AMC13
Firmwares for the different applications of the AMC13 uTCA board made at Boston University
 All Classes Variables
mig_7series_v1_9_ecc_gen.v
1  //*****************************************************************************
2 // (c) Copyright 2008 - 2013 Xilinx, Inc. All rights reserved.
3 //
4 // This file contains confidential and proprietary information
5 // of Xilinx, Inc. and is protected under U.S. and
6 // international copyright and other intellectual property
7 // laws.
8 //
9 // DISCLAIMER
10 // This disclaimer is not a license and does not grant any
11 // rights to the materials distributed herewith. Except as
12 // otherwise provided in a valid license issued to you by
13 // Xilinx, and to the maximum extent permitted by applicable
14 // law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND
15 // WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES
16 // AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING
17 // BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-
18 // INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and
19 // (2) Xilinx shall not be liable (whether in contract or tort,
20 // including negligence, or under any other theory of
21 // liability) for any loss or damage of any kind or nature
22 // related to, arising under or in connection with these
23 // materials, including for any direct, or any indirect,
24 // special, incidental, or consequential loss or damage
25 // (including loss of data, profits, goodwill, or any type of
26 // loss or damage suffered as a result of any action brought
27 // by a third party) even if such damage or loss was
28 // reasonably foreseeable or Xilinx had been advised of the
29 // possibility of the same.
30 //
31 // CRITICAL APPLICATIONS
32 // Xilinx products are not designed or intended to be fail-
33 // safe, or for use in any application requiring fail-safe
34 // performance, such as life-support or safety devices or
35 // systems, Class III medical devices, nuclear facilities,
36 // applications related to the deployment of airbags, or any
37 // other applications that could lead to death, personal
38 // injury, or severe property or environmental damage
39 // (individually and collectively, "Critical
40 // Applications"). Customer assumes the sole risk and
41 // liability of any use of Xilinx products in Critical
42 // Applications, subject only to applicable laws and
43 // regulations governing limitations on product liability.
44 //
45 // THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS
46 // PART OF THIS FILE AT ALL TIMES.
47 //
48 //*****************************************************************************
49 // ____ ____
50 // / /\/ /
51 // /___/ \ / Vendor : Xilinx
52 // \ \ \/ Version : %version
53 // \ \ Application : MIG
54 // / / Filename : ecc_gen.v
55 // /___/ /\ Date Last Modified : $date$
56 // \ \ / \ Date Created : Tue Jun 30 2009
57 // \___\/\___\
58 //
59 //Device : 7-Series
60 //Design Name : DDR3 SDRAM
61 //Purpose :
62 //Reference :
63 //Revision History :
64 //*****************************************************************************
65 
66 `timescale 1ps/1ps
67 
68 // Generate the ecc code. Note that the synthesizer should
69 // generate this as a static logic. Code in this block should
70 // never run during simulation phase, or directly impact timing.
71 //
72 // The code generated is a single correct, double detect code.
73 // It is the classic Hamming code. Instead, the code is
74 // optimized for minimal/balanced tree depth and size. See
75 // Hsiao IBM Technial Journal 1970.
76 //
77 // The code is returned as a single bit vector, h_rows. This was
78 // the only way to "subroutinize" this with the restrictions of
79 // disallowed include files and that matrices cannot be passed
80 // in ports.
81 //
82 // Factorial and the combos functions are defined. Combos
83 // simply computes the number of combinations from the set
84 // size and elements at a time.
85 //
86 // The function next_combo computes the next combination in
87 // lexicographical order given the "current" combination. Its
88 // output is undefined if given the last combination in the
89 // lexicographical order.
90 //
91 // next_combo is insensitive to the number of elements in the
92 // combinations.
93 //
94 // An H transpose matrix is generated because that's the easiest
95 // way to do it. The H transpose matrix is generated by taking
96 // the one at a time combinations, then the 3 at a time, then
97 // the 5 at a time. The number combinations used is equal to
98 // the width of the code (CODE_WIDTH). The boundaries between
99 // the 1, 3 and 5 groups are hardcoded in the for loop.
100 //
101 // At the same time the h_rows vector is generated from the
102 // H transpose matrix.
103 
105  #(
106  parameter CODE_WIDTH = 72,
107  parameter ECC_WIDTH = 8,
108  parameter DATA_WIDTH = 64
109  )
110  (
111  /*AUTOARG**/
112  // Outputs
113  h_rows
114  );
115 
116 
117  function integer factorial (input integer i);
118  integer index;
119  if (i == 1) factorial = 1;
120  else begin
121  factorial = 1;
122  for (index=2; index<=i; index=index+1)
123  factorial = factorial * index;
124  end
125  endfunction // factorial
126 
127  function integer combos (input integer n, k);
128  combos = factorial(n)/(factorial(k)*factorial(n-k));
129  endfunction // combinations
130 
131  // function next_combo
132  // Given a combination, return the next combo in lexicographical
133  // order. Scans from right to left. Assumes the first combination
134  // is k ones all of the way to the left.
135  //
136  // Upon entry, initialize seen0, trig1, and ones. "seen0" means
137  // that a zero has been observed while scanning from right to left.
138  // "trig1" means that a one have been observed _after_ seen0 is set.
139  // "ones" counts the number of ones observed while scanning the input.
140  //
141  // If trig1 is one, just copy the input bit to the output and increment
142  // to the next bit. Otherwise set the the output bit to zero, if the
143  // input is a one, increment ones. If the input bit is a one and seen0
144  // is true, dump out the accumulated ones. Set seen0 to the complement
145  // of the input bit. Note that seen0 is not used subsequent to trig1
146  // getting set.
147  function [ECC_WIDTH-1:0] next_combo (input [ECC_WIDTH-1:0] i);
148  integer index;
149  integer dump_index;
150  reg seen0;
151  reg trig1;
152 // integer ones;
153  reg [ECC_WIDTH-1:0] ones;
154  begin
155  seen0 = 1'b0;
156  trig1 = 1'b0;
157  ones = 0;
158  for (index=0; index<ECC_WIDTH; index=index+1)
159  begin
160  // The "== 1'bx" is so this will converge at time zero.
161  // XST assumes false, which should be OK.
162  if ((&i == 1'bx) || trig1) next_combo[index] = i[index];
163  else begin
164  next_combo[index] = 1'b0;
165  ones = ones + i[index];
166  if (i[index] && seen0) begin
167  trig1 = 1'b1;
168  for (dump_index=index-1; dump_index>=0;dump_index=dump_index-1)
169  if (dump_index>=index-ones) next_combo[dump_index] = 1'b1;
170  end
171  seen0 = ~i[index];
172  end // else: !if(trig1)
173  end
174  end // function
175  endfunction // next_combo
176 
177  wire [ECC_WIDTH-1:0] ht_matrix [CODE_WIDTH-1:0];
178  output wire [CODE_WIDTH*ECC_WIDTH-1:0] h_rows;
179 
180  localparam COMBOS_3 = combos(ECC_WIDTH, 3);
181  localparam COMBOS_5 = combos(ECC_WIDTH, 5);
182  genvar n;
183  genvar s;
184  generate
185  for (n=0; n<CODE_WIDTH; n=n+1) begin : ht
186  if (n == 0)
187  assign ht_matrix[n] = {{3{1'b1}}, {ECC_WIDTH-3{1'b0}}};
188  else if (n == COMBOS_3 && n < DATA_WIDTH)
189  assign ht_matrix[n] = {{5{1'b1}}, {ECC_WIDTH-5{1'b0}}};
190  else if ((n == COMBOS_3+COMBOS_5) && n < DATA_WIDTH)
191  assign ht_matrix[n] = {{7{1'b1}}, {ECC_WIDTH-7{1'b0}}};
192  else if (n == DATA_WIDTH)
193  assign ht_matrix[n] = {{1{1'b1}}, {ECC_WIDTH-1{1'b0}}};
194  else assign ht_matrix[n] = next_combo(ht_matrix[n-1]);
195 
196  for (s=0; s<ECC_WIDTH; s=s+1) begin : h_row
197  assign h_rows[s*CODE_WIDTH+n] = ht_matrix[n][s];
198  end
199  end
200  endgenerate
201 
202 endmodule // ecc_gen