CERN PH-ESE-BE

GLIBvV3 user manual

version 1.52

2013.10.04

T

GLIB project homepage: https://espace.cern.ch/project-GBLIB/public

Contact: Paschalis.Vichoudis@cern.ch

https://espace.cern.ch/project-GBLIB/public

2 GLIBv3 User Manual - draft

Document History

e V1.52,2013.10.04: Updated §3.2, added appendix B

e V1.44,2013.08.06: GLIB with IPbus v2 and GBT-FPGA files from the associated SVN repositories.
e V1.20, 2013.04.08: Updated configuration section and added appendix B.

e V1.09, 2012.02.19: Updated documentation for release_v3.1.0 and above.

e V1.00, 2012.12.20: First draft in the document history.

GLIB team

Manoel Barros Marin, Sophie Baron, Vincent Bobillier, Stefan Haas, Magnus Hansen, Markus Joos,
Patrick Petit, Francois Vasey & Paschalis Vichoudis.

v1.52

GLIBv3 manual - draft 3

Table of Contents

D To ol 0] aaT=T ol o 113 (o] o APPSR PP PPPPPPPPPPPPRPRPPPRt 2
LG 1= (=T o TR R OTSPPPPI 2
TADIE OF CONTENTS ...eiieiie ettt e st e e bt e e s b e e s be e e sabe e s bt e e sabeesabeeesnbeesaneeennneas 3
1. INTRODUCTIONeiittttteee ettt e e e sttt e e e e e s et bet et e e e e s sasusseteeeeeeesaassaeeeeeeeesannssbeeeeesessannsnnnes 4
2. ARCHITECTUREeittiiitiet ettt ettt ettt st ettt et e s bt e sbe e saeesanesabeeabe e b e e neenneesmees 7
2.1 S SEEIM GO i 8
21.1 PLL & RESEE CONTIOIIET ...ttt 8
2.1.2 Gigabit Ethernet and IPDUSuiiiiiiiiie et e e e 8
2.1.3 Yo TGl T8 PP 9
214 SYSTEM REGISTOIS ittt ettt e e e e e st r et e e e e s e seanbaeeeeeeesenanns 10

2.2 L0 LY=o o =4[l PP PRPRPRRt 14
221 SRAM ...ttt sttt et b e bt h et ettt et e s bt s he e st e s b e bt e bt e neesaees 14
222 FIMIC 1/ ettt ettt sttt bt et e b sbe et e b et et e sae et saas 16
2.23 WISHDONE DUS ..ottt et e sbe e snee e sareeeas 16
224 GBT-DASEA TINKSeeiiiiieiieeee ettt st e b e s b e e et e e sabee e 17

3. HOW tO USE The GLIB.....coiiiieiiieeiee ettt ettt ettt et e st e s bt e e sab e e sabee e s abeesabeesneeesabeeens 18
3.1 HAIAWAIE ..ttt et e b et b e s a e s st et e b e e bt e nbeesbeesaeesanesaneeane 18
3.1.1. JUIN DS o nnnnn 18
3.1.2. SWILCRES .t sttt et st st s b e b ne e saees 19
3.1.3. POWEBTING .eeeeiiiieieite ettt e e e e e sttt et e e e s e s st bbeeeeeessssssbabaaeeeesssannssseees 20
3.1.4. (00T o] = {U T - 1 4 oY o NP PR PR 21
3.15. REST e 21
3.1.6. RJIAS SOCKET ...ttt ettt sttt et et e e sbeesaeesanesane e 21
3.1.7. SEIIAl NUMDET ..ttt s st e b et e b e 22
3.1.8. LEDS ottt e e e ettt ettt esr e e sanesane e 22

3.2 F I NI AN/ SO WA ..ottt ettt ettt ettt ettt e e st a e e e s s tb et e s sttt e e sssaaesessabesesssasaeesssaraeens 24

4. REFERENGCES. ... oottt sttt ettt ettt st et b e b e s b saeesanesanesreeeneesmeesmeennees 26
APPENDIX A: GLIB v3 FPGA configuration SChemMEcccuviiiiiiiie ettt e 27
APPENDIX B: GLIB IP address assignment scheme in ashelf........cccooeeiiiiiiicciic i 31

v1.52

4 GLIBv3 User Manual - draft

1.INTRODUCTION

The Gigabit Link Interface Board (GLIB) [1] is an FPGA-based system for users of high speed optical
links in high energy physics experiments. The GLIB serves both as a platform for the evaluation of
optical links in the laboratory as well as a triggering and/or data acquisition system in beam or
irradiation tests of detector modules. The major hardware component of the platform is the GLIB
Advanced Mezzanine Card (AMC) [2] that can be used either on a bench or in a uTCA [3] crate. The
GLIB AMC is based on a Xilinx Virtex-6 FPGA with Multi-Gigabit Transceivers (MGT) operating at rates
of up to 5 Gb/s. This performance matches the specifications of the Gigabit Transceiver (GBT) [4] and
Versatile Link [5] [6] projects with targeted data rate of 4.8 Gb/s.

Figure 1-1 illustrates the baseline configuration of a GBT - Versatile Link - GLIB system is shown at
the top. Front-end (FE) ASICs are electrically connected to the GBT ASIC through e-links [7] while the
GBT high-speed serial data-streams are converted to/from the optical domain through the Versatile
Transceiver [8]. At the other end, the GLIB system converts data to/from the optical domain,
implements the GBT data transmission protocol [9] and codes/decodes the user payload at the link
back-end. An alternative configuration, useful for intermediate prototyping, is shown in Figure 1-2
with one GLIB interfacing to FE ASICs and VTRx, thus emulating the GBT, and a second GLIB at the
back-end.

Figure 1-3 shows a picture of the production version of the GLIB AMC, highlighting the two high-pin
count (HPC) FMC Mezzanine Card (FMC) [10] sockets. The presence of the HPC FMC sockets is a big
advantage since they provide additional user-specific 1/0, high-speed transceivers and clock lines
that can be used to extend the I/O connectivity of the GLIB AMC. For that reason, most of the
auxiliary boards developed for the GLIB platform adopt the FMC format. The purpose of the auxiliary
boards is to enhance the GLIB AMC compatibility with legacy and future triggering and/or data
acquisition interfaces as well as its /O bandwidth when in bench-top operation.

FE ASIC 7
VTRX /PAYLOAD
see —o> Trlgger
FE ASIC <+ Timing
o I|n Control

Figure 1: A GBT - Versatile Link system with the GLIB at the back-end.

FE ASIC :><:>C AN
< pavioan >

FE ASIC N
“ Trigger
FE ASIC <«—5— Timing

—I nk Control
Figure 2: A GLIB interfacing to FE ASICs and VTRx with a second GLIB at the back-end.

v1.52

GLIBv3 manual - draft 5

Figure 3: Picture of the GLIB AMC, highlighting the two FMC sockets

»-
X JTAG circuitry |
> MMC =— (cpLD-based)
@ N FMC#1
GbE
PHY -
Port [0:1] f S
MGT quad 114 MGT quad 112 |«
Port [4:7] MGT quad 115
Port [8:11] MGT quad 113
FPGA
Port [2:3] .
Port [12:15] Diff. /O L
MHLVDS TR MGT quad 116
Port [17:20] [%]—- Single Ended /0 aua 4
FMC#2
e e A
SRAM| |SRAM Y
" Clock
Distribution
Circuitry

Figure 4: The block diagram of the GLIB card

v1.52

6 GLIBv3 User Manual - draft

Figure 1-5 shows a detailed diagram of the clock circuitry which is an essential part of the system.
The MGT reference clocks and fabric clocks are shown in red and black, respectively.

FMC2 CLK1_M2C ———] 10_L19_GC_25
FMC1 CLK1 M2C ———] 10_L19_GC_35
FMC1 CLKZ BIDIR 4] I0_L1_GC_24
FMC1 CLK3 BIDIR <] 10_L18_GC_25

10587 1003 FMC1 GBTCLKO ~ ——»] MGT116REFCLK1
. o FMC1 GBTCLK1 —>»] MGT115REFCLK0
SMA CLK FCLKA CLK PCle . MGT144REFCLKA
JITTER QA0
CLEANER 10_L9P_13
DSHOLVO0 T TCLKE ‘_@_ 10 L1op 22
« SNGIMLYD201
CDCEG2005
FPPGA
PRI_CLK
IDI > + OUT.(#| MGT112ZREFCLKO
40MHz SNGFLVDST XPOINTI (SNGLVDTI25) + ouT1 MGT113REFCLKO
~ p—— CLK . .
FXO-IC736 4x4 X-POINT SWITCH syNTH [OUT2 MGT114REFCLKO
CORE 2 N
— N4 ouT_4 >l + OUT: MGT116REFCLKO
ouT_4
XPOINT2 (SNGLVDTI25) [SEC_CLK > - 10_L0_GC_24
TCLKA —» IN3 ouT 3
4x4 X-POINT SWITCH
IN_4 ouT_4 IN_2 ouT_2 10_L17_25
108557 SB35 18
TCLKC —» N3 Ly OUT3 IN_1 ouT_1
LT - 1 25MHz ANOUT MGT115REFCLK1
1 12C —»] Nz - ouT_2 Sen
FMCZ CLKO_M2c N i CLKGEN MGT112REFCLK1
FMC1 CLKO_M2C —pf m.1 =7 ouT_1
10_L1_GC_34
»| 10_L0_GC_34
MGT113REFCLK1
10_L18_GC_35

Figure 5: The clocking circuitry

It is important to mention that each MGT Reference clock (REFCLK) can be used to clock the MGT of
its neighbouring MGT Quads (see Figure 1-6). For instance, the REFCLKO of the MGT 114 can also
clock the MGT quads 113 and 115. Details about the Virtex-6 clocking resources can be found in
Figure 1-6.

MGT QUAD 116 < REFELKO
[FMC] l{—— REFCLK1

MGT QUAD 115 < REFCLIO
[FAT PIPES] l—— REFCLK1

MGT QUAD 114 < REFCLKe
[GIGABIT ETHERNET] —— REFCLKI
MGT QUAD 113 < REFeLIO
[EXTENDED FAT PIPES] € REFCLKI
MGT QUAD 112 < REFCLIO
[ON-BOARD SFP] € REFCLKI

Figure 6: The MGT quads

v1.52

GLIBv3 manual - draft 7

2.ARCHITECTURE

Figure 2-1 illustrates the FPGA firmware architecture of the GLIB that is organized in two main parts,
the system core and the user_logic.

FCLKA
> AUX CLK CLK OUTs
CLOCK SYNTH.
ot JITTER CLEANER
FMC1_CLKO_M2C —1 y (CDCE62005)
FMC2_CLKO_M2C — MLVDS
> PRI CLK
TCLKC > SYNC CTRL P BUR
LA LA |
5 1 \ 4 b 2
MGT REFCLKs FABRIC CLKs FPGA OUT TCLKB
2KB 12C _V
V6_CPLD[0:5
EEPROM » N2 SPI i Ve-crolos]
MASTER CLK SYNTH.
EUI-48 — P SYNCCTRL < SEC CLK SFP [1: 4] MGT &>
'y FMC DP[0: 3] MGT &>
A 4 SYSTEM A
PRI CLK
REGISTERS |« B PR C
A V6_LED[1:2] />
SYSTEM 1PB_SLV[0] < CDCE_CLKO_GTXE1 (SFP) SN[7:0] [
. _CLKO_ ; =
4 n > MONTORNG
'::J:g”ﬁ" SRRl s < CDCE_CLK3_GTXE1 (FMC1)
W SYSTEM
IPBUS 1PB_SLV| . PN
_SLVI7] | WISHBONE |: > WB_SLV[0:N] (LVDS)AMC P[2: 3]}« >
1PB_SLV[2] FABRIC BRIDGE = (LVDS)AMC P[12:15] b
o AA USERIPBUS (LVCMOS) AMC P[17:20] [
IPB_SLV[6]
L» el }4——) IPB_SLV[0:N]
IPB_SLV[3:4] //(;" DE N
SRAM [or |
| INTERFACE ¥ ‘pCle’ SYSTEM PCle |¢}—p|S¥S_USER_PCle
INTERFACE | | =
FLASH] Pe-sLvis] (optional) €= SYS_SERIAL_PCle x4 <3\ [1 pa: 7] maT >
INTERFACE v — — — [)AMcCP[8:11] MGT /&>
IPBUS / Gbe
Gbe cr. € age.
MAC A 4
> %
Bl = o — — = e e ——
—ﬂ 12CSLAVER/O |« N)} AMC_P1 {4
- I o "
AUTO-READ SEL
VOLTAGE < IP & MAC Addr FMC1 I0s >
SUPERVISOR FMC1 CLKs [
& RESET IC RESET FMC1 CTRLI >
FMC2 10s [&>
» PLL % P FABRIC CLKs FMC2 CLKs [
SYSTEM CORE USER_LOGIC ~ MGT REFCLKs FMC2 CTRL &>
z

*

Figure 7: Firmware architecture.

The system core firmware instantiates a simple IP-based control protocol (IPbus) designed for
controlling xTCA-based hardware over Gigabit Ethernet that includes all basic transactions needed
for this purpose (bitwise, single register and block transactions) [10]. The system_core also includes
all interfaces to the on-board hardware e.g. I’C communication with the on-board temperature
sensors and the serial memory, SPI communication with clock synthesizer, SRAM interface with the
two (operating at up to 160MHz) etc.

v1.52

8 GLIBv3 User Manual - draft

2.1 System Core

2.1.1 PLL & Reset controller

The system_core contains a PLL which is clocked by the on-board 125MHz oscillator. The PLL
provides a 62.5MHz clock which is used for the internal bus of the system (see §2.1.3) as well as a
125MHz clock for the Gigabit Ethernet MAC instantiations. The Reset controller generates a master
reset pulse in the following cases:

- During power up (detected by the Voltage Supervisor)

- When the reset button is pressed (detected by the Voltage Supervisor).
- When the FPGA firmware is reloaded (internal logic).

- When the above mentioned PLL is not locked.

Both clocks (62.5MHz and 125MHz) as well as the reset pulse are forwarded to the user_logic block.

2.1.2 Gigabit Ethernet and IPbus

For the Gigabit Ethernet links, MAC cores are instantiated. In the case of bench-top operation, the
MAC core is configured as 1000Base-T in order to communicate with the external PHY. In the case of
crate operation, the two MAC cores (AMC PO & P1') are configured as 1000Base-X for interfacing
with the Gigabit Ethernet Switch carried on the crate’s MCH.

For every MAC core, an IPbus endpoint is also instantiated. The IPbus system allows the control of
hardware via a ‘virtual bus’, using a standard IP-over-gigabit-Ethernet network connection. The IPbus
specifies a simple transaction protocol between the hardware and a software controller, which
assumes an A32/D32 connection to slave devices connected to the hardware endpoint. The current
IPbus firmware implementation is using a UDP/IP protocol and a simple synchronous SoC bus [12].
This protocol is based upon the Wishbone SoC protocol [13], and is compatible with Wishbone cores.
However, there are two important differences:

- The master is not required to explicitly deassert strobe between cycles. However, it is
guaranteed to deassert strobe or begin the new cycle on the clock cycle following ack.

- Slaves are not allowed to tie ack high, and must deassert ack on the same clock cycle that
strobe is deasserted. However, it is allowed to tie ack to strobe, if a zero-wait-state response
is always possible.

Timing diagrams of read and write transactions for a slave with and without wait states are given
below. The first diagram illustrates a write cycle to a slave with one wait state; the bus idle for two
clock cycles; then a read to a slave with zero wait states. The second diagram illustrates a Read-
Modify-Write transaction with a slave with zero wait states, followed immediately by two reads from
a slave with one wait state. The reason of developing this custom SoC bus is to increase the bus
efficiency by minimizing the dead-time.

In addition to IPbus’s “DHCP-like” IP address assignment, IP & MAC addresses can also be assigned
by either the user logic block or the 12C EEPROM. Finally, there is also the possibility to be
configured on-the-fly by the MMC through 12C. The default IP address of the GLIB when used on a
bench is 192.168.0.175. The default IP address when used in a uTCA shelf ranges from 192.168.0.161
t0 192.168.0.172 for AMC slots 1 to 12, respectively.

! The generation of AMC P1 MAC core when in crate mode is optional

v1.52

GLIBv3 manual - draft 9

« /NSNS S\ S
strobe __________/ — —_—
o« o/ N/

addr X X A X

wie —/\

wdata X X

rdata X X

[cycle] IU—I |1_|

« /NSNS S\
strobe —/ \
ack 4/—\ / \ / \
adde X X X X
write —/_\

wdata X X

rdata X X X XX X

Figure 8: IPbus read/write transactions [12]

2.1.3 SoCbus

As mentioned in §2.1.2, there is a case where more than one MAC/IPbus cores are instantiated. For
deciding which Gigabit Ethernet link will take over the bus, an Arbitration module is instantiated
between the IPbus cores and the bus fabric. The bus fabric redirects the bus to only one of the slave
devices instantiated by decoding the address (based on the memory map of Figure 2-3). The
system_core instantiates various system slaves e.g. the system registers (base address =
0x00000000), SRAM1 (base address = 0x02000000) and SRAM2 (base address = 0x04000000).
Additionally, the system_core allocates a large memory space for user slaves; IPbus slaves (base
address = 0x40000000) and Wishbone slaves (base address = 0x80000000) that can be added to the
user_logic.

000000000
SYSTEM REGISTERS
0x0000001F

002000000
SRAM1
Ox021FFFEF

Ox04000000
SRAMZ/IFLASH
004 1FFFFF

- 0x40000000
USER IPbus slaves

Ox7FFFFFFF
OxB0000000

USER Wishbone slaves
OxFFFFFFFF

Figure 9: Memory map

v1.52

10 GLIBv3 User Manual - draft

2.1.4 Svstem Registers

Table 2-1 shows the 16 registers that are currently implemented into the System Registers HDL block
providing their address, a short description of their functionality and their type (Read-Write or Read-
only). The 4-byte Board_ID register, as its name suggests, provides an identifier of the GLIB board
(0x474CA4942). When the 4 bytes of the identifier are represented in ASCII characters, the identifier
corresponds to the word “GLIB”. Table 2-2 shows how the register is organized. The 4-byte
System_ID when represented in ASCIl characters corresponds to “ip2x” declaring that the second
version of IPbus firmware is used. Table 2-3 shows how the register is organized. The Firmware_ID
register contains the date (YY/MM/DD) and the version number of the firmware (major.minor.build).
The register TestReg is used only for testing the read/write transactions since it is not connected to
the system_core logic. The Ctrl register (Table 2-5) is used to configure the clock circuitry (Figure
1-5). The register Ctrl2 (Table 2-7) is used for loading firmware from the Platform Flash on demand.

Table 2-1: System Registers

Addr Name Description Type
0x00 Board_ID The board identifier code RO
0x01 System_ID The system identifier code RO
0x02 Firmware_ID The firmware date and version number RO
0x03 TestReg Register for test purposes only RW
0x04 Ctrl Controls the external clocking circuitry RW
0x05 Ctrl2 Flash control RW
0x06 Status Status from various external components RO
0x07 Status2 Currently not used RO
0x08 Ctrl_SRAM SRAM interface: Control RW
0x09 Status_SRAM SRAM interface: Status RO
0x0A SPI_txdata SPl interface: data from FPGA to clock synthesizer RW
0x0B SPI_command SPl interface: configuration (polarity, phase, frequency etc.) RW
0x0C SPI_rxdata SPl interface: data from clock synthesizer to FPGA RO
0x0D 12C_settings 12C interface: configuration (bus select, frequency etc.) RW
0x0E 12C_command I12C interface: transaction parameters (slave address, data to slave etc.) RW
OxOF 12C_reply 12C interface: transaction reply (transaction status, data from slave etc.) RO

Table 2-2: Board_ID Register

bit(s) Name Description

[7:0] board_id_char4 Board ID 4th character (ASCII code)
[15:8] board_id_char3 Board ID 3rd character (ASCII code)
[23:16] | board_id_char2 Board ID 2nd character (ASCII code)
[31:24] | board_id_charl Board ID 1st character (ASCII code)

Table 2-3: System_ID Register

bit(s) Name Description

[7:0] system_id_char4 System_ID 4th character (ASCII code)
[15:8] system_id_char3 System_ID 3rd character (ASCII code)
[23:16] | system_id_char2 System_ID 2nd character (ASCII code)
[31:24] | system_id_charl System_ID 1st character (ASCII code)

The Status register (Table 2-8) is providing status information from various external components.
The register Status2 is reserved for future use.

v1.52

GLIBv3 manual - draft

11

Table 2-4: Firmware_ID Register
bit(s) Name Description
[31:28] | firmware_id_VER_MAJOR | Firmware version (major)
[27:24] | firmware_id_VER_MINOR | Firmware version (minor)
[23:16] | firmware_id_VER_BUILD Firmware version (build)
[15:9] firmware_id_YY Firmware year (0-99)
[8:5] firmware_id_MM Firmware month
[4:0] firmware_id_DD Firmware day
Table 2-5: Ctrl Register
bit(s) Name Description
[0] pcie_clk_fsel ICS874003 output multiplication factor. 0 -> OUT = 2.5 x IN. 1 -> OUT =1.25 x IN.
[1] pcie_clk_mr ICS874003 master reset. 1 -> reset. 0 -> normal operation.
[2] pcie_clk_oe ICS874003 output enable. 1 -> outputs enabled. 0 -> outputs disabled.
[4] cdce_powerup CDCE62005 Control: power up of. 0 -> power down. 1 -> power up.
[5] cdce_refsel CDCE62005 Control: Clock input selection. 1 -> CLK1. 0 -> CLK2.
[6] cdce_sync CDCE62005 Control: synchronization. A transition from 0 to 1 is needed to resync.
[7] cdce_ctrl_sel Select who drives the control of the CDCE62005. 0 -> System_core. 1 -> user logic.
[8] tclkb_dr_en Enables the TCLKB output towards the backplane. 0 -> off. 1 -> on
[12] xpoint2_s10 Input select for IC23 (SN65LVDT125) OUT1. See Table 2-6
[13] xpoint2_s11 Input select for IC23 (SN65LVDT125) OUT1. See Table 2-6
[16] xpointl_s10 Input select for IC28 (SN65LVDT125) OUT1. See Table 2-6
[17] xpointl_s11 Input select for IC28 (SN65LVDT125) OUT1. See Table 2-6
[18] xpointl_s20 Input select for IC28 (SN65LVDT125) OUT2. See Table 2-6
[19] xpointl_s21 Input select for IC28 (SN65LVDT125) OUT2. See Table 2-6
[20] xpointl_s30 Input select for IC28 (SN65LVDT125) OUT3. See Table 2-6
[21] xpointl_s31 Input select for IC28 (SN65LVDT125) OUT3. See Table 2-6
[22] xpointl_s40 Input select for IC28 (SN65LVDT125) OUTA4. See Table 2-6
[23] xpointl_s41 Input select for IC28 (SN65LVDT125) OUT4. See Table 2-6

Table 2-6: xpoint1 input select

Sx0 Sx1 | Select Input Example
0 0 IN_1 (see Figure 1-5) | When S40=0 & S41 =0thenIN_1->0UT_4
0 1 IN_2 (see Figure 1-5) | When S40 =0 & S41 =1 thenIN_2 -> OUT_4
1 0 IN_3 (see Figure 1-5) | When S40=1 & S41 =0thenIN_3->0UT_4
1 1 IN_4 (see Figure 1-5) | When S40 =1 & S41 =1 then IN_4 -> OUT_4
Table 2-7: Ctrl2 Register
bit(s) Name Description
[1:0] flash_firmware_page | Selects one of the 4 possible pages of the Platform Flash XL
[4] Load_flash_firmware | Loads the firmware from the selected page

v1.52

12

GLIBv3 User Manual - draft

Table 2-8: Status Register

bit(s) Name Description

[2:0] glib_sfp1_status[2:0] | on-board SFP1 status. bit[0] -> Mod_abs. bit [1] -> RxLOS. bit [2] -> TxFault.
[6:4] glib_sfp2_status[2:0] | on-board SFP2 status. bit [0] -> Mod_abs. bit [1] -> RxLOS. bit [2] -> TxFault.
[10:8] glib_sfp3_status[2:0] | on-board SFP3 status. bit [0] -> Mod_abs. bit [1] -> RxLOS. bit [2] -> TxFault.
[14:12] | glib_sfp4 status[2:0] | on-board SFP4 status. bit [0] -> Mod_abs. bit [1] -> RxLOS. bit [2] -> TxFault.
[16] gbe_int Interrupt request from GbE PHY. 0 -> no interrupt. 1 -> interrupt

[17] fmcl_presence Presence of FMC1. 1-> yes, 0-> no

[18] fmc2_presence Presence of FMC2. 1-> yes, 0-> no

[19] fpga_reset state of the fpga_reset line (driven by the CPLD)

[25:20] | v6_cpld state of the 6-bit bus between the FPGA and the CPLD

[28] cdce_lock Status of CDCE62005. 1 -> locked. 0 -> unlocked

The registers Ctrl_SRAM and Status_SRAM are presented in §2.2.1.

The registers I12C_settings, I2C_command and I12C_reply are controlling the operation of the dual-bus
I2C master controller that can be used to access the on-board 12C devices when in bench-top mode
(in crate mode, the MMC is responsible for that task). Table 2-9 presents the 12C devices and their
corresponding 12C 7-bit slave addresses. The operation of the above mentioned registers is the
following:

The I12C settings register used for configuring the controller (Table 2-10).

The I12C_command for setting the 12C transaction parameters (Table 2-11).

The 12C_reply provides the transaction status as well as data sent by the slave in case of read
transactions (Table 2-12).

Table 2-13 gives an example list of transactions needed for reading the temperature of the FPGA
with an 12C bus frequency of 62.5kHz.

Table 2-9: The 12C devices and their 7-bit slave addresses

12C Device Description 12C Address

24AA025E48 EEPROM 256x8bit EEPROM with unique 48-bit serial number (EUI-48) 1010110

LM82 Temperature sensor #1 | Provides the temperature of the FPGA’s die at regl [addr:0x01] 0101010

LM82 Temperature sensor #2 | Provides the pcb temperature at the front at reg0 [addr:0x00] 0011010

LM82 Temperature sensor #3 | Measures the pcb temperature at the rear at reg0 [addr:0x00] 1001110

12C Slave RW Configures the IP and/or MAC address on-the-fly 1111010

I12C Slave RO Reports the current IP & MAC address 1111110

FMC#1 The 12C devices hosted on the FMC#1 XXXXX00

FMC#2 The 12C devices hosted on the FMC#2 XXXXX11
Table 2-10: “I12C_settings” register

bit(s) Name Description

[9:0] i2c_prescaler 12C clock prescaler. 12C clk (kHz)=62500/i2¢_prescaler

[10] i2c_bus_select Select 12C bus. 1 -> 12C for PHY. 0 -> 12C for all other devices.

[11] i2c_enable Enable 12C controller. 1 -> enabled. 0 -> disabled.

[12] reserved Reserved. Keep it always at 0

v1.52

GLIBv3 manual - draft 13

Table 2-11: “I12C_command” register

bit(s) Name Description

[7:0] Wrdata Byte to write to the i2c slave.

[15:8] reserved Reserved. Keep always to 0.

[22:16] | slv_addr The 7-bit slave address

[23] wr_en Write enable. 0 -> Read transaction. 1 -> Write transaction.

[24] reserved Reserved. Keep always to 0.

[25] model6b 16bit operation (for PHY only). 0 -> standard 8-bit mode. 1 -> 16bit mode
[31] i2c_strobe Execute Transaction strobe signal. It clears automatically. Keep it always to 1.

Table 2-12: “12C_reply” register

bit(s) Name Description

[7:0] rddata_lo Byte read from the i2c slave. Low byte in case of 16-bit mode

[15:8] rddata_hi High byte read from the i2c slave in case of 16-bit mode

[27:26] | i2c_status[1:0] Transaction status. 01 -> succeed. 11 -> failed. 00 -> pending. 10 -> pending.

Table 2-13: Example transaction list for reading the temperature of the FPGA’s die

Register Access Description Value (hex)
i2c_enable -> 1,
12C_settings WRITE i2c_bus_sel -> 0, 0x00000BE8
i2c_prescaler -> 1000
wr -> 1, model6b -> 0, slv_addr -> 0x2A
12¢_command | WRITE wrdata -> 0x01 (select LM82's register#1) 0x80AA0001
12C_reply READ Verify the transaction status
12C_command | wriTe | /" 0 model6b -> 0, slv_addr -> 0x24, 0x802A0000
- wrdata -> don't care
Verify the transaction status. If successful,
12C _reply READ the temperature will be available in
rddata_lo
i2c_enable -> 0,
12C_settings WRITE i2c_bus_sel -> don't care, 0x00000000
i2c_prescaler -> don't care

The registers SPI_txdata, SPI_command and SPI_rxdata are controlling the operation the SPI master
controller that is used for the configuration of the CDCE62005 clock synthesizer. The operation of
the above mentioned registers is the following:

- The SPI_txdata where the 32-bit word to be transmitted to the SPI slave is defined.

- The SPI_rxdata where the 32-bit word transmitted by the SPI slave is presented.

- The SPI_command where the SPI master’s configuration is defined as well as the transaction
parameters (Table 2-14).

Table 2-15 shows an example list of transactions for reading one of CDCE62005’s registers. Table
2-16 shows an example of writing one of CDCE62005’s registers.

Table 2-14: The SPI_command register

bit(s) Name Description
[11:0] spi_prescaler SPI clock prescaler.
' - SPI clk (MHz)=62.5/spi_prescaler. Suggested value: 0x014
) Reserved.
[27:12] reserved Keep always to 0xFA38.
31] soi strobe Execute Transaction strobe signal. It clears automatically.
P Keep it always to 1.

v1.52

14 GLIBv3 User Manual - draft

Table 2-15: Transaction list for reading CDCE62005’s Register 8

Register Access Description Value (hex)
Set the value that corresponds to the

SPI_txdata WRITE reading register 8 command of the 0x0000008E
CDCE62005

SPI_command | WRITE Execute the transaction 0x8FA38014
Set a dummy value that does not

SPI_txdata WRITE corresponds to any CDCE62005 OxAAAAAAAA
command

SPI_command | WRITE Execute the transaction Ox8FA38014

Pl rxdata READ The contents of CDCE62005’s Register 8

- appear here

Table 2-16: Example transaction list for writing CDCE62005’s Register 0

Register Access Description Value (hex)
Set the value to write to Register 0.

SPI_txdata WRITE Note that bits[3:0] must be zero for 0xEB840720
addressing the register correctly

SPI_command | WRITE Execute the transaction 0x8FA38014

2.2 User Logic

From the user_logic point of view, there are two types of interfaces, direct connections with FPGA
pins and interfaces with firmware blocks instantiated in the system_core. The use of the pins directly
connected to the FPGA is straight forward (just if the system core and the top level did not exist).
This section focuses in the use of the SRAM, FMC I/0 and Wishbone bus interfaces as well as in the
instantiation of GBT-based links.

2.2.1 SRAM

The two single-port 2Mx36 SRAM devices that are available on board are accessible both by the
system_core and the user_logic. The register Ctrl SRAM (Table 2-17) is used to select which of the
two blocks takes control over the SRAM, the mode of operation (normal or Built-In Self Test (BIST)).
Additionally, since the SRAM2 and the FLASH memory share the same bus, it selects which of the
two memories is addressed (please note that the access of the FLASH is not covered in this section).
The register Status_SRAM (Table 2-18) is used only to report the results of the BIST. Logic Analyzer
Waveforms captured with Chipscope for single write, single read, block write and block read SRAM
transactions from the user_logic are shown in Figure 2-4, Figure 2-5, Figure 2-6 and Figure 2-7,
respectively. Figure 2-8 shows an example use of an SRAM in the user_logic block.

Table 2-17: “Ctrl_SRAM” register

bit(s) Name Description

[0] user_ctrl_sram1 Selects who is taking over the SRAM1 bus. 0 -> system_core. 1 -> user_logic.

[1] bist_sram1 Built-in Self Test (BIST) Enable for SRAM1. 0 -> normal operation. 1 -> run the BIST.
[16] user_ctrl_sram2 Selects who is taking over the SRAM2 bus. 0 -> system_core. 1 -> user_logic.

[17]b bist_sram2 Built-in Self Test (BIST) Enable for SRAM2. 0 -> normal operation. 1 -> run the BIST.
[20] flash_select Selects between SRAM2 & FLASH. 0 -> SRAM2. 1 -> FLASH.

v1.52

GLIBv3 manual - dr

aft 15

Table 2-18: “Status_SRAM” register

bit(s) Name Description

[0] bist_done_sram1 SRAML1 BIST completed flag. 0 -> test pending. 1 -> test completed.
[1] bist_status_sram1 | SRAM1 BIST status flag. 0 -> test failed. 1 -> test passed.

[16] bist_done_sram2 SRAM2 BIST completed flag. 0 -> test pending. 1 -> test completed.
[17] bist_status_sram2 | SRAM2 BIST status flag. 0 -> test failed. 1 -> test passed.

| &} waveform - DEV:0 MyDevice!

e I S R S R S S N A
fusr/user_sram reset_o fd
fusr/user_sram cs_o l——|

|~ /usr/fuser sram write_o l——|

o= fusr/user sram addr o :(oodoog 000000

0= jusr/user sram wdata o :(?SE'DFSUX 0o00000no

0= jusr/user sram rdata i ooooooona

I

[»]

Waveform

OED A(X-0) :

2 Waveform - DEV:0 MyDevice!

Figure 10: User_logic SRAM single write

Bus/Signal

fusr/user_sram reset_o

fusr/user_sram c3_o

/usr/user_sram write_o
o= fusrfuser sram addr o
@ fusr/user sram wdata o

o= fusr/user sram rdata i

1 1

5(aoo)

pos % 000000

0ooooooo

Y TEETDFEOY [T

[l D

Waveform

15EE| : 11EE| A(X-0) :

Figure 11: User_logic SRAM single read

&} waveform - DEV:0 MyDevicad
BusiSignal | | | | | | | | l

/usr/user_sram reset_o

fusr/user_sram ca_o g |

fusr/user_sram write_o g |
o fusr/user sram addr o W 000001 % 000002 4 000003 ¢ oodood
o fusr/user sram wdata o | ' TBETIDFS0 4 ADDAGADE), 426260CT § 559898E4E 4 3AFSEFCO N
o= fusr/user sram rdata i Qoooaoooo
(4]]

Waveform ¢ X 264 ¥ e 23[4}] aE-o: 1

Figure 12: User_logic SRAM block write

v1.52

16 GLIBv3 User Manual - draft

&} Waveform - DEV:0 MyDevice0

Bus/Signal

fusrfuser_sram_reset_o

fusr/user_sram cs_o |

/usrfuser_sram write o

o fusr/user_sram addr o W 000001 X 000002 % 000003 % ooODO4 §,

©= fusr/user sram wdata o oooooooon

o jusr/user sram_rdata i W 7EETDF20Y ADDARSDE Y 42526DCTY G5098E4E ¥ 3AFIEFCO Y
[l 0]

Waveform c: K 42E|z| 0: 3B|z|z| LK~

Figure 13: User_logic SRAM block read

architecture wy arch of user logic is
constant my_ sraml : integer:= 1;

begin wy arch of user logic

user sSram control o{my sSraml).reset <= 'Oty -— active high
user sram control o{my_sSraml).clk <= my_clk; -— rising edge
user sram control o{my_sraml).cs <= t1t; —-— actiwve high
user_sram_control of{my_sraml).writeEnable == '1': -— actiwve high
user sSram wdats o {my_Sraml) <= X"OTSEVDESOM™: -— 36 hit data
user sram addr o (my_sraml) <= 0" & H{"O000CST; -- 25 bit addr

Figure 14: Example use of the SRAM in the user_logic file

2.2.2 FMCI/O

All FMC 1/Os are directly connected to the user_logic block and can be configured independently as
LVCMOS 2.5V or LVDS inputs or outputs by simply instantiating the corresponding Xilinx primitive
buffer such as IBUF, OBUF, IOBUF, IBUFDS, OBUFDS etc. (see Figure 2-9).

fmel la p 15 dohuf: iobuf
generic map (liostandard => "lvomosZi")

port map {(io = fmel dio_pin.la p{l5), 1 =& s¢l_o, o => szl_i, t© => scl_oe 1)

Figure 15: Example 1/0 buffer instantiation in the user_logic for the LA15_P line of FMC1 using Xilinx primitives

2.2.3 Wishbone bus

The user has the possibility to instantiate wishbone-compatible slaves inside the user_logic as well as
to attach them on the wishbone bus available. Figure 2-10 shows an example of how to declare the
total number of wishbone slaves (and their symbolic names). Figure 2-11 shows the address
mapping of the wishbone slaves. Figure 2-12 illustrates an example of a wishbone slave instantiation
in the user_logic. Example wishbone slaves can be found in the example projects available.

v1.52

GLIBv3 manual - draft

17

package user package is

wishbaone slaves

constant user wh regs
constant user wh timer

constant nuwber of wh slaves

positive:

integer
integer

Figure 16: Wishbone slave declaration (user_package)

function user wh_addr sel{signal s&ddr

return sel;
end user wh_addr sel;

in std logic wvector(

dovnto

"y then

rariahle sel integer;
hegin
- addr, "00-——————————————
—-= addr, "0l-—————--——————~
if std match({addr, "100000000000000000000000-—--—---
elsif std match{addr, "100000000000000000000001000000007) then
else
zel 1= H
end if;

)

} return

" iz reserwved
" iz reserved

sel

sel

integer is

user wh regs:
user wh timer:

Figure 17: Example wishbone slave address mapping (user_addr_decode.vhd)

generic map (g periocd =X
port map

wh_data o =
wh_ack o =
wh_err o =

Hi
——————— master out/szlave in
rst i ==
clk sys i =
wh addr i =
wh data i =
wh_cyc 1 =
wh sel 1 =
wh_=sth i =
wh_we_ 1 =

waster in/slave out

1=

(MOST)

wh mosi i{user wh timer}).

wh mwosi i{user wh timer).

wh mo=si i{user wh timer).

wh mwosi i{user wh timer).

wh_mwosi_i{user wh_timer).

wh mosi i{user wbh timer).

wh mwosi i{user wh timer).

wh mo=si i{user wh timer).

(MISO)

wh_miso_o{user wh_timer).

wh miso of{user wbh timer).

wh miso o{user wh timer).

Figure 18: Example instantiation of a wishbone slave in the user_logic file

2.2.4 GBT-based links

As mentioned in the introduction, one of the principle use cases of the GLIB is to be part of a GBT —
Versatile Link system for evaluation purposes. For that reason, the GLIB firmware release includes
the example project glib_v3_gbt fpga that instantiates inside the user_logic block the GBT-FPGA
reference design for Virtex-6 as delivered by the GBT-FPGA team. The source files and associated

documentation can be found in [16].

v1.52

18 GLIBv3 User Manual - draft

3.How to use the GLIB

3.1 Hardware

3.1.1. Jumpers

The operation mode of the GLIB is set up through two jumpers (J5 and J10). The position of the
jumpers for the two modes of operation is shown below.

Bench-top operation

Figure 3-19: Jumpers J5 and J10 set up for bench-top operation.

Crate operation

v1.52

GLIBv3 manual - draft 19

External Clocking

As previously illustrated in Figure 1-5 and Figure 2-1, the GLIB features an SMA connector for
external clocking. The connection scheme of the SMA connector (SMA1) and the 40MHz crystal
oscillator (QZ2) of the GLIB is set up through the jumper J14. The default configuration sets the SMA
connector as input/output of the FPGA and the 40Mhz crystal oscillator as input for the cross point
switch 1 (1C28).

CLOCK SYNTH.
JITTER CLEANER

)4 (cDCE62005)

7 Qz2 1
= al”
FPGAW) : g J14 M‘ 1
SMA(3) el i 4= i
1C28 (2) g Y y
XTAL(1) | 2 ISYSTEM CORE I |usen_|.oe|c

Figure 3-21: SMA/Jumpef J14 picture (left). SMA and 40 MHz crystal oscillator (QZ2) setup block diagram (right)

3.1.2. Switches

The default position of the DIP switches is as illustrated below. All other combinations are reserved.

Figure 3-22: Default switches positions.

v1.52

20 GLIBv3 User Manual - draft

3.1.3. Powering

For bench-top operation, the GLIB can be powered through a socket compatible with the 12V 4-pin
connector that is typically available in ATX compatible power supplies (Figure 3-5 left and right,
respectively). In case of ATX power supply use, the PS-ON pin of the 20-pin ATX connector must be
connected to ground as shown in Figure 3-6 (bottom) in order to start-up the power supply.

Figure 3-24: How to start-up an ATX Power supply outside a computer.

v1.52

GLIBv3 manual - draft 21

3.1.4. Configuration

JTAG connectors

The GLIB features two JTAG connectors. J13 configures the CPLD & J12 configures the FPGA.

T
IIEE R R RN RN NRRNLRNEL]

Figure 3-25: JTAG connectors for configuring the CPLD (left) and FPGA (right).

FPGA configuration scheme

For advanced FPGA configuration schemes please see Appendix B.

3.1.5. Reset

As mentioned in §2.1.1, the GLIB board features a button for resetting the FPGA logic. The button
(SW1) is located in between the two FMC sockets and it is connected to a TLC7725 power supervisor
(IC14). When the button is pressed, the power supervisor generates a pulse that is used to reset the
system_core. Additionally, the reset signal is forward to the user_logic block where it can be freely
used.

BIVS

BN, ﬁ_ RED
100K
GTD

SENSE) . -
DESTH mEsET 5 POWER OM_RESET B

CT RESET [

T

El L

L | CONTROL
1 3010

VDD=PZV3

D
I
o4& TD=2.1U5 77?2
S FASTER RESET SUPERVISOR?

Figure 3-26: Reset button picture and reset scheme schematic.

3.1.6. RJ45 socket

The RJ45 socket (and associated circuitry) carried by the GLIB board provides a Gigabit Ethernet
connection in case of bench-top operation. Please note that since the GLIB supports only Ethernet at
1Gbps (and not 10/100Mbps), please connect it using standard (not crossover) network cables either
directly to a PC with a Gigabit Ethernet card or to a Gigabit Ethernet switch.

v1.52

22 GLIBv3 User Manual - draft

3.1.7. Serial Number

As previously mentioned in Table 2-9, the GLIB carries a serial memory with a 48-bit unique serial
number that could be used to identify the GLIB boards. Furthermore, the GLIB offers the possibility
to the user of an additional 8-bit serial number that is directly accessible from the user_logic block
and it can be hard-coded by placing up to 8 resistors on the pads shown in Figure 3-9.

a1l (3= (31941 15
L . v - - ¥ - .
il § o 2 Lt o
D 2D VD VWV AWV DD
LEeETERT

(] |

=
®

— -

Figure 3-28: CPLD, FPGA user and system LEDs

System LED

The system core blinks the system LED (LD3) to indicate that the GLIB firmware has been loaded
correctly.

FPGA user LEDs

The FPGA user LEDs (LD4 and LD5) can be directly controlled by the logic placed on the user core.

CPLD LEDs

The LEDs LD6, LD7, LD8 are connected to the CPLD. The meaning of these LED depends on the CPLD
firmware version.

v1.52

GLIBv3 manual - draft 23

MMC LEDs

When in crate operation, the LEDs MMC_RED_LED (LD1), MMC_GREEN_LED (LD2) and
MMC_BLUE_LED (LD9) are controlled by the MMC and indicate the state of the GLIB.

Table 19: MMC LEDs and GLIB state relationship

GLIB state
MMC LEDs Inactive Active MMC-RED-LED B
MMC_RED_LED ON OFF
MMC_BLUE_LED ON OFF
MMC_GREEN_LED OFF ON

MMC_BLUE_LED
- v

Figure 3-29: Inactive GLIB (left) and active GLIB (right)

v1.52

24 GLIBv3 User Manual - draft

3.2 Firmware/Software

Firmware:
In order to access all files required, you will need to do the following:

- Checkout amc_glib repository [https://svn.cern.ch/reps/ph-ese/be/amc glib] to a folder e.g. dev.
- Checkout cactus repository [https://svn.cern.ch/reps/cactus/] into dev.

- Checkout the gbt-fpga repository [https://svn.cern.ch/reps/ph-ese/be/gbt fpga] into dev.

- Checkout the mmc repository [https://svn.cern.ch/reps/ph-ese/be/mmc] into dev.

The folder tree should be as shown in Figure 3-12

4 1 dev
4w amc_glib
P h
#. branch
* W tags
* g trunk
4y cactus
© L ah
* g trunk
4@, gbt_fpga
© L h
#. branch
* W@ tags
» g trunk
@ mme
PN
branches
- . tags
: @y trunk

Figure 3-30: Folder tree

The GLIB team recommends using Xilinx ISE v14.5 for firmware development and implementation.

For using the existing example code as is, simply compile the *.xise project files that can be found
under [..]\glib_v3\fw\fpga\prj. For developing your own code, please keep in mind that in order to
receive support from the GLIB team, the files under [..]\glib_v3\fw\src\system MUST remain
unchanged. On the other hand, the files under [..]\glib_v3\fw\src\user can be freely modified
according to the user needs. Concerning the CPLD & MMC firmware, we provide the source files for
your reference only and we strongly suggest not modifying them.

v1.52

https://svn.cern.ch/reps/ph-ese/be/amc_glib
https://svn.cern.ch/reps/cactus/
https://svn.cern.ch/reps/ph-ese/be/gbt_fpga
https://svn.cern.ch/reps/ph-ese/be/mmc

GLIBv3 manual - draft 25

Software:

For software development, it is strongly recommended to use the ptHAL [17] software distribution,
also available in the CACTUS SVN repository. For hardware verification purposes only, we also
provide a few Python scripts performing basic test functions that must be used as is. Please note
that the scripts are using a Python library namely “Pychips” that is not supported any longer by its
developers, therefore you should avoid in any cost to base your developments on that platform. In
order to execute the hardware verification scripts, please make sure that Python 2.7.x is installed.
PyChips is NOT compatible with Python 3.x. For the correct operation of the scripts, some variables
have to be defined.

Under Windows, define the following environmental variables:
- PYTHONPATH with value the path pointing to the [..]\glib_v3\sw\PyChips\src folder.
- PATH with value the path pointing to the Python installation folder e.g. “C:\Python27"

Under Linux, use the export command to define the PYTHONPATH variable. All hardware verification
scripts as well as the GLIB IP address and register address table declarations are located at
[..]\glib_v3\sw\PyChips\scripts

Additionally, in order to communicate successfully with the GLIB, the IP address of the Ethernet port
has to be set in order to be in the same subnet e.g. for the default GLIB addresses the configuration
could be 192.168.0.10 as IP address and 255.255.255.0 as subnet mask.

Brief description of the hardware verification scripts:

glib_board_info.py: prints general board status information

glib_sysreq_test.py: example of r/w access of the system registers

glib_cdce read.py: reads through SPI the contents of the CDCE62005 registers

glib_cdce write.py: writes through SPI the GLIB default values to the CDCE62005 registers

glib_cdce write test only.py: writes through SPI non-sense values to the CDCE62005 registers

glib_cdce _powerup _and_sync.py: power-cycles and synchronizes the CDCE62005

glib_sram1_read.py: reads the contents of the sram1, writes them to the tmp.txt and prints the first 32 values
glib_sram1_write.py: writes and incrementing by 1 value to all memory locations of sram1

glib_sram1 clear.py: writes “zeros” to all memory locations of sram1

glib_sram2 read.py: reads the contents of the sram1, writes them to the tmp.txt and prints the first 32 values
glib_sram2 write.py: writes and incrementing by 1 value to all memory locations of sram2

glib_sram2 clear.py: writes “zeros” to all memory locations of sram2

glib_i2c_eeprom read eui.py: reads the 48-bit serial number from the 24AA025E48 [2C EEPROM
glib_i2c_temperature.py: reads the three on-board 12C temperature sensors

glib_i2c_mac_ip _eeprom.py: programs the memory space of the I2C EEPROM allocated for the IP & MAC
address assignment.

glib_i2c_mac ip ctrl.py: accesses the FPGA’s “I12C slave R/W” in order to program on-the-fly the IP & MAC
address (for test purposes only, this procedure is normally reserved for the MMC)

glib_i2c_mac _ip_status.py: accesses the FPGA’s “I12C slave R/0” in order to read the actual IP & MAC address
(for test purposes only, this procedure is normally reserved for the MMC)

glib_icap_interface test.py: reads and writes several registers of the icap

glib_icap _jump to_image.py: triggers the reconfiguration of the FPGA (used for Multiboot/Safe configuration)
glib_flash_golden prom rw.py: writes the Golden image PROM file to the FLASH or reads the Golden image on
FLASH and dumps it to a file

glib_flash user prom rw.py: writes the User image PROM file to the FLASH or reads the User image on FLASH
and dumps it to a file

glib_flash corrupt user _image.py: corrupts the User image stored on FLASH, for testing purposes only

v1.52

26

GLIBv3 User Manual - draft

4.REFERENCES

[1] P Vichoudis et al., The Gigabit Link Interface Board (GLIB), a flexible system for the evaluation
and use of GBT-based optical links 2010 JINST 5 C11007

[2] PICMG, AMC.0 R2.0 (November 15, 2006),
http://www.picmg.com/v2internal/specifications2.cfm?thetype=0One&thebusid=1

[3] PICMG, MTCA.O R1.0 (July 6, 2006),
http://www.picmg.com/v2internal/specifications2.cfm?thetype=One&thebusid=5

[4] P. Moreira et al., The GBT Project, in proceedings of the Topical Workshop on Electronics for
Particle Physics TWEPP 2009, CERN-2009-006

[5] L. Amaral et al., The versatile link, a common project for super-LHC, 2009 JINST 4 P12003
[6] F. Vasey et al., The versatile link common project: feasibility report, 2012 JINST 7 C01075

[7] S. Bonacini et al.,, e-link: A radiation-hard low-power electrical link for chip-to-chip
communication, in proceedings of the Topical Workshop on Electronics for Particle Physics
TWEPP2009, CERN-2009-006

[8] J. Troska et al., Versatile Transceiver developments, 2011 JINST 6 C01089

[9] S. Baron et al., Implementing the GBT data transmission protocol in FPGAs, in proceedings of
the Topical Workshop on Electronics for Particle Physics TWEPP-09, CERN-2009-006

[10] ANSI/VITA, 57.1-2008 (R2010), http://www.vita.com/fmc.html

[11] Rob Frazier et al., “Software and firmware for controlling CMS trigger and readout hardware
via gigabit Ethernet”, in proceedings of the Technology and Instrumentation in Particle
Physics TIPP 2011, to be published in Physics Procedia

[12] Rob Frazier et al., “An IP-based control protocol for ATCA/uTCA”, IPbus version 2.0 Draft 6,
22/3/2013 https://svnweb.cern.ch/cern/wsvn/cactus/trunk/doc/ipbus_protocol_v2_0.pdf

[13] OpenCores “Wishbone B4 Specification” Spec

[14] S. Baron et al., “Implementing the GBT data transmission protocol in FPGAs”, in proceedings
of the Topical Workshop on Electronics for Particle Physics TWEPP-09, CERN-2009-006

[15] PyChips web page http.//projects.hepforge.org/cactus/trac/wiki/PyChips

[16] GBT-FPGA firmware releases https.//svaweb.cern.ch/cern/wsvn/ph-ese/be/gbt fpga

[17] CERN Cactus SVN/Wiki https://svnweb.cern.ch/trac/cactus/wiki

v1.52

http://www.picmg.com/v2internal/specifications2.cfm?thetype=One&thebusid=1
http://www.picmg.com/v2internal/specifications2.cfm?thetype=One&thebusid=5
http://www.vita.com/fmc.html
http://cdn.opencores.org/downloads/wbspec_b4.pdf
http://cdsweb.cern.ch/record/1185010
http://projects.hepforge.org/cactus/trac/wiki/PyChips
https://svnweb.cern.ch/cern/wsvn/ph-ese/be/gbt_fpga
https://svnweb.cern.ch/trac/cactus/wiki

GLIBv3 manual - draft 27

APPENDIX A: GLIB v3 FPGA configuration scheme

Introduction

In most FPGA applications, one bitstream (FPGA image) is programmed onto the FLASH memory and
the FPGA is configured when the system is powered on. This is the simplest FPGA configuration
scheme possible when using a FLASH memory for storing the configuration file (from now on it will
be referred as single image FPGA configuration scheme). However, there is an intrinsic safety
problem when using this scheme because either a bitstream corruption or an incorrect firmware
may lead to a system crash (see Figure A 1).

H'ns" TFFFFFh

Canfigure
FPEA image
(bitstream)

:D FPGA

FPGA image Auto
(bitstream)

000000k

User image

(bitstream)

CORRUPTED System Crash

or
INCORRECT

\.n_d-/'_/

Figure A 1: Standard FPGA configuration scheme.

In order to provide a reliable FPGA configuration procedure, the GLIB board features the
Multiboot/Safe FPGA configuration scheme. This scheme requires two different bitstreams stored
on different memory positions of the FLASH (see Figure A 2). One of the bit streams, the “Golden
image”, is used as backup firmware enabling the possibility of remotely restoring/updating the
system when needed. The other bitstream, the “User image”, is the main firmware which comprises
the actual system implemented by the user.

‘TFFFFFh
User Image
(bitstream 2)
400000k @ rrﬁn
Golden image
(bitstream)
000000k

Figure A 2: Golden and User images on FLASH.

v1.52

28 GLIBv3 User Manual - draft

The handling of these bit streams by the GLIB system can be done through either the Internal
Configuration Access Port (ICAP) or by pulling up the address 22 pin of the FLASH memory (A22).

Figure A 3 shows the ICAP approach (default setup), where the FPGA is initially loaded with the
Golden image during power up. Once the FPGA is configured, the User image can be loaded on-
demand through the ICAP interface module that is controlled via IPbus. If for any reason the User
image is corrupted, the FPGA will automatically trigger a “Fallback configuration” after the failed
configuration process, reverting to the Golden image. Moreover, if the User image is not corrupted
but it does not behave as expected (“incorrect”), it is possible to revert to the Golden image by
either another ICAP command or by power cycling (in case of a User image with non-functioning
IPbus/ICAP interface). As mentioned before, once the Golden image is loaded, the system is again
under control so a correct User image may be reprogrammed onto the FLASH and loaded to the
FPGA on-demand (see Figure A 4).

Bolden image
(bitstream 1)

User image

(bitstream 2)

~~— T

huta Manual Trigger (ICAP)

Figure A 3: Multiboot/Safe FPGA configuration scheme (ICAP approach).

Power cycle (INCORRECT)

Fallback (CORRUPTED)

e

User image
(bitstream 2)
CORRUPTED
or
INCORRECT

Golden image
(bitstream [)

Manual Trigger (ICAP)

-

Bolden image
(bitstream)

If Fallback (CORRUPTED)
Or
Power cycle (INCORRECT)

‘H-._______J
Remote FLASH
reprogramming (Eth)

Manual Trigger (ICAF)
Figure A 4: Multiboot/Safe FPGA configuration system recovery (ICAP approach).

v1.52

GLIBv3 manual - draft 29

Although the ICAP is the recommended Multiboot/Safe FPGA configuration scheme approach due to
the reliability provided by the Fallback and the Power cycle recovery procedures, there are some
applications where the configuration time is a critical factor (such as PCle) so the ICAP approach may
not meet the requirements of the system. For this kind of applications, the user has the possibility of
using the A22 pin pull-up approach (see Figure A 5) which allows the shortest configuration times,
even if loosing reliability. In this case, the A22 pin of the FLASH memory is pulled up during power up
so the FPGA is directly configured with the User image, avoiding the extra time of the Golden image
configuration and the manual triggering of the User image. However, as aforementioned, this
approach is not as good as the previous (ICAP) in terms of reliability because it only allows system
recovery when the bitstream is corrupted (Fallback configuration). In case of an “incorrect” User
image (e.g. just and LED blinking and no ICAP instead of the user’s system), the power cycle
procedure will no longer be a solution because in this approach, the Golden image is not the
bitstream loaded after power up (see Figure A 6).

Golden image User image

{bitstream 1) (bitstream 2)

\/

Pulling up FLASH A22 pin
Figure A 5: Multiboot/Safe FPGA configuration scheme (A22 pin pull-up approach).

(INCORRECT)

Fallback (CORRUPTED) —

o~

lser image
(bitstream 2)
CORRUPTED
or
INCORRECT

Golden image
(bitstream 1)

v

Pulling up FLASH AZ2Z pin
If Fallback
(CORRUPTED)

Golden image
(bitstream)

'“*'--._.-—"‘"
Remote FLASH
reprogramming (Eth)

Manual Trigger (ICAF)

Figure A 6: Multiboot/Safe FPGA configuration system recovery (A22 pin pull-up approach).

v1.52

30 GLIBv3 User Manual - draft

Implementation on GLIB and utilisation

Figure A 7 shows the circuitry that implements the above mentioned configuration schemes where
the CPLD serves as multiplexor between the FPGA and the FLASH memory. During the first
configuration after power up, the A22 pin of the FLASH is pulled high or low, depending on the
position of the switch #2 of the DIP switch SW2. If pulled low (SW2(2) = on) (default position), the
first bitstream loaded by the FPGA is either the FPGA image (single image FPGA configuration
scheme) or the Golden image (Multiboot/Safe FPGA configuration scheme with ICAP approach)
depending on the FPGA configuration scheme chosen by the user. In case of the Golden image is
loaded, the user may jump to the User image when needed by running the appropriate python script
(see Table A-1). On the other hand, if the switch is pulled high (SW2(2) = off), the first bitstream
loaded by the FPGA after power up is the User image (Multiboot/Safe FPGA configuration scheme
with A22 pin pull-up approach).

FPBA conf,signals > Jiz

A[21]
RS[1] > ¥
A[22:2) >

A[z0:0] _I

Figure A 7: GLIB configuration scheme.

Regarding to the programming of the FLASH memory, if the user decides to use the Multiboot/Safe
FPGA configuration scheme, it is recommended to program the different images by utilising the
python scripts provided for this purpose with the GLIB software. There is a programing script for the
Golden image as well as other for the User image (see Table A-1). Both scripts use as PROM file a
standard MSC file set up for BPI Flash/Single FPGA configuration (the same MCS file set up used for
the single image FPGA configuration scheme) which can be generated using iMPACT (see Figure A
8). The user does not need to care about the memory position of the PROM file on the FLASH
because it is automatically handled by the scripts.

B PROM File Formatter

Table A-1: Multiboot/Safe FPGA configuration main python scripts. Step 1. Select Storage Target

Storage Device Type ¢
Xilinx Flash/PROM
Description Script name (=} Non-Volatile FPGA
Spartan3AN
[=)- 5P Flash
Configure Single FPGA
Configure MultiBoot FPGA
[=]- BPI Flash
Configure Single FPGA
Conhgure Multiboot FHGA
Configure from Paralleled PROMs E]
Generic Parallel PROM

Golden image

programming script glib_flash_golden_prom_rw.py

User image
programming script

glib_flash_user_prom_rw.py

ICAP jump script glib_icap_jump_to_image.py Figure A 8: iIMPACT PROM File Formatter.

v1.52

GLIBv3 manual - draft 31

APPENDIX B: GLIB IP address assignment scheme in a shelf

As mentioned briefly in §2.1.2, the GLIB proposes a simplified scheme of IP address assignment in a
shelf based on the slot number (firmware example available in the SVN repository) that is sufficient
for most small-scale setups. However, in some complex system implementations, it is also required
to have some additional options, such as:

- Arbitrary IP address assignment via IPMI
- IP address assighment via Reverse Address Resolution Protocol (RARP), a feature supported
by IPbus.

Moreover, it is also required to be able to switch the IP assighment method dynamically between
them without reprogramming. In order to satisfy the above requirements, special GLIB system_core
firmware and MMC software have been developed.

Figure B 1 shows a diagram of the scheme which is based on the use of the two local I12C buses of the
GLIB. Bus #1 (shown in green) was originally foreseen for the communication between the MMC and
the three on-board temperature sensors while Bus #2 (shown in red) was intended to be used for
the communication between the FPGA and the 24AA025E48 EEPROM for hardware identification
reasons, since it contains both a unique 48-bit identifier hardcoded into the chip and the CERN
assigned MAC address allocated for the GLIB (08:00:30:f1:00:xx).

BUS #1 BRIDGE IV 126 IPhus
N STAT REG CTRL
O

12¢
TEMPERATURE
SENSOR #1 CTRLREG
EEPROM
TEMPERATURE AUTO-READ
SENSOR #2 S
MASTER USER
SYSTEM gme

TEMPERATURE
SENSOR #3

Figure B 1: The IP address assignment scheme
On the FPGA side, apart from the 12C master used for on-demand 12C transactions via IPbus, three
additional 12C devices are implemented:

- The EEPROM auto-read: a secondary 12C master that takes over the bus only once after
power-up/reset, reads the first 16 bytes of the memory and releases it automatically.

- AnI2C slave that implements 16 control registers of 1 byte each.

v1.52

32 GLIBv3 User Manual - draft

- An12Cslave that implements 16 status registers of 1 byte each.

Finally, the last 12C component is the 12C bridge located between the two buses that allows the
connection or separation of the two 12C buses. The EN pin of the bridge is controlled by the MMC.

The IP address assignment scheme functions as following: The MMC, after the handshake with the
MCH and before enabling the payload power, ensures that the buses #1 & #2 are disconnected by
forcing the EN line low, thus avoiding collisions from simultaneous transactions. When the FPGA is
loaded, the EEPROM is read automatically and the bus #2 is released. If the contents are valid and
the loading mode (2-bit setting) is set to “load MAC & IP”?, the IP address is forwarded to the IPbus
controller. In all other cases, the IPbus controller is using the IP address provided by the user logic.
After the board initialization, a new IP address can be assigned via IPMI in two ways:

- By modifying the IP address stored in the EEPROM and powercycle the GLIB in order to load
the new settings.

- By assigning an IP address on-the-fly by programming the 12C control registers (without
altering the contents of the EEPROM). The settings in that case are volatile and are retained
until the next powercycle.

Setting the IP address to 0.0.0.0 initiates the RARP mechanism that assigns IP addresses
automatically.

In it important to mention that there is also the possibility for the user to read via IPMI the 12C status
registers that report the current IP address loaded via this circuitry (this does not include any IP
address loaded via RARP, since this is happening on a different level). Additionally, the circuitry also
allows to identify the GLIB cards via IPMI by reading the unique 48-bit identifier hardcoded in the
EEPROM as well as its CERN assigned MAC address.

2 By default, the EEPROM is set in “load MAC only” mode, that serves only for loading the pre-programmed
MAC address to the IPbus controller, while the IP address is taken by the user_logic

v1.52

	Document History
	GLIB team
	Table of Contents
	1. INTRODUCTION
	2. ARCHITECTURE
	2.1 System Core
	2.1.1 PLL & Reset controller
	2.1.2 Gigabit Ethernet and IPbus
	2.1.3 SoC bus
	2.1.4 System Registers

	2.2 User Logic
	2.2.1 SRAM
	2.2.2 FMC I/O
	2.2.3 Wishbone bus
	2.2.4 GBT-based links

	3. How to use the GLIB
	3.1 Hardware
	3.1.1. Jumpers
	Bench-top operation
	Crate operation
	External Clocking

	3.1.2. Switches
	3.1.3. Powering
	3.1.4. Configuration
	JTAG connectors
	FPGA configuration scheme

	3.1.5. Reset
	3.1.6. RJ45 socket
	3.1.7. Serial Number
	3.1.8. LEDs
	System LED
	FPGA user LEDs
	CPLD LEDs
	MMC LEDs

	3.2 Firmware/Software
	Firmware:
	Software:
	Brief description of the hardware verification scripts:

	4. REFERENCES
	APPENDIX A: GLIB v3 FPGA configuration scheme
	Introduction
	Implementation on GLIB and utilisation

	APPENDIX B: GLIB IP address assignment scheme in a shelf

