y):(L X->L Y) ==

<<( X,L Y,compose(X,R L Y,R L X)(f,unit(Y)) )

6



right(X:ObjB,Y:ObjB,f:X->Y):(R X->R Y) ==

>>(R X, Y,compose(L R X,X,Y)(counit(X),f))

Note that only the two halves of the adjoint isomorphism “>>” and “<<” have
to be provided. The unit and counit natural transformations and the action
of L and R on morphisms (“left” and “right”) are provided by default. This
highlights the importance of Aldor category defaults since this seems to be
the place where facts from category theory can be used most effectively.

4 Limits and Colimits

Given these variants of Adjoint

RightAdjoint(ObjA:Category,ObjB:Category,L:ObjA->ObjB):Category == with

Right: ObjB -> ObjA

Adjoint(ObjA,ObjB,L,Right)

LeftAdjoint(ObjA:Category,ObjB:Category,R:ObjB->ObjA):Category == with

Left: ObjA -> ObjB

Adjoint(ObjA,ObjB,Left,R)

we can define category limits and colimits as right and left adjoints of the
diagonal functor. For example, consider products and coproducts of exactly
two objects. If Obj is some category, let

Two(Obj:Category):Category == with

one: Obj

two: Obj

be the category of pairs of Obj objects satisfied by the domain

Pair(Obj:Category,A:Obj,B:Obj):Two Obj == add

one: Obj == A

two: Obj == B

Letting

Diagonal(Obj:Category)(X:Obj):Two Obj == Pair(Obj,X,X) add

the “diagonal functor” for the category Obj is Diagonal(Obj) : Obj→ Two Obj.
We can then define products and coproducts of two objects

7



Product (Obj:Category):Category ==

RightAdjoint ( Obj,Two Obj,Diagonal Obj) with

CoProduct(Obj:Category):Category ==

LeftAdjoint (Two Obj, Obj,Diagonal Obj) with

just as they are defined in category theory. A domain satisfying Product(Set),
for example, must supply Right : Two Set→ Set which can be implemented
with the Aldor Record. A domain satisfying CoProduct(Set) must provide
Left : Two Set → Set which can be done with the Aldor Union. Arbitrary
products, coproducts and limits and colimits in general follow in a similar
fashion.

5 Adding New Categories

To give a feeling for how one introduces a new category, let’s pretend that
we are inventing groups by adding structure to monoids. First, we define a
category

Group:Category == Monoid with

inv: % -> %

and decide what conventional properties inv and group morphisms must have.
We notice that there is a forgetful functor from Group to Set and a corre-
sponding free construction

Forget(G:Group):Set == G add

FreeGroup:LeftAdjoint(Set,Group,Forget) == add

and that the category of groups has, say, finite products and coproducts

GroupCategory: MathCategory Group with

Product Group with

CoProduct Group with

== add

Given this code, the compiler conveniently informs you that Forget is fine
as it is, FreeGroup is missing the free construction Left : Set → Group
and its adjoint isomorphism, GroupCategory is missing the product con-
structor Right : TwoGroup → Group, the CoProduct construction Left :
TwoGroup → Group and their associated adjoint isomorphisms. It is easy

8



to then implement the free group constructor with lists of elements from the
set, as usual, and it is easy to implement the product with a Record and
the coproduct with a Union. Even better than this, one can implement the
product and coproduct adding an “inv” signature to the product and co-
product from the category of Monoids. Best of all, one can use the adjoint
functor theorem to notice that left adjoints preserve colimits so one can use
the coproduct from Set and apply Left to get the coproduct in Group.

6 Slice Categories

Slice categories are one of the “awkwardness” tests from section 1. Given a
category Obj, we would like to fix a particular object X and consider a new
category as described in Section 1. Let

Slice(Obj:Category,X:Obj):Category == with { slice: % -> X }

be the new category in question. We know that slice categories always have
a final object where

Final(Obj:Category):Category == with

1: Obj

1: (A:Obj) -> (A->1)

is the Final object category. This fact can be encorporated in the package
part of the slice category:

SliceCategory(Obj:Category,X:Obj):MathCategory Slice(Obj,X) with

Final Slice(Obj,X) == add

1:Slice(Obj,X) == add

Rep == X; import from Rep

slice:% -> X == (x:X):X +-> rep x

1(A:Slice(Obj,X)):(A->1) == (a:A):1 +-> slice a pretend 1

Slice categories again show the importance of parametric polymorphism.

7 Skeletal Categories

Any preorder P can be considered to be a “skeletal” category where there
is a single morphism from p ∈ P to q ∈ P if and only if p ≤ q. Although

9



morphisms are not functions in this case, this can be done in the framework
we have discussed so far by making use of the seemingly pointless

Categorify(T:Type):Category == with

value: T

which “turns any type into a category.” Given a Preorder P, the skeletal
category is Categorify P and the associated package

Skeletal(P:Preorder): MathCategory Categorify P with

homList: (A:Categorify P,B:Categorify P) -> List A->B

== add

homList(A:Categorify P,B:Categorify P):SingleInteger == add

import from P

if (value$A) <= (value$B) then { [(a:A):B +-> never] }

else { [] }

For example, the integers with their normal preorder considered as a skeletal
category is obtained by

IntegerSkeleton: MathCategory Categorify Integer == Skeletal Integer

Morphisms in skeletal categories can’t be evaluated as functions, but they
can nevertheless be composed, which is all that is required categorically.

8 n–Morphisms

Given a category Obj, define a new category by letting the new objects

be morphisms with domain and codomain such as A
f→ B and let a new

morphism from A
f→ B to A′ g→ B′ be a pair of old morphisms (A

α→ A′, B
β→

B′) such that the square commutes. Composition of such “2–morphisms” is
defined in the obvious way. This procedure can clearly be iterated. In order
to capture 2–Morphisms, 3–Morphisms etc., one can use recursive Aldor
Categories. One should actually obtain all the n–morphisms together with
the basic identities and composition by redefining

MathCategory(Obj:Category):Category == Id Obj with Compose Obj

with MathCategory Arrow Obj

10



supplying identities and composition for 1–morphisms, 2–morphisms, . . . It
is not too suprising that the Aldor compiler objects to this and refuses to
have a domain with an infinite number of signatures, even if they are all
provided by default. However, it is easy to truncates the recursion above,
and this works. Recursive categories are possible in Aldor and this is mostly
unexplored territory as far as I know.

9 General Categories

There are interesting categories where morphisms are not functions and so
one ultimately wants to move beyond this assumption. This can be done in
Aldor by providing a domain constructor Hom(A,B) for each category which
produces the domain of morphisms from A to B. One would then modify
MathCategory like so:

MathCategory(Obj:Category,Morphisms:Category,Hom:(Obj,Obj)->Morphisms):

Category == with

id: (A:Obj) -> Hom(A,A)

compose: (A:Obj,B:Obj,C:Obj) -> (Hom(A,B),Hom(B,C)) -> Hom(A,C)

where id and compose no longer have defaults and there can be more than
one category for each Aldor category. This solution also allows us to distin-
guish monomorphisms, epimorphisms and isomorphisms from morphisms in
general and to encode simple facts such as the composition of two monomor-
phisms is again a monomorphism. Development of this approach follows the
Aldor function solution closely. However, because the current pre-release
version of Aldor (1.1.12p6) does not handle dependent type “Objects” such
as

(Obj:Category,Morphisms:Category,Hom:(Obj,Obj)->Morphisms,

Cat:MathCategory(Obj,Morphisms,Hom))

this approach is clumbersome at the moment. This approach would also
allow the category of categories where morphisms are functors and functor
categories where morphisms are natural transformations to be treated as
categories in the same sense as Group and Set above. Limiting ourselves to
Aldor functions means that these categories must be represented informally.

11



10 Summary

Aldor does seem to have a sufficient collection of ideas to express category
theory effectively. The most critical ideas seem to be Aldor “Categories,”
parametric polymorphism, dependent types and category defaults. Accept-
ing the limitation that morphisms must be Aldor functions, one obtains con-
cise representations of categories, morphisms, functors, adjoints and natural
transformations. Within this framework, simple facts from category theory
can be encorporated. We suggest that an axiom that Domain is a category
with product, coproduct, initial, final and exponential object captures what
one needs to assume to provide a convenient basis for rigorous arguments
about the correctness of Aldor applications.

References

[1] Saunders Mac Lane, Categories for the Working Mathematician,
Springer (1997).

[2] Michael Barr and Charles Wells, Toposes, Triples and Theories,
http://www.cwru.edu/artsci/math/wells/pub/ttt.html (2001).

[3] Chris Hillman, A Categorical Primer,
http//www.math.washington.edu/~hillman/papers.html (2001).

[4] Tatsuya Hagino, A Typed Lambda Calculus with Categorical Type Con-
struction, in Category Theory and Computer Science, ed: D.H.Pitt and
D.E.Ryderheard, Springer (1987).

[5] R.F.C. Walters, Categories and Computer Science, Cambridge (1991).

[6] Richard Bird, Oege DeMoor, The Algebra of Programming, Prentice-
Hall, (1996).

[7] Robin Cockett, Strong Categorical Datatypes I, in the International
Meeting on Category Theory, ed: R.A.G. Seely, AMS (1991).

[8] S.Watt, P.A. Broadbery, S.S. Dooley, P. Iglio, J.M. Steinbach and
R.S.Sutor, in proceedings of the International Symposium on Symbolic
and Algebraic Computation, ISSAC 94, ACM Press, (1994). For recent

12



Aldor activities, see http://www.aldor.org. Note that “Category” is a
keyword in Aldor and is not a category in the mathematical sense.

[9] J.J.Barton and L.R.Nackman, Scientific and Engineering Programming
in C++, Addison-Wesley Longman (1994).

[10] D.E.Rydeheard and R.M Burstall, Computational Category Theory,
Prentice-Hall (1988).

[11] E.Poll and S.Thompson, Integrating Computer Algebra Reasoning
through the Type System of Aldor in Frontiers of Combining Systems:
Frocos2000, ed: H. Kirchner and C.Ringeissen, Springer (2000).

13


