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1. INTRODUCTION 

The Gigabit Link Interface Board (GLIB) [1] is an FPGA-based system for users of high speed optical 
links in high energy physics experiments. The GLIB serves both as a platform for the evaluation of 
optical links in the laboratory as well as a triggering and/or data acquisition system in beam or 
irradiation tests of detector modules. The major hardware component of the platform is the GLIB 
Advanced Mezzanine Card (AMC) [2] that can be used either on a bench or in a μTCA [3] crate. The 
GLIB AMC is based on a Xilinx Virtex-6 FPGA with Multi-Gigabit Transceivers (MGT) operating at rates 
of up to 5 Gb/s. This performance matches the specifications of the Gigabit Transceiver (GBT) [4] and 
Versatile Link [5] [6] projects with targeted data rate of 4.8 Gb/s.  

Figure 1-1 illustrates the baseline configuration of a GBT - Versatile Link - GLIB system is shown at 
the top. Front-end (FE) ASICs are electrically connected to the GBT ASIC through e-links [7] while the 
GBT high-speed serial data-streams are converted to/from the optical domain through the Versatile 
Transceiver [8]. At the other end, the GLIB system converts data to/from the optical domain, 
implements the GBT data transmission protocol [9] and codes/decodes the user payload at the link 
back-end. An alternative configuration, useful for intermediate prototyping, is shown in Figure 1-2 
with one GLIB interfacing to FE ASICs and VTRx, thus emulating the GBT, and a second GLIB at the 
back-end.   

Figure 1-3 shows a picture of the production version of the GLIB AMC, highlighting the two high-pin 
count (HPC) FMC Mezzanine Card (FMC) [10] sockets. The presence of the HPC FMC sockets is a big 
advantage since they provide additional user-specific I/O, high-speed transceivers and clock lines 
that can be used to extend the I/O connectivity of the GLIB AMC. For that reason, most of the 
auxiliary boards developed for the GLIB platform adopt the FMC format. The purpose of the auxiliary 
boards is to enhance the GLIB AMC compatibility with legacy and future triggering and/or data 
acquisition interfaces as well as its I/O bandwidth when in bench-top operation.  

. 

 

Figure 1: A GBT - Versatile Link system with the GLIB at the back-end.  

Figure 2: A GLIB interfacing to FE ASICs and VTRx with a second GLIB at the back-end. 
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Figure 3: Picture of the GLIB AMC, highlighting the two FMC sockets 

 

Figure 4: The block diagram of the GLIB card 
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Figure 1-5 shows a detailed diagram of the clock circuitry which is an essential part of the system. 
The MGT reference clocks and fabric clocks are shown in red and black, respectively. 

Figure 5: The clocking circuitry 

It is important to mention that each MGT Reference clock (REFCLK) can be used to clock the MGT of 
its neighbouring MGT Quads (see Figure 1-6). For instance, the REFCLK0 of the MGT 114 can also 
clock the MGT quads 113 and 115. Details about the Virtex-6 clocking resources can be found in 
Figure 1-6. 

Figure 6: The MGT quads 
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2. ARCHITECTURE 

Figure 2-1 illustrates the FPGA firmware architecture of the GLIB that is organized in two main parts, 
the system_core and the user_logic.  

Figure 7: Firmware architecture. 

The system_core firmware instantiates a simple IP-based control protocol (IPbus) designed for 
controlling xTCA-based hardware over Gigabit Ethernet that includes all basic transactions needed 
for this purpose (bitwise, single register and block transactions) [10]. The system_core also includes 
all interfaces to the on-board hardware e.g. I2C communication with the on-board temperature 
sensors and the serial memory, SPI communication with clock synthesizer, SRAM interface with the 
two (operating at up to 160MHz) etc.  
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2.1 System Core  

2.1.1 PLL & Reset controller 

The system_core contains a PLL which is clocked by the on-board 125MHz oscillator. The PLL 
provides a 62.5MHz clock which is used for the internal bus of the system (see §2.1.3) as well as a 
125MHz clock for the Gigabit Ethernet MAC instantiations. The Reset controller generates a master 
reset pulse in the following cases: 

- During power up (detected by the Voltage Supervisor) 
- When the reset button is pressed (detected by the Voltage Supervisor). 
- When the FPGA firmware is reloaded (internal logic). 
- When the above mentioned PLL is not locked. 

Both clocks (62.5MHz and 125MHz) as well as the reset pulse are forwarded to the user_logic block.  

2.1.2 Gigabit Ethernet and IPbus  

For the Gigabit Ethernet links, MAC cores are instantiated. In the case of bench-top operation, the 
MAC core is configured as 1000Base-T in order to communicate with the external PHY. In the case of 
crate operation, the two MAC cores (AMC P0 & P11) are configured as 1000Base-X for interfacing 
with the Gigabit Ethernet Switch carried on the crate’s MCH.  

For every MAC core, an IPbus endpoint is also instantiated. The IPbus system allows the control of 
hardware via a ‘virtual bus’, using a standard IP-over-gigabit-Ethernet network connection. The IPbus 
specifies a simple transaction protocol between the hardware and a software controller, which 
assumes an A32/D32 connection to slave devices connected to the hardware endpoint. The current 
IPbus firmware implementation is using a UDP/IP protocol and a simple synchronous SoC bus [12]. 
This protocol is based upon the Wishbone SoC protocol [13], and is compatible with Wishbone cores. 
However, there are two important differences: 

- The master is not required to explicitly deassert strobe between cycles. However, it is 
guaranteed to deassert strobe or begin the new cycle on the clock cycle following ack.  

- Slaves are not allowed to tie ack high, and must deassert ack on the same clock cycle that 
strobe is deasserted. However, it is allowed to tie ack to strobe, if a zero-wait-state response 
is always possible. 

Timing diagrams of read and write transactions for a slave with and without wait states are given 
below. The first diagram illustrates a write cycle to a slave with one wait state; the bus idle for two 
clock cycles; then a read to a slave with zero wait states. The second diagram illustrates a Read-
Modify-Write transaction with a slave with zero wait states, followed immediately by two reads from 
a slave with one wait state. The reason of developing this custom SoC bus is to increase the bus 
efficiency by minimizing the dead-time. 

In addition to IPbus’s “DHCP-like” IP address assignment, IP & MAC addresses can also be assigned 
by either the user_logic block or the I2C EEPROM. Finally, there is also the possibility to be 
configured on-the-fly by the MMC through I2C. The default IP address of the GLIB when used on a 
bench is 192.168.0.175. The default IP address when used in a μTCA shelf ranges from 192.168.0.161 
to 192.168.0.172 for AMC slots 1 to 12, respectively. 

1 The generation of AMC P1 MAC core when in crate mode is optional 
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Figure 8: IPbus read/write transactions [12]  

2.1.3 SoC bus 

As mentioned in §2.1.2, there is a case where more than one MAC/IPbus cores are instantiated. For 
deciding which Gigabit Ethernet link will take over the bus, an Arbitration module is instantiated 
between the IPbus cores and the bus fabric. The bus fabric redirects the bus to only one of the slave 
devices instantiated by decoding the address (based on the memory map of Figure 2-3). The 
system_core instantiates various system slaves e.g. the system registers (base address = 
0x00000000), SRAM1 (base address = 0x02000000) and SRAM2 (base address = 0x04000000). 
Additionally, the system_core allocates a large memory space for user slaves; IPbus slaves (base 
address = 0x40000000) and Wishbone slaves (base address = 0x80000000) that can be added to the 
user_logic. 

Figure 9: Memory map 
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2.1.4 System Registers 

Table 2-1 shows the 16 registers that are currently implemented into the System Registers HDL block 
providing their address, a short description of their functionality and their type (Read-Write or Read-
only). The 4-byte Board_ID register, as its name suggests, provides an identifier of the GLIB board 
(0x474C4942). When the 4 bytes of the identifier are represented in ASCII characters, the identifier 
corresponds to the word “GLIB”. Table 2-2 shows how the register is organized. The 4-byte 
System_ID when represented in ASCII characters corresponds to “ip2x” declaring that the second 
version of IPbus firmware is used. Table 2-3 shows how the register is organized. The Firmware_ID 
register contains the date (YY/MM/DD) and the version number of the firmware (major.minor.build). 
The register TestReg is used only for testing the read/write transactions since it is not connected to 
the system_core logic. The Ctrl register (Table 2-5) is used to configure the clock circuitry (Figure 
1-5). The register Ctrl2 (Table 2-7) is used for loading firmware from the Platform Flash on demand. 

Table 2-1: System Registers 
Addr Name Description Type 

0x00 Board_ID The board identifier code RO 

0x01 System_ID The system identifier code RO 

0x02 Firmware_ID The firmware date and version number  RO 

0x03 TestReg Register for test purposes only RW 

0x04 Ctrl Controls the external clocking circuitry RW 

0x05 Ctrl2 Flash control RW 

0x06 Status Status from various external components RO 

0x07 Status2 Currently not used RO 

0x08 Ctrl_SRAM SRAM interface: Control RW 

0x09 Status_SRAM SRAM interface: Status RO 

0x0A SPI_txdata SPI interface: data from FPGA to clock synthesizer RW 

0x0B SPI_command SPI interface: configuration (polarity, phase, frequency etc.) RW 

0x0C SPI_rxdata SPI interface: data from clock synthesizer to FPGA RO 

0x0D I2C_settings I2C interface: configuration (bus select, frequency etc.) RW 

0x0E I2C_command I2C interface: transaction parameters (slave address, data to slave etc.) RW 

0x0F I2C_reply I2C interface: transaction reply (transaction status, data from slave etc.) RO 

Table 2-2: Board_ID Register 
bit(s) Name Description 

[7:0] board_id_char4 Board ID 4th character (ASCII code) 

[15:8] board_id_char3 Board ID 3rd character (ASCII code) 

[23:16] board_id_char2 Board ID 2nd character (ASCII code) 

[31:24] board_id_char1 Board ID 1st character (ASCII code) 

Table 2-3: System_ID Register 
bit(s) Name Description 

[7:0] system_id_char4 System_ID 4th character (ASCII code) 

[15:8] system_id_char3 System_ID 3rd character (ASCII code) 

[23:16] system_id_char2 System_ID 2nd character (ASCII code) 

[31:24] system_id_char1 System_ID 1st character (ASCII code) 

The Status register (Table 2-8) is providing status information from various external components. 
The register Status2 is reserved for future use.  
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Table 2-4: Firmware_ID Register 
bit(s) Name Description 

[31:28] firmware_id_VER_MAJOR Firmware version (major) 

[27:24] firmware_id_VER_MINOR Firmware version (minor) 

[23:16] firmware_id_VER_BUILD Firmware version (build) 

[15:9] firmware_id_YY Firmware year (0-99) 

[8:5] firmware_id_MM Firmware month 

[4:0] firmware_id_DD Firmware day 

Table 2-5: Ctrl Register 
bit(s) Name Description 

[0] pcie_clk_fsel ICS874003 output multiplication factor. 0 -> OUT = 2.5 x IN. 1 -> OUT =1.25 x IN. 

[1] pcie_clk_mr ICS874003 master reset. 1 -> reset. 0 -> normal operation. 

[2] pcie_clk_oe ICS874003 output enable. 1 -> outputs enabled. 0 -> outputs disabled. 

[4] cdce_powerup CDCE62005 Control: power up of. 0 -> power down. 1 -> power up. 

[5] cdce_refsel CDCE62005 Control: Clock input selection. 1 -> CLK1. 0 -> CLK2. 

[6] cdce_sync CDCE62005 Control: synchronization. A transition from 0 to 1 is needed to resync. 

[7] cdce_ctrl_sel     Select who drives the control of the CDCE62005. 0 -> System_core. 1 -> user logic. 

[8] tclkb_dr_en Enables the TCLKB output towards the backplane. 0 -> off. 1 -> on  

[12] xpoint2_s10 Input select for IC23 (SN65LVDT125) OUT1. See Table 2-6 

[13] xpoint2_s11 Input select for IC23 (SN65LVDT125) OUT1. See Table 2-6 

[16] xpoint1_s10 Input select for IC28 (SN65LVDT125) OUT1. See Table 2-6 

[17] xpoint1_s11 Input select for IC28 (SN65LVDT125) OUT1. See Table 2-6 

[18] xpoint1_s20 Input select for IC28 (SN65LVDT125) OUT2. See Table 2-6 

[19] xpoint1_s21 Input select for IC28 (SN65LVDT125) OUT2. See Table 2-6 

[20] xpoint1_s30 Input select for IC28 (SN65LVDT125) OUT3. See Table 2-6 

[21] xpoint1_s31 Input select for IC28 (SN65LVDT125) OUT3. See Table 2-6 

[22] xpoint1_s40 Input select for IC28 (SN65LVDT125) OUT4. See Table 2-6 

[23] xpoint1_s41 Input select for IC28 (SN65LVDT125) OUT4. See Table 2-6 

Table 2-6: xpoint1 input select 
Sx0 Sx1 Select Input Example 

0 0 IN_1 (see Figure 1-5) When S40 = 0 & S41 = 0 then IN_1 -> OUT_4 

0 1 IN_2 (see Figure 1-5) When S40 = 0 & S41 = 1 then IN_2 -> OUT_4 

1 0 IN_3 (see Figure 1-5) When S40 = 1 & S41 = 0 then IN_3 -> OUT_4 

1 1 IN_4 (see Figure 1-5) When S40 = 1 & S41 = 1 then IN_4 -> OUT_4 

Table 2-7: Ctrl2 Register 
bit(s) Name Description 

[1:0] flash_firmware_page Selects one of the 4 possible pages of the Platform Flash XL 

[4] Load_flash_firmware Loads the firmware from the selected page 
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Table 2-8: Status Register 
bit(s) Name Description 

[2:0] glib_sfp1_status[2:0] on-board SFP1 status. bit[0] -> Mod_abs. bit [1] -> RxLOS. bit [2] -> TxFault. 

[6:4] glib_sfp2_status[2:0] on-board SFP2 status. bit [0] -> Mod_abs. bit [1] -> RxLOS. bit [2] -> TxFault. 

[10:8] glib_sfp3_status[2:0] on-board SFP3 status. bit [0] -> Mod_abs. bit [1] -> RxLOS. bit [2] -> TxFault. 

[14:12] glib_sfp4_status[2:0] on-board SFP4 status. bit [0] -> Mod_abs. bit [1] -> RxLOS. bit [2] -> TxFault. 

[16] gbe_int Interrupt request from GbE PHY. 0 -> no interrupt. 1 -> interrupt 

[17] fmc1_presence Presence of FMC1. 1-> yes, 0-> no 

[18] fmc2_presence Presence of FMC2. 1-> yes, 0-> no 

[19] fpga_reset state of the fpga_reset line (driven by the CPLD) 

[25:20] v6_cpld state of the 6-bit bus between the FPGA and the CPLD 

[28] cdce_lock Status of CDCE62005. 1 -> locked.  0 -> unlocked 

 

The registers Ctrl_SRAM and Status_SRAM are presented in §2.2.1. 

The registers I2C_settings, I2C_command and I2C_reply are controlling the operation of the dual-bus 
I2C master controller that can be used to access the on-board I2C devices when in bench-top mode 
(in crate mode, the MMC is responsible for that task). Table 2-9 presents the I2C devices and their 
corresponding I2C 7-bit slave addresses. The operation of the above mentioned registers is the 
following: 

- The I2C_settings register used for configuring the controller (Table 2-10).  
- The I2C_command for setting the I2C transaction parameters (Table 2-11). 
- The I2C_reply provides the transaction status as well as data sent by the slave in case of read 

transactions (Table 2-12). 

Table 2-13 gives an example list of transactions needed for reading the temperature of the FPGA 
with an I2C bus frequency of 62.5kHz.  

Table 2-9: The I2C devices and their 7-bit slave addresses 
I2C Device Description I2C Address 

24AA025E48 EEPROM  256x8bit EEPROM with unique 48-bit serial number (EUI-48) 1010110 

LM82 Temperature sensor #1  Provides the temperature of the FPGA’s die at reg1 [addr:0x01] 0101010 

LM82 Temperature sensor #2 Provides the pcb temperature at the front at reg0 [addr:0x00] 0011010 

LM82 Temperature sensor #3 Measures the pcb temperature at the rear at reg0 [addr:0x00] 1001110 

I2C Slave RW Configures the IP and/or MAC address  on-the-fly 1111010 

I2C Slave RO Reports the current IP & MAC address 1111110 

FMC#1 The I2C devices hosted on the FMC#1 XXXXX00 

FMC#2 The I2C devices hosted on the FMC#2 XXXXX11 

Table 2-10: “I2C_settings” register 
bit(s) Name Description 
[9:0] i2c_prescaler I2C clock prescaler. I2C clk (kHz)=62500/i2c_prescaler 
[10] i2c_bus_select Select I2C bus. 1 -> I2C for PHY. 0 -> I2C for all other devices.  
[11] i2c_enable Enable I2C controller. 1 -> enabled. 0 -> disabled. 
[12] reserved Reserved. Keep it always at 0 
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Table 2-11: “I2C_command” register 
bit(s) Name Description 

[7:0] Wrdata Byte to write to the i2c slave. 

[15:8] reserved Reserved. Keep always to 0. 

[22:16] slv_addr The 7-bit slave address 

[23] wr_en Write enable. 0 -> Read transaction. 1 -> Write transaction. 

[24] reserved Reserved. Keep always to 0. 

[25] mode16b 16bit operation (for PHY only). 0 -> standard 8-bit mode. 1 -> 16bit mode 

[31] i2c_strobe Execute Transaction strobe signal. It clears automatically. Keep it always to 1.  

Table 2-12: “I2C_reply” register 
bit(s) Name Description 

[7:0] rddata_lo Byte read from the i2c slave. Low byte in case of 16-bit mode 

[15:8] rddata_hi High byte read from the i2c slave in case of 16-bit mode 

[27:26] i2c_status[1:0] Transaction status. 01 -> succeed. 11 -> failed. 00 -> pending. 10 -> pending. 

Table 2-13: Example transaction list for reading the temperature of the FPGA’s die 
Register Access Description Value (hex) 

I2C_settings  WRITE 
i2c_enable -> 1,  
i2c_bus_sel -> 0,  
i2c_prescaler -> 1000 

0x00000BE8 

I2C_command WRITE wr -> 1, mode16b -> 0, slv_addr -> 0x2A 
wrdata -> 0x01 (select LM82’s  register#1)   0x80AA0001 

I2C_reply READ Verify the transaction status  
I2C_command WRITE wr -> 0, mode16b -> 0, slv_addr -> 0x2A, 

wrdata -> don't care 0x802A0000 

I2C_reply READ 
Verify the transaction status. If successful,  
the temperature will be available in 
rddata_lo  

I2C_settings  WRITE 
i2c_enable -> 0,  
i2c_bus_sel -> don't care, 
 i2c_prescaler -> don't care 

0x00000000 

 

The registers SPI_txdata, SPI_command and SPI_rxdata are controlling the operation the SPI master 
controller that is used for the configuration of the CDCE62005 clock synthesizer. The operation of 
the above mentioned registers is the following: 

- The SPI_txdata where the 32-bit word to be transmitted to the SPI slave is defined.  
- The SPI_rxdata where the 32-bit word transmitted by the SPI slave is presented.  
- The SPI_command where the SPI master’s configuration is defined as well as the transaction 

parameters (Table 2-14).  

Table 2-15 shows an example list of transactions for reading one of CDCE62005’s registers. Table 
2-16 shows an example of writing one of CDCE62005’s registers. 

Table 2-14: The SPI_command register 
bit(s) Name Description 

[11:0] spi_prescaler SPI clock prescaler.  
SPI clk (MHz)=62.5/spi_prescaler. Suggested value: 0x014 

[27:12] reserved Reserved.  
Keep always to 0xFA38. 

[31] spi_strobe Execute Transaction strobe signal. It clears automatically. 
Keep it always to 1.  
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Table 2-15: Transaction list for reading CDCE62005’s Register 8 
Register Access Description Value (hex) 

SPI_txdata WRITE 
Set the value that corresponds to the 
reading register 8 command of the 
CDCE62005 

0x0000008E 

SPI_command WRITE Execute the transaction 0x8FA38014 

SPI_txdata WRITE 
Set a dummy value that does not 
corresponds to any CDCE62005 
command 

0xAAAAAAAA 

SPI_command WRITE Execute the transaction 0x8FA38014 

SPI_rxdata READ The contents of CDCE62005’s Register 8 
appear here  

Table 2-16: Example transaction list for writing CDCE62005’s Register 0 
Register Access Description Value (hex) 

SPI_txdata WRITE 
Set the value to write to Register 0. 
Note that bits[3:0] must be zero for 
addressing the register correctly 

0xEB840720 

SPI_command WRITE Execute the transaction 0x8FA38014 

  

2.2 User Logic  

From the user_logic point of view, there are two types of interfaces, direct connections with FPGA 
pins and interfaces with firmware blocks instantiated in the system_core. The use of the pins directly 
connected to the FPGA is straight forward (just if the system_core and the top level did not exist). 
This section focuses in the use of the SRAM, FMC I/O and Wishbone bus interfaces as well as in the 
instantiation of GBT-based links.  

2.2.1 SRAM 

The two single-port 2Mx36 SRAM devices that are available on board are accessible both by the 
system_core and the user_logic. The register Ctrl_SRAM (Table 2-17) is used to select which of the 
two blocks takes control over the SRAM, the mode of operation (normal or Built-In Self Test (BIST)). 
Additionally, since the SRAM2 and the FLASH memory share the same bus, it selects which of the 
two memories is addressed (please note that the access of the FLASH is not covered in this section). 
The register Status_SRAM (Table 2-18) is used only to report the results of the BIST. Logic Analyzer 
Waveforms captured with Chipscope for single write, single read, block write and block read SRAM 
transactions from the user_logic are shown in Figure 2-4, Figure 2-5, Figure 2-6 and Figure 2-7, 
respectively. Figure 2-8 shows an example use of an SRAM in the user_logic block. 

Table 2-17: “Ctrl_SRAM” register 
bit(s) Name Description 

[0] user_ctrl_sram1 Selects who is taking over the SRAM1 bus. 0 -> system_core. 1 -> user_logic. 

[1] bist_sram1 Built-in Self Test (BIST) Enable for SRAM1. 0 -> normal operation. 1 -> run the BIST. 

[16] user_ctrl_sram2 Selects who is taking over the SRAM2 bus. 0 -> system_core. 1 -> user_logic. 

[17]b bist_sram2 Built-in Self Test (BIST) Enable for SRAM2. 0 -> normal operation. 1 -> run the BIST. 

[20] flash_select Selects between SRAM2 & FLASH. 0 -> SRAM2. 1 -> FLASH. 
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Table 2-18: “Status_SRAM” register 
bit(s) Name Description 

[0] bist_done_sram1 SRAM1 BIST completed flag. 0 -> test pending. 1 -> test completed.  

[1] bist_status_sram1 SRAM1 BIST status flag. 0 -> test failed. 1 -> test passed.  

[16] bist_done_sram2 SRAM2 BIST completed flag. 0 -> test pending. 1 -> test completed.  

[17] bist_status_sram2 SRAM2 BIST status flag. 0 -> test failed. 1 -> test passed.  

 

 

 

Figure 10: User_logic SRAM single write 

 

Figure 11: User_logic SRAM single read 

 

Figure 12: User_logic SRAM block write 
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Figure 13: User_logic SRAM block read 

 

Figure 14: Example use of the SRAM in the user_logic file 

2.2.2 FMC I/O 

All FMC I/Os are directly connected to the user_logic block and can be configured independently as 
LVCMOS 2.5V or LVDS inputs or outputs by simply instantiating the corresponding Xilinx primitive 
buffer such as IBUF, OBUF, IOBUF, IBUFDS, OBUFDS etc. (see Figure 2-9).  

 

Figure 15: Example I/O buffer instantiation in the user_logic for the LA15_P line of FMC1 using Xilinx primitives  

2.2.3 Wishbone bus  

The user has the possibility to instantiate wishbone-compatible slaves inside the user_logic as well as 
to attach them on the wishbone bus available. Figure 2-10 shows an example of how to declare the 
total number of wishbone slaves (and their symbolic names). Figure 2-11 shows the address 
mapping of the wishbone slaves. Figure 2-12 illustrates an example of a wishbone slave instantiation 
in the user_logic. Example wishbone slaves can be found in the example projects available. 
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Figure 16: Wishbone slave declaration (user_package) 

 

Figure 17: Example wishbone slave address mapping (user_addr_decode.vhd) 

 

Figure 18: Example instantiation of a wishbone slave in the user_logic file 

2.2.4 GBT-based links  

As mentioned in the introduction, one of the principle use cases of the GLIB is to be part of a GBT – 
Versatile Link system for evaluation purposes. For that reason, the GLIB firmware release includes 
the example project glib_v3_gbt_fpga that instantiates inside the user_logic block the GBT-FPGA 
reference design for Virtex-6 as delivered by the GBT-FPGA team. The source files and associated 
documentation can be found in [16]. 
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3. How to use the GLIB 

3.1 Hardware  

3.1.1. Jumpers 

The operation mode of the GLIB is set up through two jumpers (J5 and J10). The position of the 
jumpers for the two modes of operation is shown below. 

Bench-top operation 

  
Figure 3-19: Jumpers J5 and J10 set up for bench-top operation. 

Crate operation 

Figure 3-20: Jumpers J5 and J10 set up for crate operation.  
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External Clocking 

As previously illustrated in Figure 1-5 and Figure 2-1, the GLIB features an SMA connector for 
external clocking. The connection scheme of the SMA connector (SMA1) and the 40MHz crystal 
oscillator (QZ2) of the GLIB is set up through the jumper J14. The default configuration sets the SMA 
connector as input/output of the FPGA and the 40Mhz crystal oscillator as input for the cross point 
switch 1 (IC28). 

 

  
Figure 3-21: SMA/Jumper J14 picture (left). SMA and 40 MHz crystal oscillator (QZ2) setup block diagram (right)  

3.1.2. Switches 

The default position of the DIP switches is as illustrated below. All other combinations are reserved. 

 

 

Figure 3-22: Default switches positions. 
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3.1.3. Powering 

For bench-top operation, the GLIB can be powered through a socket compatible with the 12V 4-pin 
connector that is typically available in ATX compatible power supplies (Figure 3-5 left and right, 
respectively). In case of ATX power supply use, the PS-ON pin of the 20-pin ATX connector must be 
connected to ground as shown in Figure 3-6 (bottom) in order to start-up the power supply. 

 

Figure 3-23: Powering a GLIB with an ATX power supply. 

                                        

Figure 3-24: How to start-up an ATX Power supply outside a computer. 
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3.1.4. Configuration 

JTAG connectors 

The GLIB features two JTAG connectors. J13 configures the CPLD & J12 configures the FPGA.  

                           

Figure 3-25: JTAG connectors for configuring the CPLD (left) and FPGA (right). 

FPGA configuration scheme 

For advanced FPGA configuration schemes please see Appendix B. 

3.1.5. Reset 

As mentioned in §2.1.1, the GLIB board features a button for resetting the FPGA logic. The button 
(SW1) is located in between the two FMC sockets and it is connected to a TLC7725 power supervisor 
(IC14). When the button is pressed, the power supervisor generates a pulse that is used to reset the 
system_core. Additionally, the reset signal is forward to the user_logic block where it can be freely 
used. 

 
 

Figure 3-26: Reset button picture and reset scheme schematic. 

3.1.6. RJ45 socket 

The RJ45 socket (and associated circuitry) carried by the GLIB board provides a Gigabit Ethernet 
connection in case of bench-top operation. Please note that since the GLIB supports only Ethernet at 
1Gbps (and not 10/100Mbps), please connect it using standard (not crossover) network cables either 
directly to a PC with a Gigabit Ethernet card or to a Gigabit Ethernet switch. 
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3.1.7. Serial Number 

As previously mentioned in Table 2-9, the GLIB carries a serial memory with a 48-bit unique serial 
number that could be used to identify the GLIB boards. Furthermore, the GLIB offers the possibility 
to the user of an additional 8-bit serial number that is directly accessible from the user_logic block 
and it can be hard-coded by placing up to 8 resistors on the pads shown in Figure 3-9. 

Figure 3-27: Resistors pads for optional hard-coding of 8-bit serial number.  

3.1.8. LEDs 

Figure 3-28: CPLD, FPGA user and system LEDs 

System LED 

The system core blinks the system LED (LD3) to indicate that the GLIB firmware has been loaded 
correctly. 

FPGA user LEDs 

The FPGA user LEDs (LD4 and LD5) can be directly controlled by the logic placed on the user core. 

CPLD LEDs 

The LEDs LD6, LD7, LD8 are connected to the CPLD. The meaning of these LED depends on the CPLD 
firmware version. 
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MMC LEDs 

When in crate operation, the LEDs MMC_RED_LED (LD1), MMC_GREEN_LED (LD2) and 
MMC_BLUE_LED (LD9) are controlled by the MMC and indicate the state of the GLIB. 

Table 19: MMC LEDs and GLIB state relationship 

  
  

 GLIB state 

MMC LEDs Inactive Active 

MMC_RED_LED ON OFF 

MMC_BLUE_LED ON OFF 

MMC_GREEN_LED OFF ON 

Figure 3-29: Inactive GLIB (left) and active GLIB (right) 
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3.2 Firmware/Software  

Firmware: 

In order to access all files required, you will need to do the following: 
 
- Checkout amc_glib repository [ https://svn.cern.ch/reps/ph-ese/be/amc_glib ] to a folder e.g. dev. 
- Checkout cactus repository [ https://svn.cern.ch/reps/cactus/ ] into dev.  
- Checkout the gbt-fpga repository [ https://svn.cern.ch/reps/ph-ese/be/gbt_fpga ] into dev.  
- Checkout the mmc repository [ https://svn.cern.ch/reps/ph-ese/be/mmc ] into dev. 
 
The folder tree should be as shown in Figure 3-12 

Figure 3-30: Folder tree 

The GLIB team recommends using Xilinx ISE v14.5 for firmware development and implementation. 

For using the existing example code as is, simply compile the *.xise project files that can be found 
under [..]\glib_v3\fw\fpga\prj. For developing your own code, please keep in mind that in order to 
receive support from the GLIB team, the files under [..]\glib_v3\fw\src\system MUST remain 
unchanged. On the other hand, the files under [..]\glib_v3\fw\src\user can be freely modified 
according to the user needs. Concerning the CPLD & MMC firmware, we provide the source files for 
your reference only and we strongly suggest not modifying them. 
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Software: 

For software development, it is strongly recommended to use the μHAL [17] software distribution, 
also available in the CACTUS SVN repository. For hardware verification purposes only, we also 
provide a few Python scripts performing basic test functions that must be used as is. Please note 
that the scripts are using a Python library namely “Pychips” that is not supported any longer by its 
developers, therefore you should avoid in any cost to base your developments on that platform. In 
order to execute the hardware verification scripts, please make sure that Python 2.7.x is installed. 
PyChips is NOT compatible with Python 3.x. For the correct operation of the scripts, some variables 
have to be defined.  

Under Windows, define the following environmental variables: 

- PYTHONPATH with value the path pointing to the [..]\glib_v3\sw\PyChips\src folder. 

- PATH with value the path pointing to the Python installation folder e.g. “C:\Python27”  

Under Linux, use the export command to define the PYTHONPATH variable. All hardware verification 
scripts as well as the GLIB IP address and register address table declarations are located at 
[..]\glib_v3\sw\PyChips\scripts 
 

Additionally, in order to communicate successfully with the GLIB, the IP address of the Ethernet port 
has to be set in order to be in the same subnet e.g. for the default GLIB addresses the configuration 
could be 192.168.0.10 as IP address and 255.255.255.0 as subnet mask. 

Brief description of the hardware verification scripts: 

glib_board_info.py: prints general board status information 
glib_sysreg_test.py: example of r/w access of the system registers 
glib_cdce_read.py: reads through SPI the contents of the CDCE62005 registers 
glib_cdce_write.py: writes through SPI the GLIB default values to the CDCE62005 registers 
glib_cdce_write_test_only.py: writes through SPI non-sense values to the CDCE62005 registers 
glib_cdce_powerup_and_sync.py: power-cycles and synchronizes the CDCE62005 
glib_sram1_read.py: reads the contents of the sram1, writes them to the tmp.txt and prints the first 32 values 
glib_sram1_write.py: writes and incrementing by 1 value to all memory locations of sram1 
glib_sram1_clear.py: writes “zeros” to all memory locations of sram1 
glib_sram2_read.py: reads the contents of the sram1, writes them to the tmp.txt and prints the first 32 values 
glib_sram2_write.py: writes and incrementing by 1 value to all memory locations of sram2 
glib_sram2_clear.py: writes “zeros” to all memory locations of sram2 
glib_i2c_eeprom_read_eui.py: reads the 48-bit serial number from the 24AA025E48 I2C EEPROM 
glib_i2c_temperature.py: reads the three on-board I2C temperature sensors 
glib_i2c_mac_ip_eeprom.py: programs the memory space of the I2C EEPROM allocated for the IP & MAC 
address assignment. 
glib_i2c_mac_ip_ctrl.py: accesses the FPGA’s “I2C slave R/W” in order to program on-the-fly the IP & MAC 
address (for test purposes only, this procedure is normally reserved for the MMC) 
glib_i2c_mac_ip_status.py: accesses the FPGA’s “I2C slave R/O” in order to read the actual IP & MAC address 
(for test purposes only, this procedure is normally reserved for the MMC) 
glib_icap_interface_test.py: reads and writes several registers of the icap 
glib_icap_jump_to_image.py: triggers the reconfiguration of the FPGA (used for Multiboot/Safe configuration) 
glib_flash_golden_prom_rw.py: writes the Golden image PROM file to the FLASH or reads the Golden image on 
FLASH and dumps it to a file 
glib_flash_user_prom_rw.py: writes the User image PROM file to the FLASH or reads the User image on FLASH 
and dumps it to a file 
glib_flash_corrupt_user_image.py: corrupts the User image stored on FLASH, for testing purposes only 
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APPENDIX A: GLIB v3 FPGA configuration scheme 

Introduction 

In most FPGA applications, one bitstream (FPGA image) is programmed onto the FLASH memory and 
the FPGA is configured when the system is powered on. This is the simplest FPGA configuration 
scheme possible when using a FLASH memory for storing the configuration file (from now on it will 
be referred as single image FPGA configuration scheme). However, there is an intrinsic safety 
problem when using this scheme because either a bitstream corruption or an incorrect firmware 
may lead to a system crash (see Figure A 1). 

 

 

 

 
Figure A 1: Standard FPGA configuration scheme. 

In order to provide a reliable FPGA configuration procedure, the GLIB board features the 
Multiboot/Safe FPGA configuration scheme. This scheme requires two different bitstreams stored 
on different memory positions of the FLASH (see Figure A 2). One of the bit streams, the “Golden 
image”, is used as backup firmware enabling the possibility of remotely restoring/updating the 
system when needed. The other bitstream, the “User image”, is the main firmware which comprises 
the actual system implemented by the user.  

 

Figure A 2: Golden and User images on FLASH. 
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The handling of these bit streams by the GLIB system can be done through either the Internal 
Configuration Access Port (ICAP) or by pulling up the address 22 pin of the FLASH memory (A22). 

Figure A 3 shows the ICAP approach (default setup), where the FPGA is initially loaded with the 
Golden image during power up. Once the FPGA is configured, the User image can be loaded on-
demand through the ICAP interface module that is controlled via IPbus. If for any reason the User 
image is corrupted, the FPGA will automatically trigger a “Fallback configuration” after the failed 
configuration process, reverting to the Golden image. Moreover, if the User image is not corrupted 
but it does not behave as expected (“incorrect”), it is possible to revert to the Golden image by 
either another ICAP command or by power cycling (in case of a User image with non-functioning 
IPbus/ICAP interface). As mentioned before, once the Golden image is loaded, the system is again 
under control so a correct User image may be reprogrammed onto the FLASH and loaded to the 
FPGA on-demand (see Figure A 4).  

 

 
Figure A 3: Multiboot/Safe FPGA configuration scheme (ICAP approach). 

 

 
  

 
 

  

 
Figure A 4: Multiboot/Safe FPGA configuration system recovery (ICAP approach). 
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Although the ICAP is the recommended Multiboot/Safe FPGA configuration scheme approach due to 
the reliability provided by the Fallback and the Power cycle recovery procedures, there are some 
applications where the configuration time is a critical factor (such as PCIe) so the ICAP approach may 
not meet the requirements of the system. For this kind of applications, the user has the possibility of 
using the A22 pin pull-up approach (see Figure A 5) which allows the shortest configuration times, 
even if loosing reliability. In this case, the A22 pin of the FLASH memory is pulled up during power up 
so the FPGA is directly configured with the User image, avoiding the extra time of the Golden image 
configuration and the manual triggering of the User image. However, as aforementioned, this 
approach is not as good as the previous (ICAP) in terms of reliability because it only allows system 
recovery when the bitstream is corrupted (Fallback configuration). In case of an “incorrect” User 
image (e.g. just and LED blinking and no ICAP instead of the user’s system), the power cycle 
procedure will no longer be a solution because in this approach, the Golden image is not the 
bitstream loaded after power up (see Figure A 6).  

 

 
Figure A 5: Multiboot/Safe FPGA configuration scheme (A22 pin pull-up approach). 

   

 
   
 

 
   

 
 

Figure A 6: Multiboot/Safe FPGA configuration system recovery (A22 pin pull-up approach). 
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  Implementation on GLIB and utilisation 

Figure A 7 shows the circuitry that implements the above mentioned configuration schemes where 
the CPLD serves as multiplexor between the FPGA and the FLASH memory. During the first 
configuration after power up, the A22 pin of the FLASH is pulled high or low, depending on the 
position of the switch #2 of the DIP switch SW2. If pulled low (SW2(2) = on) (default position), the 
first bitstream loaded by the FPGA is either the FPGA image (single image FPGA configuration  
scheme) or the Golden image (Multiboot/Safe FPGA configuration scheme with ICAP approach) 
depending on the FPGA configuration scheme chosen by the user. In case of the Golden image is 
loaded, the user may jump to the User image when needed by running the appropriate python script 
(see Table A-1). On the other hand, if the switch is pulled high (SW2(2) = off), the first bitstream 
loaded by the FPGA after power up is the User image (Multiboot/Safe FPGA configuration scheme 
with A22 pin pull-up approach). 

 

Figure A 7: GLIB configuration scheme. 

Regarding to the programming of the FLASH memory, if the user decides to use the Multiboot/Safe 
FPGA configuration scheme, it is recommended to program the different images by utilising the 
python scripts provided for this purpose with the GLIB software. There is a programing script for the 
Golden image as well as other for the User image (see Table A-1). Both scripts use as PROM file a 
standard MSC file set up for BPI Flash/Single FPGA configuration (the same MCS file set up used for 
the single image FPGA configuration  scheme) which can be generated using iMPACT (see Figure A 
8). The user does not need to care about the memory position of the PROM file on the FLASH 
because it is automatically handled by the scripts.  

Table A-1: Multiboot/Safe FPGA configuration main python scripts. 

Description Script name 

Golden image 
programming script glib_flash_golden_prom_rw.py 

User image 
programming script glib_flash_user_prom_rw.py 

ICAP jump script glib_icap_jump_to_image.py 

 

Figure A 8: iMPACT PROM File Formatter. 
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APPENDIX B: GLIB IP address assignment scheme in a shelf 

As mentioned briefly in §2.1.2, the GLIB proposes a simplified scheme of IP address assignment in a 
shelf based on the slot number (firmware example available in the SVN repository) that is sufficient 
for most small-scale setups. However, in some complex system implementations, it is also required 
to have some additional options, such as: 

- Arbitrary IP address assignment via IPMI 
- IP address assignment via Reverse Address Resolution Protocol (RARP), a feature supported 

by IPbus. 

Moreover, it is also required to be able to switch the IP assignment method dynamically between 
them without reprogramming. In order to satisfy the above requirements, special GLIB system_core 
firmware and MMC software have been developed.   

Figure B 1 shows a diagram of the scheme which is based on the use of the two local I2C buses of the 
GLIB. Bus #1 (shown in green) was originally foreseen for the communication between the MMC and 
the three on-board temperature sensors while Bus #2 (shown in red) was intended to be used for 
the communication between the FPGA and the 24AA025E48 EEPROM for hardware identification 
reasons, since it contains both a unique 48-bit identifier hardcoded into the chip and the CERN 
assigned MAC address allocated for the GLIB (08:00:30:f1:00:xx).  

 

Figure B 1: The IP address assignment scheme 

On the FPGA side, apart from the I2C master used for on-demand I2C transactions via IPbus, three 
additional I2C devices are implemented: 

- The EEPROM auto-read: a secondary I2C master that takes over the bus only once after 
power-up/reset, reads the first 16 bytes of the memory and releases it automatically. 

- An I2C slave that implements 16 control registers of 1 byte each. 
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- An I2C slave that implements 16 status registers of 1 byte each. 

Finally, the last I2C component is the I2C bridge located between the two buses that allows the 
connection or separation of  the two I2C buses. The EN pin of the bridge is controlled by the MMC. 

The IP address assignment scheme functions as following: The MMC, after the handshake with the 
MCH and before enabling the payload power, ensures that the buses #1 & #2 are disconnected by 
forcing the EN line low, thus avoiding collisions from simultaneous transactions. When the FPGA is 
loaded, the EEPROM is read automatically and the bus #2 is released. If the contents are valid and 
the loading mode ( 2-bit setting) is set to “load MAC & IP”2, the IP address is forwarded to the IPbus 
controller. In all other cases, the IPbus controller is using the IP address provided by the user logic. 
After the board initialization, a new IP address can be assigned via IPMI in two ways:  

- By modifying the IP address stored in the EEPROM and powercycle the GLIB in order to load 
the new settings. 

- By assigning an IP address on-the-fly by programming the I2C control registers (without 
altering the contents of the EEPROM). The settings in that case are volatile and are retained 
until the next powercycle.  

Setting the IP address to 0.0.0.0 initiates the RARP mechanism that assigns IP addresses 
automatically.  

In it important to mention that there is also the possibility for the user to read via IPMI the I2C status 
registers that report the current IP address loaded via this circuitry (this does not include any IP 
address loaded via RARP, since this is happening on a different level). Additionally, the circuitry also 
allows to identify the GLIB cards via IPMI by reading the unique 48-bit identifier hardcoded in the 
EEPROM as well as its CERN assigned MAC address.  

 

 

2 By default, the EEPROM is set in “load MAC only” mode, that serves only for loading the pre-programmed 
MAC address to the IPbus controller, while the IP address is taken by the user_logic 
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