--////////////////////////////////////////////////////////////////////////////// -- ____ ____ -- / /\/ / -- /___/ \ / Vendor: Xilinx -- \ \ \/ Version : 3.6 -- \ \ Application : 7 Series FPGAs Transceivers Wizard -- / / Filename :amc_gtx5gpd_tx_startup_fsm.vhd -- /___/ /\ -- \ \ / \ -- \___\/\___\ -- -- -- Description : This module performs TX reset and initialization. -- -- -- -- Module amc_gtx5Gpd_tx_startup_fsm -- Generated by Xilinx 7 Series FPGAs Transceivers Wizard -- -- -- (c) Copyright 2010-2012 Xilinx, Inc. All rights reserved. -- -- This file contains confidential and proprietary information -- of Xilinx, Inc. and is protected under U.S. and -- international copyright and other intellectual property -- laws. -- -- DISCLAIMER -- This disclaimer is not a license and does not grant any -- rights to the materials distributed herewith. Except as -- otherwise provided in a valid license issued to you by -- Xilinx, and to the maximum extent permitted by applicable -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON- -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and -- (2) Xilinx shall not be liable (whether in contract or tort, -- including negligence, or under any other theory of -- liability) for any loss or damage of any kind or nature -- related to, arising under or in connection with these -- materials, including for any direct, or any indirect, -- special, incidental, or consequential loss or damage -- (including loss of data, profits, goodwill, or any type of -- loss or damage suffered as a result of any action brought -- by a third party) even if such damage or loss was -- reasonably foreseeable or Xilinx had been advised of the -- possibility of the same. -- -- CRITICAL APPLICATIONS -- Xilinx products are not designed or intended to be fail- -- safe, or for use in any application requiring fail-safe -- performance, such as life-support or safety devices or -- systems, Class III medical devices, nuclear facilities, -- applications related to the deployment of airbags, or any -- other applications that could lead to death, personal -- injury, or severe property or environmental damage -- (individually and collectively, "Critical -- Applications"). Customer assumes the sole risk and -- liability of any use of Xilinx products in Critical -- Applications, subject only to applicable laws and -- regulations governing limitations on product liability. -- -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS -- PART OF THIS FILE AT ALL TIMES. --***************************************************************************** library IEEE; use IEEE.STD_LOGIC_1164.ALL; use IEEE.NUMERIC_STD.ALL; entity amc_gtx5Gpd_TX_STARTUP_FSM is Generic( EXAMPLE_SIMULATION : integer := 0; STABLE_CLOCK_PERIOD : integer range 4 to 250 := 8; --Period of the stable clock driving this state-machine, unit is [ns] RETRY_COUNTER_BITWIDTH : integer range 2 to 8 := 8; TX_QPLL_USED : boolean := False; -- the TX and RX Reset FSMs must RX_QPLL_USED : boolean := False; -- share these two generic values PHASE_ALIGNMENT_MANUAL : boolean := True -- Decision if a manual phase-alignment is necessary or the automatic -- is enough. For single-lane applications the automatic alignment is -- sufficient ); Port ( STABLE_CLOCK : in STD_LOGIC; --Stable Clock, either a stable clock from the PCB --or reference-clock present at startup. TXUSERCLK : in STD_LOGIC; --TXUSERCLK as used in the design SOFT_RESET : in STD_LOGIC; --User Reset, can be pulled any time QPLLREFCLKLOST : in STD_LOGIC; --QPLL Reference-clock for the GT is lost CPLLREFCLKLOST : in STD_LOGIC; --CPLL Reference-clock for the GT is lost QPLLLOCK : in STD_LOGIC; --Lock Detect from the QPLL of the GT CPLLLOCK : in STD_LOGIC; --Lock Detect from the CPLL of the GT TXRESETDONE : in STD_LOGIC; MMCM_LOCK : in STD_LOGIC; GTTXRESET : out STD_LOGIC; MMCM_RESET : out STD_LOGIC:='1'; QPLL_RESET : out STD_LOGIC:='0'; --Reset QPLL CPLL_RESET : out STD_LOGIC:='0'; --Reset CPLL TX_FSM_RESET_DONE : out STD_LOGIC; --Reset-sequence has sucessfully been finished. TXUSERRDY : out STD_LOGIC:='0'; RUN_PHALIGNMENT : out STD_LOGIC:='0'; RESET_PHALIGNMENT : out STD_LOGIC:='0'; PHALIGNMENT_DONE : in STD_LOGIC; RETRY_COUNTER : out STD_LOGIC_VECTOR (RETRY_COUNTER_BITWIDTH-1 downto 0):=(others=>'0')-- Number of -- Retries it took to get the transceiver up and running ); end amc_gtx5Gpd_TX_STARTUP_FSM; --Interdependencies: -- * Timing depends on the frequency of the stable clock. Hence counters-sizes -- are calculated at design-time based on the Generics -- -- * if either of PLLs is reset during TX-startup, it does not need to be reset again by RX -- => signal which PLL has been reset -- * architecture RTL of amc_gtx5Gpd_TX_STARTUP_FSM is component amc_gtx5Gpd_sync_block generic ( INITIALISE : bit_vector(5 downto 0) := "000000" ); port ( clk : in std_logic; data_in : in std_logic; data_out : out std_logic ); end component; type tx_rst_fsm_type is( INIT, ASSERT_ALL_RESETS, WAIT_FOR_PLL_LOCK, RELEASE_PLL_RESET, WAIT_FOR_TXOUTCLK, RELEASE_MMCM_RESET, WAIT_FOR_TXUSRCLK, WAIT_RESET_DONE, DO_PHASE_ALIGNMENT, RESET_FSM_DONE); signal tx_state : tx_rst_fsm_type := INIT; constant MMCM_LOCK_CNT_MAX : integer := 256; constant STARTUP_DELAY : integer := 500;--AR43482: Transceiver needs to wait for 500 ns after configuration constant WAIT_CYCLES : integer := STARTUP_DELAY / STABLE_CLOCK_PERIOD; -- Number of Clock-Cycles to wait after configuration constant WAIT_MAX : integer := WAIT_CYCLES + 10; -- 500 ns plus some additional margin constant WAIT_TIMEOUT_2ms : integer := 2000000 / STABLE_CLOCK_PERIOD;-- 2 ms time-out constant WAIT_TLOCK_MAX : integer := 100000 / STABLE_CLOCK_PERIOD;--100 us time-out constant WAIT_TIMEOUT_500us : integer := 500000 / STABLE_CLOCK_PERIOD;--100 us time-out constant WAIT_1us_cycles : integer := 1000 / STABLE_CLOCK_PERIOD;--1 us time-out constant WAIT_1us : integer := WAIT_1us_cycles+ 10; -- 1us plus some additional margin signal init_wait_count : integer range 0 to WAIT_MAX:=0; signal init_wait_done : std_logic := '0'; signal pll_reset_asserted : std_logic := '0'; signal tx_fsm_reset_done_int : std_logic := '0'; signal tx_fsm_reset_done_int_s2 : std_logic := '0'; signal tx_fsm_reset_done_int_s3 : std_logic := '0'; signal txresetdone_s2 : std_logic := '0'; signal txresetdone_s3 : std_logic := '0'; constant MAX_RETRIES : integer := 2**RETRY_COUNTER_BITWIDTH-1; signal retry_counter_int : integer range 0 to MAX_RETRIES; signal time_out_counter : integer range 0 to WAIT_TIMEOUT_2ms := 0; signal reset_time_out : std_logic := '0'; signal time_out_2ms : std_logic := '0';--\Flags that the various time-out points signal time_tlock_max : std_logic := '0';--|have been reached. signal time_out_500us : std_logic := '0';--/ signal mmcm_lock_count : integer range 0 to MMCM_LOCK_CNT_MAX-1:=0; signal mmcm_lock_int : std_logic := '0'; signal mmcm_lock_i : std_logic := '0'; signal mmcm_lock_reclocked : std_logic := '0'; signal run_phase_alignment_int : std_logic := '0'; signal run_phase_alignment_int_s2 : std_logic := '0'; signal run_phase_alignment_int_s3 : std_logic := '0'; constant MAX_WAIT_BYPASS : integer := 91648; --110000 TXUSRCLK cycles is the max time for Multi lane designs constant WAIT_TIME_MAX : integer := 100 ; --10 us time-out signal wait_bypass_count : integer range 0 to MAX_WAIT_BYPASS-1; signal time_out_wait_bypass : std_logic := '0'; signal time_out_wait_bypass_s2 : std_logic := '0'; signal time_out_wait_bypass_s3 : std_logic := '0'; signal txuserrdy_i : std_logic := '0'; signal refclk_lost : std_logic; signal gttxreset_i : std_logic := '0'; signal txpmaresetdone_i : std_logic := '0'; signal txpmaresetdone_sync : std_logic ; signal cplllock_sync: std_logic := '0'; signal qplllock_sync: std_logic := '0'; signal cplllock_prev: std_logic := '0'; signal qplllock_prev: std_logic := '0'; signal cplllock_ris_edge: std_logic := '0'; signal qplllock_ris_edge: std_logic := '0'; signal wait_time_cnt : integer range 0 to WAIT_TIME_MAX; signal wait_time_done :std_logic; begin --Alias section, signals used within this module mapped to output ports: RETRY_COUNTER <= STD_LOGIC_VECTOR(TO_UNSIGNED(retry_counter_int,RETRY_COUNTER_BITWIDTH)); RUN_PHALIGNMENT <= run_phase_alignment_int; TX_FSM_RESET_DONE <= tx_fsm_reset_done_int; GTTXRESET <= gttxreset_i; process(STABLE_CLOCK,SOFT_RESET) begin if (SOFT_RESET = '1') then init_wait_done <= '0'; init_wait_count <= 0 ; elsif rising_edge(STABLE_CLOCK) then -- The counter starts running when configuration has finished and -- the clock is stable. When its maximum count-value has been reached, -- the 500 ns from Answer Record 43482 have been passed. if init_wait_count = WAIT_MAX then init_wait_done <= '1'; else init_wait_count <= init_wait_count + 1; end if; end if; end process; timeouts:process(STABLE_CLOCK) begin if rising_edge(STABLE_CLOCK) then -- One common large counter for generating three time-out signals. -- Intermediate time-outs are derived from calculated values, based -- on the period of the provided clock. if reset_time_out = '1' then time_out_counter <= 0; time_out_2ms <= '0'; time_tlock_max <= '0'; time_out_500us <= '0'; else if time_out_counter = WAIT_TIMEOUT_2ms then time_out_2ms <= '1'; else time_out_counter <= time_out_counter + 1; end if; if time_out_counter = WAIT_TLOCK_MAX then time_tlock_max <= '1'; end if; if time_out_counter = WAIT_TIMEOUT_500us then time_out_500us <= '1'; end if; end if; end if; end process; mmcm_lock_wait:process(STABLE_CLOCK) begin if rising_edge(STABLE_CLOCK) then if mmcm_lock_i = '0' then mmcm_lock_count <= 0; mmcm_lock_reclocked <= '0'; else if mmcm_lock_count < MMCM_LOCK_CNT_MAX - 1 then mmcm_lock_count <= mmcm_lock_count + 1; else mmcm_lock_reclocked <= '1'; end if; end if; end if; end process; -- Clock Domain Crossing sync_run_phase_alignment_int : amc_gtx5Gpd_sync_block port map ( clk => TXUSERCLK, data_in => run_phase_alignment_int, data_out => run_phase_alignment_int_s2 ); sync_tx_fsm_reset_done_int : amc_gtx5Gpd_sync_block port map ( clk => TXUSERCLK, data_in => tx_fsm_reset_done_int, data_out => tx_fsm_reset_done_int_s2 ); process(TXUSERCLK) begin if rising_edge(TXUSERCLK) then run_phase_alignment_int_s3 <= run_phase_alignment_int_s2; tx_fsm_reset_done_int_s3 <= tx_fsm_reset_done_int_s2; end if; end process; sync_TXRESETDONE : amc_gtx5Gpd_sync_block port map ( clk => STABLE_CLOCK, data_in => TXRESETDONE, data_out => txresetdone_s2 ); sync_time_out_wait_bypass : amc_gtx5Gpd_sync_block port map ( clk => STABLE_CLOCK, data_in => time_out_wait_bypass, data_out => time_out_wait_bypass_s2 ); sync_mmcm_lock_reclocked : amc_gtx5Gpd_sync_block port map ( clk => STABLE_CLOCK, data_in => MMCM_LOCK, data_out => mmcm_lock_i ); process(STABLE_CLOCK) begin if rising_edge(STABLE_CLOCK) then txresetdone_s3 <= txresetdone_s2; time_out_wait_bypass_s3 <= time_out_wait_bypass_s2; cplllock_prev <= cplllock_sync; qplllock_prev <= qplllock_sync; end if; end process; sync_CPLLLOCK : amc_gtx5Gpd_sync_block port map ( clk => STABLE_CLOCK, data_in => CPLLLOCK, data_out => cplllock_sync ); sync_QPLLLOCK : amc_gtx5Gpd_sync_block port map ( clk => STABLE_CLOCK, data_in => QPLLLOCK, data_out => qplllock_sync ); process (STABLE_CLOCK) begin if rising_edge(STABLE_CLOCK) then if(SOFT_RESET = '1' ) then cplllock_ris_edge <= '0'; elsif((cplllock_prev = '0') and (cplllock_sync = '1')) then cplllock_ris_edge <= '1'; elsif(tx_state = ASSERT_ALL_RESETS or tx_state = RELEASE_PLL_RESET) then cplllock_ris_edge <= cplllock_ris_edge; else cplllock_ris_edge <= '0'; end if; end if; end process; process (STABLE_CLOCK) begin if rising_edge(STABLE_CLOCK) then if(SOFT_RESET = '1' ) then qplllock_ris_edge <= '0'; elsif((qplllock_prev = '0') and (qplllock_sync = '1')) then qplllock_ris_edge <= '1'; elsif(tx_state = ASSERT_ALL_RESETS or tx_state = RELEASE_PLL_RESET) then qplllock_ris_edge <= qplllock_ris_edge; else qplllock_ris_edge <= '0'; end if; end if; end process; timeout_buffer_bypass:process(TXUSERCLK) begin if rising_edge(TXUSERCLK) then if run_phase_alignment_int_s3 = '0' then wait_bypass_count <= 0; time_out_wait_bypass <= '0'; elsif (run_phase_alignment_int_s3 = '1') and (tx_fsm_reset_done_int_s3 = '0') then if wait_bypass_count = MAX_WAIT_BYPASS - 1 then time_out_wait_bypass <= '1'; else wait_bypass_count <= wait_bypass_count + 1; end if; end if; end if; end process; refclk_lost <= '1' when ((TX_QPLL_USED and QPLLREFCLKLOST='1') or (not TX_QPLL_USED and CPLLREFCLKLOST='1')) else '0'; timeout_max:process(STABLE_CLOCK) begin if rising_edge(STABLE_CLOCK) then if((tx_state = ASSERT_ALL_RESETS) or (tx_state = RELEASE_PLL_RESET) or (tx_state = RELEASE_MMCM_RESET)) then wait_time_cnt <= WAIT_TIME_MAX; elsif (wait_time_cnt > 0 ) then wait_time_cnt <= wait_time_cnt - 1; end if; end if; end process; wait_time_done <= '1' when (wait_time_cnt = 0) else '0'; --FSM for resetting the GTX/GTH/GTP in the 7-series. --~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- -- Following steps are performed: -- 1) Only for GTX - After configuration wait for approximately 500 ns as specified in -- answer-record 43482 -- 2) Assert all resets on the GT and on an MMCM potentially connected. -- After that wait until a reference-clock has been detected. -- 3) Release the reset to the GT and wait until the GT-PLL has locked. -- 4) Release the MMCM-reset and wait until the MMCM has signalled lock. -- Also signal to the RX-side which PLL has been reset. -- 5) Wait for the RESET_DONE-signal from the GT. -- 6) Signal to start the phase-alignment procedure and wait for it to -- finish. -- 7) Reset-sequence has successfully run through. Signal this to the -- rest of the design by asserting TX_FSM_RESET_DONE. reset_fsm:process(STABLE_CLOCK) begin if rising_edge(STABLE_CLOCK) then if(SOFT_RESET = '1') then --if(SOFT_RESET = '1' or (not(tx_state = INIT) and not(tx_state = ASSERT_ALL_RESETS) and refclk_lost = '1')) then tx_state <= INIT; TXUSERRDY <= '0'; gttxreset_i <= '0'; MMCM_RESET <= '0'; tx_fsm_reset_done_int <= '0'; QPLL_RESET <= '0'; CPLL_RESET <= '0'; pll_reset_asserted <= '0'; reset_time_out <= '0'; retry_counter_int <= 0; run_phase_alignment_int <= '0'; RESET_PHALIGNMENT <= '1'; else case tx_state is when INIT => --Initial state after configuration. This state will be left after --approx. 500 ns and not be re-entered. if init_wait_done = '1' then tx_state <= ASSERT_ALL_RESETS; reset_time_out <= '1'; end if; when ASSERT_ALL_RESETS => --This is the state into which the FSM will always jump back if any --time-outs will occur. --The number of retries is reported on the output RETRY_COUNTER. In --case the transceiver never comes up for some reason, this machine --will still continue its best and rerun until the FPGA is turned off --or the transceivers come up correctly. if TX_QPLL_USED then if (pll_reset_asserted = '0' and refclk_lost = '0') then QPLL_RESET <= '1'; pll_reset_asserted <= '1'; else QPLL_RESET <= '0'; end if; else if (pll_reset_asserted = '0' and refclk_lost = '0') then CPLL_RESET <= '1'; pll_reset_asserted <= '1'; else CPLL_RESET <= '0'; end if; end if; TXUSERRDY <= '0'; gttxreset_i <= '1'; MMCM_RESET <= '1'; reset_time_out <= '1'; run_phase_alignment_int <= '0'; RESET_PHALIGNMENT <= '1'; if (TX_QPLL_USED and (qplllock_sync = '0') and pll_reset_asserted = '1' ) or (not TX_QPLL_USED and (cplllock_sync = '0') and pll_reset_asserted = '1' ) then tx_state <= WAIT_FOR_PLL_LOCK; end if; when WAIT_FOR_PLL_LOCK => if(wait_time_done = '1') then tx_state <= RELEASE_PLL_RESET; end if; when RELEASE_PLL_RESET => --PLL-Reset of the GTX gets released and the time-out counter --starts running. pll_reset_asserted <= '0'; if (TX_QPLL_USED and (qplllock_sync = '1')) or (not TX_QPLL_USED and (cplllock_sync = '1')) then tx_state <= WAIT_FOR_TXOUTCLK; reset_time_out <= '1'; end if; if time_out_2ms = '1' then if retry_counter_int = MAX_RETRIES then -- If too many retries are performed compared to what is specified in -- the generic, the counter simply wraps around. retry_counter_int <= 0; else retry_counter_int <= retry_counter_int + 1; end if; tx_state <= ASSERT_ALL_RESETS; end if; when WAIT_FOR_TXOUTCLK => gttxreset_i <= '0'; if(wait_time_done = '1') then tx_state <= RELEASE_MMCM_RESET; end if; when RELEASE_MMCM_RESET => --Release of the MMCM-reset. Waiting for the MMCM to lock. MMCM_RESET <= '0'; reset_time_out <= '0'; if mmcm_lock_reclocked = '1' then tx_state <= WAIT_FOR_TXUSRCLK; reset_time_out <= '1'; end if; if (time_tlock_max = '1' and mmcm_lock_reclocked = '0' and reset_time_out = '0') then if retry_counter_int = MAX_RETRIES then -- If too many retries are performed compared to what is specified in -- the generic, the counter simply wraps around. retry_counter_int <= 0; else retry_counter_int <= retry_counter_int + 1; end if; tx_state <= ASSERT_ALL_RESETS; end if; when WAIT_FOR_TXUSRCLK => if(wait_time_done = '1') then tx_state <= WAIT_RESET_DONE; end if; when WAIT_RESET_DONE => TXUSERRDY <= '1'; reset_time_out <= '0'; if txresetdone_s3 = '1' then tx_state <= DO_PHASE_ALIGNMENT; reset_time_out <= '1'; end if; if (time_out_500us = '1' and reset_time_out = '0') then if retry_counter_int = MAX_RETRIES then -- If too many retries are performed compared to what is specified in -- the generic, the counter simply wraps around. retry_counter_int <= 0; else retry_counter_int <= retry_counter_int + 1; end if; tx_state <= ASSERT_ALL_RESETS; end if; when DO_PHASE_ALIGNMENT => --The direct handling of the signals for the Phase Alignment is done outside --this state-machine. RESET_PHALIGNMENT <= '0'; run_phase_alignment_int <= '1'; reset_time_out <= '0'; if PHALIGNMENT_DONE = '1' then tx_state <= RESET_FSM_DONE; end if; if time_out_wait_bypass_s3 = '1' then if retry_counter_int = MAX_RETRIES then -- If too many retries are performed compared to what is specified in -- the generic, the counter simply wraps around. retry_counter_int <= 0; else retry_counter_int <= retry_counter_int + 1; end if; tx_state <= ASSERT_ALL_RESETS; end if; when RESET_FSM_DONE => reset_time_out <= '1'; tx_fsm_reset_done_int <= '1'; when OTHERS => tx_state <= INIT; end case; end if; end if; end process; end RTL;