AMC13
Firmwares for the different applications of the AMC13 uTCA board made at Boston University
Main Page
Design Unit List
Files
File List
All
Classes
Variables
src
common
DDR
ddr3_1_9_a
ecc
mig_7series_v1_9_ecc_dec_fix.v
1
//*****************************************************************************
2
// (c) Copyright 2008 - 2013 Xilinx, Inc. All rights reserved.
3
//
4
// This file contains confidential and proprietary information
5
// of Xilinx, Inc. and is protected under U.S. and
6
// international copyright and other intellectual property
7
// laws.
8
//
9
// DISCLAIMER
10
// This disclaimer is not a license and does not grant any
11
// rights to the materials distributed herewith. Except as
12
// otherwise provided in a valid license issued to you by
13
// Xilinx, and to the maximum extent permitted by applicable
14
// law: (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND
15
// WITH ALL FAULTS, AND XILINX HEREBY DISCLAIMS ALL WARRANTIES
16
// AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING
17
// BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-
18
// INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and
19
// (2) Xilinx shall not be liable (whether in contract or tort,
20
// including negligence, or under any other theory of
21
// liability) for any loss or damage of any kind or nature
22
// related to, arising under or in connection with these
23
// materials, including for any direct, or any indirect,
24
// special, incidental, or consequential loss or damage
25
// (including loss of data, profits, goodwill, or any type of
26
// loss or damage suffered as a result of any action brought
27
// by a third party) even if such damage or loss was
28
// reasonably foreseeable or Xilinx had been advised of the
29
// possibility of the same.
30
//
31
// CRITICAL APPLICATIONS
32
// Xilinx products are not designed or intended to be fail-
33
// safe, or for use in any application requiring fail-safe
34
// performance, such as life-support or safety devices or
35
// systems, Class III medical devices, nuclear facilities,
36
// applications related to the deployment of airbags, or any
37
// other applications that could lead to death, personal
38
// injury, or severe property or environmental damage
39
// (individually and collectively, "Critical
40
// Applications"). Customer assumes the sole risk and
41
// liability of any use of Xilinx products in Critical
42
// Applications, subject only to applicable laws and
43
// regulations governing limitations on product liability.
44
//
45
// THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS
46
// PART OF THIS FILE AT ALL TIMES.
47
//
48
//*****************************************************************************
49
// ____ ____
50
// / /\/ /
51
// /___/ \ / Vendor : Xilinx
52
// \ \ \/ Version : %version
53
// \ \ Application : MIG
54
// / / Filename : ecc_dec_fix.v
55
// /___/ /\ Date Last Modified : $date$
56
// \ \ / \ Date Created : Tue Jun 30 2009
57
// \___\/\___\
58
//
59
//Device : 7-Series
60
//Design Name : DDR3 SDRAM
61
//Purpose :
62
//Reference :
63
//Revision History :
64
//*****************************************************************************
65
`timescale
1ps/1ps
66
67
module
mig_7series_v1_9_ecc_dec_fix
68
#(
69
parameter
TCQ
=
100
,
70
parameter
PAYLOAD_WIDTH
=
64
,
71
parameter
CODE_WIDTH
=
72
,
72
parameter
DATA_WIDTH
=
64
,
73
parameter
DQ_WIDTH
=
72
,
74
parameter
ECC_WIDTH
=
8
,
75
parameter
nCK_PER_CLK
=
4
76
)
77
(
78
/*AUTOARG**/
79
// Outputs
80
rd_data
,
ecc_single
,
ecc_multiple
,
81
// Inputs
82
clk
,
rst
,
h_rows
,
phy_rddata
,
correct_en
,
ecc_status_valid
83
);
84
85
input
clk
;
86
input
rst
;
87
88
// Compute syndromes.
89
input
[
CODE_WIDTH
*
ECC_WIDTH
-
1
:
0
]
h_rows
;
90
input
[
2
*
nCK_PER_CLK
*
DQ_WIDTH
-
1
:
0
]
phy_rddata
;
91
wire
[
2
*
nCK_PER_CLK
*
ECC_WIDTH
-
1
:
0
]
syndrome_ns
;
92
genvar
k
;
93
genvar
m
;
94
generate
95
for
(
k
=
0
;
k
<
2
*
nCK_PER_CLK
;
k
=
k
+
1
)
begin
:
ecc_word
96
for
(
m
=
0
;
m
<
ECC_WIDTH
;
m
=
m
+
1
)
begin
:
ecc_bit
97
assign
syndrome_ns
[
k
*
ECC_WIDTH
+
m
] =
98
^(
phy_rddata
[
k
*
DQ_WIDTH
+:
CODE_WIDTH
] &
h_rows
[
m
*
CODE_WIDTH
+:
CODE_WIDTH
]);
99
end
100
end
101
endgenerate
102
reg
[
2
*
nCK_PER_CLK
*
ECC_WIDTH
-
1
:
0
]
syndrome_r
;
103
always
@(
posedge
clk
)
syndrome_r
<= #TCQ
syndrome_ns
;
104
105
// Extract payload bits from raw DRAM bits and register.
106
wire
[
2
*
nCK_PER_CLK
*
PAYLOAD_WIDTH
-
1
:
0
]
ecc_rddata_ns
;
107
genvar
i
;
108
generate
109
for
(
i
=
0
;
i
<
2
*
nCK_PER_CLK
;
i
=
i
+
1
)
begin
:
extract_payload
110
assign
ecc_rddata_ns
[
i
*
PAYLOAD_WIDTH
+:
PAYLOAD_WIDTH
] =
111
phy_rddata
[
i
*
DQ_WIDTH
+:
PAYLOAD_WIDTH
];
112
end
113
endgenerate
114
reg
[
2
*
nCK_PER_CLK
*
PAYLOAD_WIDTH
-
1
:
0
]
ecc_rddata_r
;
115
always
@(
posedge
clk
)
ecc_rddata_r
<= #TCQ
ecc_rddata_ns
;
116
117
// Regenerate h_matrix from h_rows leaving out the identity part
118
// since we're not going to correct the ECC bits themselves.
119
genvar
n
;
120
genvar
p
;
121
wire
[
ECC_WIDTH
-
1
:
0
]
h_matrix
[
DATA_WIDTH
-
1
:
0
];
122
generate
123
for
(
n
=
0
;
n
<
DATA_WIDTH
;
n
=
n
+
1
)
begin
:
h_col
124
for
(
p
=
0
;
p
<
ECC_WIDTH
;
p
=
p
+
1
)
begin
:
h_bit
125
assign
h_matrix
[
n
][
p
] =
h_rows
[
p
*
CODE_WIDTH
+
n
];
126
end
127
end
128
endgenerate
129
130
// Compute flip bits.
131
wire
[
2
*
nCK_PER_CLK
*
DATA_WIDTH
-
1
:
0
]
flip_bits
;
132
genvar
q
;
133
genvar
r
;
134
generate
135
for
(
q
=
0
;
q
<
2
*
nCK_PER_CLK
;
q
=
q
+
1
)
begin
:
flip_word
136
for
(
r
=
0
;
r
<
DATA_WIDTH
;
r
=
r
+
1
)
begin
:
flip_bit
137
assign
flip_bits
[
q
*
DATA_WIDTH
+
r
] =
138
h_matrix
[
r
] ==
syndrome_r
[
q
*
ECC_WIDTH
+:
ECC_WIDTH
];
139
end
140
end
141
endgenerate
142
143
// Correct data.
144
output
reg
[
2
*
nCK_PER_CLK
*
PAYLOAD_WIDTH
-
1
:
0
]
rd_data
;
145
input
correct_en
;
146
integer
s
;
147
always
@(
/*AS**/
correct_en
or
ecc_rddata_r
or
flip_bits
)
148
for
(
s
=
0
;
s
<
2
*
nCK_PER_CLK
;
s
=
s
+
1
)
149
if
(
correct_en
)
150
rd_data
[
s
*
PAYLOAD_WIDTH
+:
DATA_WIDTH
] =
151
ecc_rddata_r
[
s
*
PAYLOAD_WIDTH
+:
DATA_WIDTH
] ^
152
flip_bits
[
s
*
DATA_WIDTH
+:
DATA_WIDTH
];
153
else
rd_data
[
s
*
PAYLOAD_WIDTH
+:
DATA_WIDTH
] =
154
ecc_rddata_r
[
s
*
PAYLOAD_WIDTH
+:
DATA_WIDTH
];
155
156
// Copy raw payload bits if ECC_TEST is ON.
157
localparam
RAW_BIT_WIDTH
=
PAYLOAD_WIDTH
-
DATA_WIDTH
;
158
genvar
t
;
159
generate
160
if
(
RAW_BIT_WIDTH
>
0
)
161
for
(
t
=
0
;
t
<
2
*
nCK_PER_CLK
;
t
=
t
+
1
)
begin
:
copy_raw_bits
162
always
@(
/*AS**/
ecc_rddata_r
)
163
rd_data
[(
t
+
1
)*
PAYLOAD_WIDTH
-
1
-:
RAW_BIT_WIDTH
] =
164
ecc_rddata_r
[(
t
+
1
)*
PAYLOAD_WIDTH
-
1
-:
RAW_BIT_WIDTH
];
165
end
166
endgenerate
167
168
// Generate status information.
169
input
ecc_status_valid
;
170
output
wire
[
2
*
nCK_PER_CLK
-
1
:
0
]
ecc_single
;
171
output
wire
[
2
*
nCK_PER_CLK
-
1
:
0
]
ecc_multiple
;
172
genvar
v
;
173
generate
174
for
(
v
=
0
;
v
<
2
*
nCK_PER_CLK
;
v
=
v
+
1
)
begin
:
compute_status
175
wire
zero
= ~|
syndrome_r
[
v
*
ECC_WIDTH
+:
ECC_WIDTH
];
176
wire
odd
= ^
syndrome_r
[
v
*
ECC_WIDTH
+:
ECC_WIDTH
];
177
assign
ecc_single
[
v
] =
ecc_status_valid
&& ~
zero
&&
odd
;
178
assign
ecc_multiple
[
v
] =
ecc_status_valid
&& ~
zero
&& ~
odd
;
179
end
180
endgenerate
181
182
endmodule
Generated on Wed Apr 18 2018 10:55:27 for AMC13 by
1.8.1