1 --////////////////////////////////////////////////////////////////////////////////
4 --// /___/ \ / Vendor: Xilinx
5 --// \ \ \/ Version : 2.
7
6 --// \ \ Application : 7 Series FPGAs Transceivers Wizard
7 --// / / Filename :serdes5gpdprod_tx_startup_fsm.vhd
13 -- Description : This module performs TX reset and initialization.
17 -- Module serdes5GpdProd_tx_startup_fsm
18 -- Generated by Xilinx 7 Series FPGAs Transceivers Wizard
21 -- (c) Copyright 2010-2012 Xilinx, Inc. All rights reserved.
23 -- This file contains confidential and proprietary information
24 -- of Xilinx, Inc. and is protected under U.S. and
25 -- international copyright and other intellectual property
29 -- This disclaimer is not a license and does not grant any
30 -- rights to the materials distributed herewith. Except as
31 -- otherwise provided in a valid license issued to you by
32 -- Xilinx, and to the maximum extent permitted by applicable
33 -- law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS"
AND
34 -- WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES
35 -- AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING
36 -- BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-
37 -- INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and
38 -- (2) Xilinx shall
not be liable (whether
in contract
or tort,
39 -- including negligence, or under any other theory of
40 -- liability) for any loss or damage of any kind or nature
41 -- related to, arising under or in connection with these
42 -- materials, including for any direct, or any indirect,
43 -- special, incidental, or consequential loss or damage
44 -- (including loss of data, profits, goodwill, or any type of
45 -- loss or damage suffered as a result of any action brought
46 -- by a third party) even if such damage or loss was
47 -- reasonably foreseeable or Xilinx had been advised of the
48 -- possibility of the same.
50 -- CRITICAL APPLICATIONS
51 -- Xilinx products are not designed or intended to be fail-
52 -- safe, or for use in any application requiring fail-safe
53 -- performance, such as life-support or safety devices or
54 -- systems, Class III medical devices, nuclear facilities,
55 -- applications related to the deployment of airbags, or any
56 -- other applications that could lead to death, personal
57 -- injury, or severe property or environmental damage
58 -- (individually and collectively, "Critical
59 -- Applications"). Customer assumes the sole risk and
60 -- liability of any use of Xilinx products in Critical
61 -- Applications, subject only to applicable laws and
62 -- regulations governing limitations on product liability.
64 -- THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS
65 -- PART OF THIS FILE AT ALL TIMES.
68 --*****************************************************************************
71 use IEEE.STD_LOGIC_1164.
ALL;
72 use IEEE.NUMERIC_STD.
ALL;
75 Generic( GT_TYPE : := "GTX";
76 STABLE_CLOCK_PERIOD : range 4 to 250 := 8;
--Period of the stable clock driving this state-machine, unit is [ns]
77 RETRY_COUNTER_BITWIDTH : range 2 to 8 := 8;
78 TX_QPLL_USED : := False;
-- the TX and RX Reset FSMs must
79 RX_QPLL_USED : := False;
-- share these two generic values
80 PHASE_ALIGNMENT_MANUAL : := True -- Decision if a manual phase-alignment is necessary or the automatic
81 -- is enough. For single-lane applications the automatic alignment is
84 Port ( STABLE_CLOCK : in ;
--Stable Clock, either a stable clock from the PCB
85 --or reference-clock present at startup.
86 TXUSERCLK : in ;
--TXUSERCLK as used in the design
87 SOFT_RESET : in ;
--User Reset, can be pulled any
88 QPLLREFCLKLOST : in ;
--QPLL Reference-clock for the GT is lost
89 CPLLREFCLKLOST : in ;
--CPLL Reference-clock for the GT is lost
90 QPLLLOCK : in ;
--Lock Detect from the QPLL of the GT
91 CPLLLOCK : in ;
--Lock Detect from the CPLL of the GT
94 GTTXRESET : out :='0';
95 MMCM_RESET : out :='1';
96 QPLL_RESET : out :='0';
--Reset QPLL
97 CPLL_RESET : out :='0';
--Reset CPLL
98 TX_FSM_RESET_DONE : out ;
--Reset-sequence has sucessfully been finished.
99 TXUSERRDY : out :='0';
100 RUN_PHALIGNMENT : out :='0';
101 RESET_PHALIGNMENT : out :='0';
102 PHALIGNMENT_DONE : in ;
104 RETRY_COUNTER : out (RETRY_COUNTER_BITWIDTH-1 downto 0):=(others=>'0')-- Number of
105 -- Retries it took to get the transceiver up and running
107 end serdes5GpdProd_TX_STARTUP_FSM;
110 -- * Timing depends on the frequency of the stable clock. Hence counters-sizes
111 -- are calculated at design-time based on the Generics
113 -- * if either of PLLs is reset during TX-startup, it does not need to be reset again by RX
114 -- => signal which PLL has been reset
121 component serdes5GpdProd_sync_block
123 INITIALISE : (
1 downto 0) := "
00"
132 type tx_rst_fsm_type is(
133 INIT, ASSERT_ALL_RESETS, RELEASE_PLL_RESET,
134 RELEASE_MMCM_RESET, WAIT_RESET_DONE, DO_PHASE_ALIGNMENT,
137 signal tx_state : tx_rst_fsm_type := INIT;
139 constant MMCM_LOCK_CNT_MAX : := 1024;
140 constant STARTUP_DELAY : := 500;
--AR43482: Transceiver needs to wait for 500 ns
after configuration
141 constant WAIT_CYCLES : := STARTUP_DELAY / STABLE_CLOCK_PERIOD;
-- Number of Clock-Cycles to wait after configuration
142 constant WAIT_MAX : := WAIT_CYCLES + 10;
-- 500 ns plus some additional margin
144 constant WAIT_TIMEOUT_2ms : := 2000000 / STABLE_CLOCK_PERIOD;
-- 2 ms time-out
145 constant WAIT_TLOCK_MAX : := 100000 / STABLE_CLOCK_PERIOD;
--100 us time-out
146 constant WAIT_TIMEOUT_500us : := 500000 / STABLE_CLOCK_PERIOD;
--100 us time-out
148 signal init_wait_count : range 0 to WAIT_MAX:=0;
149 signal init_wait_done : := '0';
150 signal pll_reset_asserted : := '0';
152 signal tx_fsm_reset_done_int : := '0';
153 signal tx_fsm_reset_done_int_s2 : := '0';
154 signal tx_fsm_reset_done_int_s3 : := '0';
156 signal txresetdone_s2 : := '0';
157 signal txresetdone_s3 : := '0';
159 constant MAX_RETRIES : := 2**RETRY_COUNTER_BITWIDTH-1;
160 signal retry_counter_int : range 0 to MAX_RETRIES;
161 signal time_out_counter : range 0 to WAIT_TIMEOUT_2ms := 0;
163 signal reset_time_out : := '0';
164 signal time_out_2ms : := '0';
--\Flags that the various time-out points
165 signal time_tlock_max : := '0';
--|have been reached.
166 signal time_out_500us : := '0';
--/
168 signal mmcm_lock_count : range 0 to MMCM_LOCK_CNT_MAX-1:=0;
169 signal mmcm_lock_int : := '0';
170 signal mmcm_lock_i : := '0';
171 signal mmcm_lock_reclocked : := '0';
173 signal run_phase_alignment_int : := '0';
174 signal run_phase_alignment_int_s2 : := '0';
175 signal run_phase_alignment_int_s3 : := '0';
176 constant MAX_WAIT_BYPASS : := 173568;
--110000 TXUSRCLK cycles is the max for Multi lane designs
180 signal wait_bypass_count : range 0 to MAX_WAIT_BYPASS-1;
181 signal time_out_wait_bypass : := '0';
182 signal time_out_wait_bypass_s2 : := '0';
183 signal time_out_wait_bypass_s3 : := '0';
184 signal refclk_lost : ;
186 signal cplllock_sync: := '0';
187 signal qplllock_sync: := '0';
188 signal cplllock_prev: := '0';
189 signal qplllock_prev: := '0';
190 signal cplllock_ris_edge: := '0';
191 signal qplllock_ris_edge: := '0';
194 --Alias section, signals used within this module mapped to output ports:
195 RETRY_COUNTER <= (TO_UNSIGNED(retry_counter_int,RETRY_COUNTER_BITWIDTH));
196 RUN_PHALIGNMENT <= run_phase_alignment_int;
197 TX_FSM_RESET_DONE <= tx_fsm_reset_done_int;
199 process(STABLE_CLOCK)
201 if rising_edge(STABLE_CLOCK) then
202 -- The counter starts running when configuration has finished and
203 -- the clock is stable. When its maximum count-value has been reached,
204 -- the 500 ns from Answer
Record 43482 have been passed.
205 if init_wait_count = WAIT_MAX then
206 init_wait_done <= '1';
208 init_wait_count <= init_wait_count + 1;
214 timeouts:
process(STABLE_CLOCK)
216 if rising_edge(STABLE_CLOCK) then
217 -- One common large counter for generating three time-out signals.
218 -- Intermediate time-outs are derived from calculated values, based
219 -- on the period of the provided clock.
220 if reset_time_out = '1' then
221 time_out_counter <= 0;
223 time_tlock_max <= '0';
224 time_out_500us <= '0';
226 if time_out_counter = WAIT_TIMEOUT_2ms then
229 time_out_counter <= time_out_counter + 1;
232 if time_out_counter = WAIT_TLOCK_MAX then
233 time_tlock_max <= '1';
236 if time_out_counter = WAIT_TIMEOUT_500us then
237 time_out_500us <= '1';
243 mmcm_lock_wait:
process(STABLE_CLOCK)
245 if rising_edge(STABLE_CLOCK) then
246 if mmcm_lock_i = '0' then
247 mmcm_lock_count <= 0;
248 mmcm_lock_reclocked <= '0';
250 if mmcm_lock_count < MMCM_LOCK_CNT_MAX - 1 then
251 mmcm_lock_count <= mmcm_lock_count + 1;
253 mmcm_lock_reclocked <= '1';
261 -- Clock Domain Crossing
263 sync_run_phase_alignment_int : serdes5GpdProd_sync_block
267 data_in => run_phase_alignment_int ,
268 data_out => run_phase_alignment_int_s2
271 sync_tx_fsm_reset_done_int : serdes5GpdProd_sync_block
275 data_in => tx_fsm_reset_done_int,
276 data_out => tx_fsm_reset_done_int_s2
281 if rising_edge(TXUSERCLK) then
282 run_phase_alignment_int_s3 <= run_phase_alignment_int_s2;
284 tx_fsm_reset_done_int_s3 <= tx_fsm_reset_done_int_s2;
288 sync_TXRESETDONE : serdes5GpdProd_sync_block
292 data_in => TXRESETDONE,
293 data_out => txresetdone_s2
296 sync_time_out_wait_bypass : serdes5GpdProd_sync_block
300 data_in => time_out_wait_bypass,
301 data_out => time_out_wait_bypass_s2
304 sync_mmcm_lock_reclocked : serdes5GpdProd_sync_block
308 data_in => MMCM_LOCK,
309 data_out => mmcm_lock_i
312 process(STABLE_CLOCK)
314 if rising_edge(STABLE_CLOCK) then
315 txresetdone_s3 <= txresetdone_s2;
317 time_out_wait_bypass_s3 <= time_out_wait_bypass_s2;
318 cplllock_prev <= cplllock_sync;
319 qplllock_prev <= qplllock_sync;
323 sync_CPLLLOCK : serdes5GpdProd_sync_block
328 data_out => cplllock_sync
331 sync_QPLLLOCK : serdes5GpdProd_sync_block
336 data_out => qplllock_sync
340 process (STABLE_CLOCK)
342 if rising_edge(STABLE_CLOCK) then
343 if(SOFT_RESET = '1' ) then
344 cplllock_ris_edge <= '0';
345 elsif((cplllock_prev = '0') and (cplllock_sync = '1')) then
346 cplllock_ris_edge <= '1';
347 elsif(tx_state = ASSERT_ALL_RESETS or tx_state = RELEASE_PLL_RESET) then
348 cplllock_ris_edge <= cplllock_ris_edge;
350 cplllock_ris_edge <= '0';
355 process (STABLE_CLOCK)
357 if rising_edge(STABLE_CLOCK) then
358 if(SOFT_RESET = '1' ) then
359 qplllock_ris_edge <= '0';
360 elsif((qplllock_prev = '0') and (qplllock_sync = '1')) then
361 qplllock_ris_edge <= '1';
362 elsif(tx_state = ASSERT_ALL_RESETS or tx_state = RELEASE_PLL_RESET) then
363 qplllock_ris_edge <= qplllock_ris_edge;
365 qplllock_ris_edge <= '0';
371 timeout_buffer_bypass:
process(TXUSERCLK)
373 if rising_edge(TXUSERCLK) then
374 if run_phase_alignment_int_s3 = '0' then
375 wait_bypass_count <= 0;
376 time_out_wait_bypass <= '0';
377 elsif (run_phase_alignment_int_s3 = '1') and (tx_fsm_reset_done_int_s3 = '0') then
378 if wait_bypass_count = MAX_WAIT_BYPASS - 1 then
379 time_out_wait_bypass <= '1';
381 wait_bypass_count <= wait_bypass_count + 1;
387 refclk_lost <= '1' when ((TX_QPLL_USED and QPLLREFCLKLOST='1') or (not TX_QPLL_USED and CPLLREFCLKLOST='1')) else '0';
390 --FSM for resetting the GTX/GTH/GTP in the 7-series.
391 --~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
393 -- Following steps are performed:
394 -- 1) Only
for GTX -
After configuration wait for approximately
500 ns as specified
in
395 -- answer-record 43482
396 -- 2)
Assert all resets
on the GT
and on an MMCM potentially connected.
397 -- After that wait until a reference-clock has been detected.
398 -- 3)
Release the reset
to the GT
and wait until the GT-PLL has locked.
399 -- 4)
Release the MMCM-reset
and wait until the MMCM has signalled lock.
400 -- Also signal to the RX-side which PLL has been reset.
401 -- 5)
Wait for the RESET_DONE-signal from the GT.
402 -- 6)
Signal to start the phase-alignment
procedure and wait for it
to
404 -- 7) Reset-sequence has successfully run through.
Signal this
to the
405 -- rest of the design by asserting TX_FSM_RESET_DONE.
407 reset_fsm:
process(STABLE_CLOCK)
409 if rising_edge(STABLE_CLOCK) then
410 if(SOFT_RESET = '1' or (not(tx_state = INIT) and not(tx_state = ASSERT_ALL_RESETS) and refclk_lost = '1')) then
415 tx_fsm_reset_done_int <= '0';
418 pll_reset_asserted <= '0';
419 reset_time_out <= '0';
420 retry_counter_int <= 0;
421 run_phase_alignment_int <= '0';
422 RESET_PHALIGNMENT <= '1';
427 --Initial state after configuration. This state will be left after
428 --approx. 500 ns
and not be re-entered.
429 if init_wait_done = '1' then
430 tx_state <= ASSERT_ALL_RESETS;
431 reset_time_out <= '1';
434 when ASSERT_ALL_RESETS =>
435 --This is the state into which the FSM will always jump back if any
436 --time-outs will occur.
437 --The number of retries is reported on the output RETRY_COUNTER. In
438 --case the transceiver never comes up for some reason, this machine
439 --will still continue its best and rerun until the FPGA is turned off
440 --or the transceivers come up correctly.
442 if pll_reset_asserted = '0' then
444 pll_reset_asserted <= '1';
449 if pll_reset_asserted = '0' then
451 pll_reset_asserted <= '1';
459 reset_time_out <= '0';
460 run_phase_alignment_int <= '0';
461 RESET_PHALIGNMENT <= '1';
463 if (TX_QPLL_USED and (QPLLREFCLKLOST = '0') and pll_reset_asserted = '1') or
464 (not TX_QPLL_USED and (CPLLREFCLKLOST = '0') and pll_reset_asserted = '1') then
465 tx_state <= RELEASE_PLL_RESET;
468 when RELEASE_PLL_RESET =>
469 --PLL-Reset of the GTX gets released and the time-out counter
471 pll_reset_asserted <= '0';
473 if (TX_QPLL_USED and (qplllock_ris_edge = '1')) or
474 (not TX_QPLL_USED and (cplllock_ris_edge = '1')) then
475 tx_state <= RELEASE_MMCM_RESET;
476 reset_time_out <= '1';
479 if time_out_2ms = '1' then
480 if retry_counter_int = MAX_RETRIES then
481 -- If too many retries are performed compared to what is specified in
482 -- the generic, the counter simply wraps around.
483 retry_counter_int <= 0;
485 retry_counter_int <= retry_counter_int + 1;
487 tx_state <= ASSERT_ALL_RESETS;
490 when RELEASE_MMCM_RESET =>
492 reset_time_out <= '0';
493 --Release of the MMCM-reset. Waiting for the MMCM to lock.
495 if mmcm_lock_reclocked = '1' then
496 tx_state <= WAIT_RESET_DONE;
497 reset_time_out <= '1';
500 if (time_tlock_max = '1' and mmcm_lock_reclocked = '0' and reset_time_out = '0') then
501 if retry_counter_int = MAX_RETRIES then
502 -- If too many retries are performed compared to what is specified in
503 -- the generic, the counter simply wraps around.
504 retry_counter_int <= 0;
506 retry_counter_int <= retry_counter_int + 1;
508 tx_state <= ASSERT_ALL_RESETS;
511 when WAIT_RESET_DONE =>
513 reset_time_out <= '0';
514 if txresetdone_s3 = '1' then
515 tx_state <= DO_PHASE_ALIGNMENT;
516 reset_time_out <= '1';
519 if (time_out_500us = '1' and reset_time_out = '0') then
520 if retry_counter_int = MAX_RETRIES then
521 -- If too many retries are performed compared to what is specified in
522 -- the generic, the counter simply wraps around.
523 retry_counter_int <= 0;
525 retry_counter_int <= retry_counter_int + 1;
527 tx_state <= ASSERT_ALL_RESETS;
530 when DO_PHASE_ALIGNMENT =>
531 --The direct handling of the signals for the Phase Alignment is done outside
532 --this state-machine.
533 RESET_PHALIGNMENT <= '0';
534 run_phase_alignment_int <= '1';
535 reset_time_out <= '0';
537 if PHALIGNMENT_DONE = '1' then
538 tx_state <= RESET_FSM_DONE;
541 if time_out_wait_bypass_s3 = '1' then
542 if retry_counter_int = MAX_RETRIES then
543 -- If too many retries are performed compared to what is specified in
544 -- the generic, the counter simply wraps around.
545 retry_counter_int <= 0;
547 retry_counter_int <= retry_counter_int + 1;
549 tx_state <= ASSERT_ALL_RESETS;
552 when RESET_FSM_DONE =>
553 reset_time_out <= '1';
554 tx_fsm_reset_done_int <= '1';