
LogiCORE™ IP
Ethernet 1000BASE-X
PCS/PMA or SGMII
v11.1

User Guide

UG155 March 1, 2011

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com UG155 March 1, 2011

Xilinx is providing this product documentation, hereinafter “Information,” to you “AS IS” with no warranty of any kind, express or implied.
Xilinx makes no representation that the Information, or any particular implementation thereof, is free from any claims of infringement. You
are responsible for obtaining any rights you may require for any implementation based on the Information. All specifications are subject to
change without notice.

XILINX EXPRESSLY DISCLAIMS ANY WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE INFORMATION OR
ANY IMPLEMENTATION BASED THEREON, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR REPRESENTATIONS THAT
THIS IMPLEMENTATION IS FREE FROM CLAIMS OF INFRINGEMENT AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE.

Except as stated herein, none of the Information may be copied, reproduced, distributed, republished, downloaded, displayed, posted, or
transmitted in any form or by any means including, but not limited to, electronic, mechanical, photocopying, recording, or otherwise, without
the prior written consent of Xilinx.

© Copyright 2004-2011 Xilinx, Inc. XILINX, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, and other designated brands included herein
are trademarks of Xilinx in the United States and other countries. The PowerPC name and logo are registered trademarks of IBM Corp. and
used under license. All other trademarks are the property of their respective owners.

Revision History
The following table shows the revision history for this document.

Date
Doc

Version
Revision

09/30/04 1.0 Initial Xilinx release.

04/28/05 2.0 Updated to Xilinx tools 7.1i SP2, support for Virtex®-4 Rocket IO.

01/18/06 3.0 Updated to Xilinx tools 8.1i SP1 for 7.0 release, added new chapter for dynamic switching.

07/13/06 4.0 Updated to core version 7.1; Xilinx tools 8.2i.

10/23/06 5.0 Updated to core version 8.0, support for Virtex-5 LXT and Spartan®-3A families.

02/15/07 6.0 Updated to core version 8.1, Xilinx tools 9.1i.

08/08/07 7.0 Updated to core version 9.0, Xilinx tools 9.2i.

03/24/08 8.0 Updated to core version 9.1, Xilinx tools 10.1.

04/24/09 9.0 Updated to core version 10.1, Xilinx tools 11.1, support for Virtex-5 TXT and Virtex-6 families

06/24/09 10.0 Updated to core version 10.2, Xilinx tools 11.2, support for Spartan-6 family

09/16/09 11.0 Updated to core version 10.3, Xilinx tools 11.3.

04/19/10 12.0 Updated to core version 10.4, Xilinx tools 12.1.

07/23/10 13.0
Updated to core version 10.5, Xilinx tools 12.2, support for SGMII in Virtex-6 devices using
standard SelectIO™ technology logic resources.

3/1/11 14.0 Updated to core version 11.1; added Virtex-7 and Kintex-7 support.

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 3
UG155 March 1, 2011

Schedule of Figures . 11

Schedule of Tables . 17

Preface: About This Guide
Guide Contents . 21
Additional Resources . 23
Conventions . 23

Typographical . 23
Online Document . 24
List of Acronyms . 24

Chapter 1: Introduction
System Requirements . 27
About the Core . 27

Designs Using Transceivers . 27
Licensing the Core . 28
Recommended Design Experience . 28
Additional Core Resources . 28

Related Xilinx Ethernet Products and Services . 28
Specifications . 28

Technical Support. 29
Feedback. 29

Ethernet 1000BASE-X PCS/PMA or SGMII Core . 29
Document . 29

Chapter 2: Quick Start Guide
Overview . 31
Generating the Core . 32
Implementing the Example Design . 33
Simulating the Example Design . 33

Setting up for Simulation . 33
Functional Simulation . 34
Timing Simulation . 34

What’s Next? . 34

Table of Contents

http://www.xilinx.com

4 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 3: Generating and Customizing the Core
GUI Interface . 35

Component Name . 36
Core Functionality . 36
SGMII/Dynamic Standard Switching Elastic Buffer Options . 37
SGMII/Dynamic Standard Mode of Operation . 38
Transceiver Tile Configuration . 39

Parameter Values in the XCO File . 40

Chapter 4: CORE Generator Deliverables
Directory Structure . 43
Directory and File Contents . 44

<project directory> . 44
<project directory>/<component name> . 44
<component name>/doc . 45
<component name>/example design . 45
<component name>/implement . 46
implement/results . 46
<component name>/simulation . 47
simulation/functional . 47
simulation/timing . 48

Implementation Scripts . 49
Simulation Scripts . 49

Functional Simulation . 49
Timing Simulation . 50

Chapter 5: Designing with the Core
Design Guidelines . 51

Understand the Features and Interfaces Provided by the Core Netlist 51
Customize and Generate the Core . 51
Examine the Example Design Provided with the Core . 51
Implement the Ethernet 1000BASE-X PCS/PMA or SGMII Core

in Your Application . 52

Chapter 6: Core Architecture
System Overview . 55

Ethernet 1000BASE-X PCS/PMA or SGMII Using A Device Specific Transceiver . . 55
Ethernet 1000BASE-X PCS/PMA or SGMII with Ten-Bit-Interface 57
SGMII Support Using Asynchronous Oversampling over Virtex-6 FPGA LVDS . . . 59

Core Interfaces . 60
Client Side Interface . 66
Physical Side Interface . 71

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 5
UG155 March 1, 2011

Chapter 7: The Ten-Bit Interface
Ten-Bit-Interface Logic . 76

Transmitter Logic . 76
Receiver Logic. 78

Clock Sharing across Multiple Cores with TBI . 90
Example Designs for the Ten-Bit Interface (TBI) . 91

Example Design for 1000BASE-X with Ten-Bit Interface . 91
SGMII Example Design / Dynamic Switching Example Design
with Ten-Bit Interface . 97

Chapter 8: 1000BASE-X with Transceivers
Transceiver Logic . 103

Virtex-4 FX Devices . 103
Virtex-5 LXT and SXT Devices . 106
Virtex-5 FXT and TXT Devices . 108
Virtex-6 Devices . 110
Spartan-6 LXT Devices . 112
Virtex-7 Devices . 113
Kintex-7 Devices . 115

Clock Sharing Across Multiple Cores with Transceivers . 117
Virtex-4 FX Devices . 117
Virtex-5 LXT and SXT Devices . 119
Virtex-5 FXT and TXT Devices . 121
Virtex-6 Devices . 123
Spartan-6 LXT Devices . 124
Virtex-7 Devices . 126
Kintex-7 Devices . 127

Example Design for 1000BASE-X with Transceivers . 129
Top-Level Example Design HDL. 130
Block Level HDL . 130
Files for Virtex-7 and Kintex-7 Devices . 131
Transceiver Files for Spartan-6 Devices . 132
Files for Virtex-6 Devices . 133
RocketIO Transceiver Files for Virtex-5 Devices . 134
Virtex-5 FPGA RocketIO GTX Transceiver Specific Files . 135
RocketIO Transceiver Files for Virtex-4 FX Devices . 135
Transmitter Elastic Buffer . 137
Demonstration Test Bench . 138
Customizing the Test Bench . 140

Chapter 9: SGMII / Dynamic Standards Switching with Transceivers
Receiver Elastic Buffer Implementations . 144

Selecting the Buffer Implementation from the GUI . 144
The Requirement for the FPGA Fabric Rx Elastic Buffer . 144
The Transceiver Rx Elastic Buffer . 146

Logic Using the Transceiver Rx Elastic Buffer. 147
Transceiver Logic with the Fabric Rx Elastic Buffer . 147

Virtex-4 Devices for SGMII or Dynamic Standards Switching 147
Virtex-5 LXT or SXT Devices for SGMII or Dynamic Standards Switching 150
Virtex-5 FXT and TXT Devices for SGMII or Dynamic Standards Switching. 152

http://www.xilinx.com

6 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Virtex-6 Devices for SGMII or Dynamic Standards Switching 154
Spartan-6 LXT Devices for SGMII or Dynamic Standards Switching 156
Virtex-7 Devices for SGMII or Dynamic Standards Switching 158
Kintex-7 Devices for SGMII or Dynamic Standards Switching 160
Kintex-7 FPGA GTX Transceiver Wizard . 160

Clock Sharing - Multiple Cores with Transceivers, Fabric Elastic Buffer 162
Virtex-4 FX Devices . 162
Virtex-5 LXT and SXT Devices . 164
Virtex-5 FXT and TXT Devices . 166
Virtex-6 Devices . 168
Spartan-6 LXT Devices . 169
Virtex-7 Devices . 171
Kintex-7 Devices . 173

SGMII Example Design / Dynamic Switching Example
Design Using a Transceiver . 175

Top-Level Example Design HDL. 176
Block Level HDL . 176
Files for Virtex-7 and Kintex-7 Devices . 177
Transceiver Files for Spartan-6 Devices . 178
Transceiver Files for Virtex-6 Devices. 179
RocketIO Transceiver Files for Virtex-5 Devices . 180
RocketIO Transceiver Files for Virtex-4 FX Devices . 181
Receiver Elastic Buffer . 183
SGMII Adaptation Module . 183
Demonstration Test Bench . 184
Customizing the Test Bench . 186

Chapter 10: SGMII Support Using Asynchronous Oversampling over
Virtex-6 FPGA LVDS

Design Requirements . 188
SGMII Only . 188
Supported in Virtex-6 Devices, -2 Speed Grade or Faster . 188
Receiver UI Specification . 188
Recommended for Chip to Chip Copper Implementations Only. 188

Clocking Logic . 188
SGMII Tx and Rx Ports are in the Same I/O Bank . 189
SGMII Tx and Rx Ports are in Different I/O Banks . 193

Layout and Placement . 197
Guidelines . 197

Example Design Implementation . 200
Example Design Top Level . 202
IO Bank Level of the Example Design . 202
Block Level of the Example Design . 203
LVDS Transceiver . 203
IO Bank Clocking . 208
SGMII Adaptation Module . 209
Demonstration Test Bench . 210
Customizing the Test Bench . 212

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 7
UG155 March 1, 2011

Chapter 11: Using the Client-Side GMII Data Path
Using the Core Netlist Client-side GMII for the 1000BASE-X Standard 213

GMII Transmission . 213
GMII Reception . 215
status_vector[15:0] signals . 216

Using the Core Netlist Client-side GMII for the SGMII Standard 219
Overview . 219
GMII Transmission . 219
GMII Reception . 220

Additional Client-Side SGMII Logic Provided in the Example Design 222
SGMII Adaptation Module Top Level . 223
Transmitter Rate Adaptation Module . 224
Receiver Rate Adaptation Module . 225
Clock Generation . 226

Chapter 12: Configuration and Status
MDIO Management Interface . 227

MDIO Bus System . 227
MDIO Transactions . 229
MDIO Addressing . 230
Connecting the MDIO to an Internally Integrated STA . 231
Connecting the MDIO to an External STA . 231

Management Registers . 232
1000BASE-X Standard Using the Optional Auto-Negotiation 232
1000BASE-X Standard Without the Optional Auto-Negotiation 244
SGMII Standard Using the Optional Auto-Negotiation. 250
SGMII Standard without the Optional Auto-Negotiation . 262
Both 1000BASE-X and SGMII Standards . 268

Optional Configuration Vector . 269

Chapter 13: Auto-Negotiation
Overview of Operation . 271

1000BASE-X Standard . 271
SGMII Standard . 273

Setting the Configurable Link Timer . 275
1000BASE-X Standard . 275
SGMII Standard . 275
Simulating Auto-Negotiation . 275

Using the Auto-Negotiation Interrupt . 275
Use of Clock Correction Sequences in Device Specific Transceivers 276

1000BASE-X Standard . 276

http://www.xilinx.com

8 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 14: Dynamic Switching of 1000BASE-X and SGMII Standards
Typical Application . 277
Operation of the Core . 278

Selecting the Power-On / Reset Standard . 278
Switching the Standard Using MDIO . 278
Auto-Negotiation State Machine . 278
Setting the Auto-Negotiation Link Timer . 279

Chapter 15: Constraining the Core
Required Constraints. 281

Device, Package, and Speedgrade Selection . 281
I/O Location Constraints . 281
Placement Constraints . 281
Virtex-4 FPGA MGT Transceivers for 1000BASE-X Constraints 282
Virtex-4 FPGA RocketIO MGT Transceivers for SGMII or Dynamic
Standards Switching Constraints . 283
Virtex-5 FPGA RocketIO GTP Transceivers for 1000BASE-X Constraints 283
Virtex-5 FPGA RocketIO GTP Transceivers for SGMII or Dynamic
Standards Switching Constraints . 284
Virtex-5 FPGA RocketIO GTX Transceivers for 1000BASE-X Constraints 285
Virtex-5 FPGA RocketIO GTX Transceivers for SGMII or Dynamic
Standards Switching Constraints . 286
Virtex-6 FPGA GTX Transceivers for 1000BASE-X Constraints 286
Virtex-6 FPGA GTX Transceivers for SGMII or Dynamic
Standards Switching Constraints . 287
Spartan-6 FPGA GTP Transceivers for 1000BASE-X Constraints 288
Spartan-6 FPGA GTP Transceivers for SGMII or Dynamic
Standards Switching Constraints . 288
7 Series FPGA GTX Transceivers for 1000BASE-X Constraints 289
7 Series FPGA GTX Transceivers for SGMII or Dynamic
Standards Switching Constraints . 290
SGMII Using Asynchronous Oversampling over Virtex-6 LVDS Constraints 290
Ten-Bit Interface Constraints . 291
Constraints When Implementing an External GMII . 297
Understanding Timing Reports for Setup/Hold Timing . 303

Chapter 16: Interfacing to Other Cores
Integration of the Tri-Mode Ethernet MAC for 1000BASE-X Operation 306

Integration of the Tri-Mode Ethernet MAC to Provide
1000BASE-X PCS with TBI . 306
Integration of the Tri-Mode Ethernet MAC to Provide
1000BASE-X Using Transceivers . 309
Tri-Mode Ethernet MAC Core (TEMAC Core v5.1, AXI) . 314
Spartan-6 Devices . 316
Virtex-7 Devices . 317

Integration of the Tri-Mode Ethernet MAC for
Tri-speed SGMII Operation . 319

Integration of the Tri-Mode Ethernet MAC to Provide SGMII
(or Dynamic Switching) Functionality with TBI . 319
Tri-Mode Ethernet MAC Core (TEMAC core v5.1, AXI) . 322
Integration of the Tri-Mode Ethernet MAC Using Device Specific Transceivers . . 323

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 9
UG155 March 1, 2011

Tri-Mode Ethernet MAC Core (TEMAC core v5.1, AXI) . 332
Integration of the Tri-Mode Ethernet MAC Using Asynchronous
Oversampling over Virtex-6 LVDS . 337

Chapter 17: Special Design Considerations
Power Management . 339
Startup Sequencing . 339
Loopback . 340

Core with the TBI . 340
Core with Transceiver . 340

Chapter 18: Implementing the Design
Pre-implementation Simulation . 343

Using the Simulation Model . 343
Synthesis . 343

XST - VHDL . 343
XST - Verilog . 344

Implementation . 344
Generating the Xilinx Netlist . 344
Mapping the Design . 344
Placing and Routing the Design . 345
Static Timing Analysis . 345
Generating a Bitstream . 345

Post-Implementation Simulation . 345
Generating a Simulation Model . 345
Using the Model . 346

Other Implementation Information . 346

Appendix A: Core Verification, Compliance, and Interoperability
Verification . 347
Simulation . 347
Hardware Verification . 347

Appendix B: Core Latency
Core Latency . 349

Latency for 1000BASE-X PCS with TBI . 349
Latency for 1000BASE-X PCS and PMA Using a Transceiver 350
Latency for SGMII . 350

Appendix C: 1000BASE-X State Machines
Introduction . 351
Start of Frame Encoding . 352

The Even Transmission Case . 352
Reception of the Even Case . 353
The Odd Transmission Case. 354
Reception of the Odd Case . 355
Preamble Shrinkage . 355

http://www.xilinx.com

10 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

End of Frame Encoding. 356
The Even Transmission Case . 356
Reception of the Even Case . 357
The Odd Transmission Case. 358
Reception of the Odd Case . 359

Appendix D: Rx Elastic Buffer Specifications
Introduction . 361
Rx Elastic Buffers: Depths and Maximum Frame Sizes . 362

Device Specific Transceiver Rx Elastic Buffers . 362
SGMII Fabric Rx Elastic Buffer . 364
TBI Rx Elastic Buffer . 365

Clock Correction . 366
Maximum Frame Sizes for Sustained Frame Reception. 368
Jumbo Frame Reception . 368

Appendix E: Implementing External GMII
GMII Transmitter Logic . 369

Spartan-3, Spartan-3E, Spartan-3A/3A DSP and Virtex-4 Devices 369
Virtex-5 Devices . 371
Virtex-7, Kintex-7 and Virtex-6 Devices . 373
Spartan-6 Devices . 373

GMII Receiver Logic . 375

Appendix F: Calculating the DCM Fixed Phase Shift
or IODelay Tap Setting

DCM Usage . 377
Requirement for DCM Phase Shifting . 377
Finding the Ideal Phase Shift Value for Your System. 378

IODelay Usage . 378
IODelay Tap Setting Requirements . 378
Finding the Ideal Tap Setting Value . 379

Appendix G: Debugging Guide
General Checks . 381
Problems with the MDIO . 381
Problems with Data Reception or Transmission. 381
Problems with Auto-Negotiation . 382
Problems in Obtaining a Link (Auto-Negotiation Disabled). 382
Problems with a High Bit Error Rate . 383

Symptoms . 383
Debugging . 384

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 11
UG155 March 1, 2011

Chapter 1: Introduction

Chapter 2: Quick Start Guide
Figure 2-1: Ethernet 1000BASE-X PCS/PMA or SGMII

Example Design and Test Bench . 31
Figure 2-2: Core Customization Screen . 32

Chapter 3: Generating and Customizing the Core
Figure 3-1: Core Customization Screen . 35
Figure 3-2: 1000BASE-X Standard Options Screen . 36
Figure 3-3: SGMII/Dynamic Standard Switching Options Screen. 38
Figure 3-4: SGMII Operation Mode Options Screen . 39
Figure 3-5: Transceiver Tile Configuration Screen . 40

Chapter 4: CORE Generator Deliverables

Chapter 5: Designing with the Core

Chapter 6: Core Architecture
Figure 6-1: Functional Block Diagram Using Device-Specific Transceiver 56
Figure 6-2: Functional Block Diagram with a Ten-Bit Interface . 57
Figure 6-3: Functional Block Diagram of the Core with Standard
SelectIO Technology Support for SGMII . 59
Figure 6-4: Component Pinout Using a Transceiver

with PCS Management Registers . 61
Figure 6-5: Component Pinout Using a Transceiver

without PCS Management Registers . 62
Figure 6-6: Component Pinout Using the Ten-Bit Interface

with PCS Management Registers . 63
Figure 6-7: Component Pinout Using Ten-Bit Interface

without PCS Management Registers . 64
Figure 6-8: Component Pinout with the Dynamic Switching Logic 65

Chapter 7: The Ten-Bit Interface
Figure 7-1: Ten-Bit Interface Transmitter Logic . 77
Figure 7-2: Input TBI timing . 78
Figure 7-3: TBI Receiver Logic for Spartan-3, Spartan-3E, and
Spartan-3A Devices (Example Design) . 79
Figure 7-4: TBI Receiver Logic for Spartan-3, Spartan-3E, and Spartan-3A Devices . . . 80

Schedule of Figures

http://www.xilinx.com

12 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Figure 7-5: Ten-Bit Interface Receiver Logic - Virtex-4 Device (Example Design) 81
Figure 7-6: Alternate Ten-Bit Interface Receiver Logic for Virtex-4 Devices 82
Figure 7-7: Ten-Bit Interface Receiver Logic - Virtex-5 Device (Example Design) 83
Figure 7-8: Alternate Ten-Bit Interface Receiver Logic - Virtex-5 Devices 84
Figure 7-9: Ten-Bit Interface Receiver Logic - Virtex-7, Kintex-7, and
Virtex-6 Devices (Example Design) . 85
Figure 7-10: Alternate Ten-Bit Interface Receiver Logic - Virtex-7,
Kintex-7 and Virtex-6 Devices . 86
Figure 7-11: Ten-Bit Interface Receiver Logic - Spartan-6 Device (Example Design) . . . 87
Figure 7-12: Alternate Ten-Bit Interface Receiver Logic - Spartan-6 Devices 89
Figure 7-13: Clock Management, Multiple Core Instances with Ten-Bit Interface. 90
Figure 7-14: Example Design HDL for the Ethernet 1000BASE-X PCS with TBI 91
Figure 7-15: Demonstration Test Bench for the Ethernet

1000BASE-X PCS with TBI . 94
Figure 7-16: Example Design HDL for the Ethernet 1000BASE-X PCS/PMA
or SGMII Core in SGMII Mode with TBI . 97
Figure 7-17: Demonstration Test Bench for the Ethernet 1000BASE-X PCS/PMA
or SGMII Core in SGMII Mode with TBI. 100

Chapter 8: 1000BASE-X with Transceivers
Figure 8-1: 1000BASE-X Connection to Virtex-4 FPGA RocketIO MGT Transceiver. . 105
Figure 8-2: 1000BASE-X Connection to Virtex-5 FPGA RocketIO GTP Transceivers . 107
Figure 8-3: 1000BASE-X Connection to Virtex-5 FPGA RocketIO GTX Transceivers . 109
Figure 8-4: 1000BASE-X Connection to Virtex-6 FPGA GTX Transceiver. 111
Figure 8-5: 1000BASE-X Connection to Spartan-6 FPGA GTP Transceivers 113
Figure 8-6: 1000BASE-X Connection to Virtex-7 Transceivers. 114
Figure 8-7: 1000BASE-X Connection to Kintex-7 Transceivers . 116
Figure 8-8: Clock Management - Multiple Core Instances, MGTs for 1000BASE-X . . . 118
Figure 8-9: Clock Management - Multiple Core Instances, Virtex-5 FPGA
RocketIO GTP Transceivers for 1000BASE-X . 120
Figure 8-11: Clock Management - Multiple Core Instances, Virtex-5 FPGA
RocketIO GTX Transceivers for 1000BASE-X . 122
Figure 8-12: Clock Management - Multiple Core Instances, Virtex-6
FPGA GTX Transceivers for 1000BASE-X . 123
Figure 8-13: Clock Management-Multilple Core Instances, Spartan-6 FPGA

GTP Transceivers for 1000BASE-X. 125
Figure 8-14: Clock Management-Multiple Core Instances, Virtex-7
FPGA Transceivers for 1000BASE-X . 126
Figure 8-15: Clock Management-Multiple Core Instances, Kintex-7
FPGA Transceivers for 1000BASE-X . 128
Figure 8-16: Example Design HDL for the Ethernet 1000BASE-X PCS/PMA

Using a Device-Specific Transceiver . 129
Figure 8-17: Demonstration Test Bench Using Device-Specific Transceiver 138

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 13
UG155 March 1, 2011

Chapter 9: SGMII / Dynamic Standards Switching with Transceivers
Figure 9-1: SGMII Implementation using Separate Clock Sources 145
Figure 9-2: SGMII Implementation using Shared Clock Sources 146
Figure 9-3: SGMII Connection to a Virtex-4 FPGA Rocket IO MGT 149
Figure 9-4: SGMII Connection to a Virtex-5 FPGA RocketIO GTP Transceiver 151
Figure 9-5: SGMII Connection to a Virtex-5 FPGA RocketIO GTX Transceiver. 153
Figure 9-6: SGMII Connection to a Virtex-6 FPGA GTX Transceiver 155
Figure 9-7: SGMII Connection to a Spartan-6 FPGA GTP Transceiver. 157
Figure 9-8: SGMII Connection to a Virtex-7 FPGA Transceiver . 159
Figure 9-9: SGMII Connection to a Kintex-7 FPGA Transceiver 161
Figure 9-10: Clock Management with Multiple Core Instances with
Virtex-4 FPGA MGTs for SGMII . 163
Figure 9-11: Clock Management with Multiple Core Instances with
Virtex-5 FPGA RocketIO GTP Transceivers for SGMII . 165
Figure 9-12: Clock Management with Multiple Core Instances with
Virtex-5 FPGA RocketIO GTX Transceivers for SGMII . 167
Figure 9-13: Clock Management with Multiple Core Instances with
Virtex-6 FPGA GTX Transceivers for SGMII . 168
Figure 9-14: Clock Management with Multiple Core Instances with
Spartan-6 FPGA GTP Transceivers for SGMII . 170
Figure 9-15: Clock Management with Multiple Core Instances with
Virtex-7 FPGA Transceivers for SGMII . 172
Figure 9-16: Clock Management with Multiple Core Instances with
Kintex-7 FPGA Transceivers for SGMII . 174
Figure 9-17: Example Design HDL for the Ethernet 1000BASE-X
PCS/PMA or SGMII Core in SGMII Mode Using a Device-Specific Transceiver 175
Figure 9-18: Demonstration Test Bench for the Ethernet 1000BASE-X
PCS/PMA or SGMII Core in SGMII Mode Using Device-Specific Transceivers. 184

Chapter 10: SGMII Support Using Asynchronous Oversampling over
Virtex-6 FPGA LVDS

Figure 10-1: Asynchronous Oversampling LVDS Clocking Logic
(Tx and Rx Placed in the Same I/O Bank) . 189
Figure 10-2: Asynchronous Oversampling LVDS Clocking logic
(Tx and Rx Placed in Different I/O Banks) . 193
Figure 10-3: RLOC Origin Slice Location Captured from FPGA Editor 199
Figure 10-4: Virtex-6 FPGA Asynchronous Oversampling Example Design 201
Figure 10-5: Demonstration Test Bench for the Ethernet 1000BASE-X PCS/PMA
or SGMII Core in SGMII Using Asynchronous Oversampling with
Virtex-6 FPGA LVDS . 210

Chapter 11: Using the Client-Side GMII Data Path
Figure 11-1: GMII Normal Frame Transmission . 214
Figure 11-2: GMII Error Propagation Within a Frame . 214
Figure 11-3: GMII Normal Frame Reception . 215

http://www.xilinx.com

14 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Figure 11-4: GMII Normal Frame Reception with Carrier Extension 215
Figure 11-5: GMII Frame Reception with Errors . 216
Figure 11-6: False Carrier Indication. 216
Figure 11-7: status_vector[4:2] timing . 217
Figure 11-8: GMII Frame Transmission at 1 Gbps. 219
Figure 11-9: GMII Data Transmission at 100 Mbps. 220
Figure 11-10: GMII Frame Reception at 1 Gbps . 220
Figure 11-11: GMII Data Reception at 100 Mbps . 221
Figure 11-12: Block Level Diagram of an SGMII Example Design 222
Figure 11-13: SGMII Adaptation Module . 223
Figure 11-14: Transmitter Rate Adaptation Module Data Sampling 224
Figure 11-15: Receiver Rate Adaptation Module Data Sampling 225
Figure 11-16: Clock Generator Output Clocks and Clock Enable. 226

Chapter 12: Configuration and Status
Figure 12-1: A Typical MDIO-Managed System . 228
Figure 12-2: MDIO Write Transaction . 229
Figure 12-3: MDIO Read Transaction. 230
Figure 12-4: Creating an External MDIO Interface . 231
Figure 12-17: Dynamic Switching (Register 17) . 268

Chapter 13: Auto-Negotiation
Figure 13-1: 1000BASE-X Auto-Negotiation Overview. 271
Figure 13-2: SGMII Auto-Negotiation . 273

Chapter 14: Dynamic Switching of 1000BASE-X and SGMII Standards
Figure 14-1: Typical Application for Dynamic Switching . 277

Chapter 15: Constraining the Core
Figure 15-1: Input TBI timing . 292
Figure 15-2: Input GMII timing. 298

Chapter 16: Interfacing to Other Cores
Figure 16-1: Tri-Mode Ethernet MAC Extended to Include 1000BASE-X
PCS with TBI . 307
Figure 16-2: AXI Tri-Mode Ethernet MAC Extended to Include 1000BASE-X
PCS with TBI . 308
Figure 16-3: Legacy Tri-Mode Ethernet MAC Extended to Include 1000BASE-X
PCS and PMA Using a Virtex-4 FPGA RocketIO™ MGT Transceiver 309
Figure 16-4: Legacy Tri-Mode Ethernet MAC Extended to Include 1000BASE-X
PCS and PMA Using a Virtex-5 FPGA RocketIO GTP Transceiver 310
Figure 16-5: Legacy Tri-Mode Ethernet MAC Extended to Include 1000BASE-X
PCS and PMA Using a Virtex-5 FPGA RocketIO GTX Transceiver 311

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 15
UG155 March 1, 2011

Figure 16-6: Legacy Tri-Mode Ethernet MAC Extended to Include 1000BASE-X PCS
and PMA Using a Virtex-6 FPGA GTX Transceiver . 312
Figure 16-7: Legacy Tri-Mode Ethernet MAC Extended to Include 1000BASE-X
PCS and PMA Using a Spartan-6 FPGA GTP Transceiver . 313
Figure 16-8: AXI Tri-Mode Ethernet MAC Extended to Include 1000BASE-X
PCS and PMA Using a Virtex-6 FPGA GTX Transceiver . 315
Figure 16-9: AXI Tri-Mode Ethernet MAC Extended to Include 1000BASE-X PCS

and PMA Using a Spartan-6 FPGA GTP Transceiver . 316
Figure 16-10: AXI Tri-Mode Ethernet MAC Extended to Include 1000BASE-X PCS

and PMA Using a Virtex-7 FPGA GTX Transceiver . 317
Figure 16-11: AXI Tri-Mode Ethernet MAC Extended to Include 1000BASE-X PCS

and PMA Using a Kintex-7 FPGA GTX Transceiver . 318
Figure 16-12: Legacy Tri-Speed Ethernet MAC Extended to Use an
SGMII with TBI . 321
Figure 16-13: AXI Tri-Speed Ethernet MAC Extended to Use an SGMII with TBI . . . 322
Figure 16-14: Legacy Tri-Speed Ethernet MAC Extended to Use an SGMII
in a Virtex-4 FPGA . 324
Figure 16-15: Legacy Tri-Speed Ethernet MAC Extended to Use an SGMII
in a Virtex-5 LXT/SXT Device . 326
Figure 16-16: Legacy Tri-Speed Ethernet MAC Extended to Use an SGMII
in a Virtex-5 FXT and TXT Device . 328
Figure 16-17: Legacy Tri-Speed Ethernet MAC Extended to use an SGMII
in Virtex-6 Devices. 330
Figure 16-18: Legacy Tri-Speed Ethernet MAC Extended to Use an SGMII
in a Spartan-6 LXT Device . 332
Figure 16-19: AXI Tri-Speed Ethernet MAC Extended to use an SGMII
in Virtex-6 Devices. 333
Figure 16-20: Tri-Speed Ethernet MAC v5.1 Extended to use an SGMII
in Spartan-6 Devices . 334
Figure 16-21: Tri-Speed Ethernet MAC v5.1 Extended to use an SGMII
in Virtex-7 Devices. 335
Figure 16-22: AXI Tri-Speed Ethernet MAC Extended to use an SGMII in Kintex-7 Devices 336
Figure 16-23: Tri-Speed Ethernet MAC Extended to Use SGMII Using Asynchronous

Oversampling over Virtex-6 LVDS . 338

Chapter 17: Special Design Considerations
Figure 17-1: Loopback Implementation Using the TBI. 340
Figure 17-2: Loopback Implementation When Using the Core
with Device-Specific Transceivers . 341

http://www.xilinx.com

16 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 18: Implementing the Design

Appendix A: Core Verification, Compliance, and Interoperability

Appendix B: Core Latency

Appendix C: 1000BASE-X State Machines
Figure C-1: 1000BASE-X Transmit State Machine Operation (Even Case) 352
Figure C-2: 1000BASE-X Reception State Machine Operation (Even Case) 353
Figure C-3: 1000BASE-X Transmit State Machine Operation (Odd Case) 354
Figure C-4: 1000BASE-X Reception State Machine Operation (Odd Case). 355
Figure C-5: 1000BASE-X Transmit State Machine Operation (Even Case) 356
Figure C-6: 1000BASE-X Reception State Machine Operation (Even Case) 357
Figure C-7: 1000BASE-X Transmit State Machine Operation (Even Case) 358
Figure C-8: 1000BASE-X Reception State Machine Operation (Odd Case). 359

Appendix D: Rx Elastic Buffer Specifications
Figure D-1: Elastic Buffer Sizes for all Transceiver Families . 362
Figure D-2: Elastic Buffer Size for all Transceiver Families . 364
Figure D-3: TBI Elastic Buffer Size for All Families . 365

Appendix E: Implementing External GMII
Figure E-1: External GMII Transmitter Logic for Spartan-3, Spartan-3E,
Spartan-3A/3A DSP and Virtex-4 Devices . 370
Figure E-2: External GMII Transmitter Logic for Virtex-5, Virtex-6,
Virtex-7 and Kintex-7 Devices . 372
Figure E-3: External GMII Transmitter Logic for Spartan-6 Devices 374
Figure E-4: External GMII Receiver Logic . 376

Appendix F: Calculating the DCM Fixed Phase Shift or IODelay Tap
Setting

Appendix G: Debugging Guide

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 17
UG155 March 1, 2011

Chapter 1: Introduction

Chapter 2: Quick Start Guide

Chapter 3: Generating and Customizing the Core
Table 3-1: XCO File Values and Default Values. 40

Chapter 4: CORE Generator Deliverables
Table 4-1: Project Directory. 44
Table 4-2: Component Name Directory . 44
Table 4-3: Doc Directory . 45
Table 4-4: Example Design Directory . 45
Table 4-5: Implement Directory . 46
Table 4-6: Results Directory . 46
Table 4-7: Simulation Directory . 47
Table 4-8: Functional Directory . 47
Table 4-9: Timing Directory . 48

Chapter 5: Designing with the Core

Chapter 6: Core Architecture
Table 6-1: GMII Interface Signal Pinout . 66
Table 6-2: Other Common Signals . 66
Table 6-3: Optional MDIO Interface Signal Pinout. 69
Table 6-4: Optional Configuration and Status Vectors . 69
Table 6-5: Optional Auto-Negotiation Interface Signal Pinout. 70
Table 6-6: Optional Dynamic Standard Switching Signals . 70
Table 6-7: Optional Transceiver Interface Pinout . 71
Table 6-8: Optional TBI Interface Signal Pinout . 73

Schedule of Tables

http://www.xilinx.com

18 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 7: The Ten-Bit Interface

Chapter 8: 1000BASE-X with Transceivers

Chapter 9: SGMII / Dynamic Standards Switching with Transceivers

Chapter 10: SGMII Support Using Asynchronous Oversampling over
Virtex-6 FPGA LVDS

Table 10-1: MMCM Generated Clocks That Are Shared across the I/O Bank 190
Table 10-2: MMCM Generated Clocks That Are Shared across the
Rx SGMII I/O Bank (plus global clocks) . 194
Table 10-3: MMCM Generated Clocks That Are Shared across the Tx I/O Bank 195

Chapter 11: Using the Client-Side GMII Data Path

Chapter 12: Configuration and Status
Table 12-1: Abbreviations and Terms . 229
Table 12-2: MDIO Registers for 1000BASE-X with Auto-Negotiation 232
Table 12-3: Control Register (Register 0) . 233
Table 12-4: Status Register (Register 1) . 235
Table 12-5: PHY Identifier (Registers 2 and 3) . 237
Table 12-6: Auto-Negotiation Advertisement Register (Register 4) 238
Table 12-7: Auto-Negotiation Link Partner Ability Base Register (Register 5) 239
Table 12-8: Auto-Negotiation Expansion Register (Register 6) . 240
Table 12-9: Auto-Negotiation Next Page Transmit (Register 7). 241
Table 12-10: Auto-Negotiation Next Page Receive (Register 8) . 242
Table 12-11: Extended Status Register (Register 15) . 243
Table 12-12: Vendor Specific Register: Auto-Negotiation Interrupt
Control Register (Register 16) . 244
Table 12-13: MDIO Registers for 1000BASE-X without Auto-Negotiation 244
Table 12-14: Control Register (Register 0) . 245
Table 12-15: Status Register (Register 1) . 246
Table 12-16: PHY Identifier (Registers 2 and 3) . 248
Table 12-17: Extended Status (Register 15) . 249
Table 12-18: MDIO Registers for SGMII with Auto-Negotiation. 250
Table 12-19: SGMII Control (Register 0) . 251
Table 12-20: SGMII Status (Register 1). 252
Table 12-21: PHY Identifier (Registers 2 and 3) . 254
Table 12-22: SGMII Auto-Negotiation Advertisement (Register 4) 255
Table 12-23: SGMII Auto-Negotiation Advertisement in PHY Mode (Register 4) 255
Table 12-24: SGMII Auto-Negotiation Link Partner Ability Base (Register 5) 256
Table 12-25: SGMII Auto-Negotiation Expansion (Register 6) . 257

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 19
UG155 March 1, 2011

Table 12-26: SGMII Auto-Negotiation Next Page Transmit (Register 7). 258
Table 12-27: SGMII Auto-Negotiation Next Page Receive (Register 8) 259
Table 12-28: SGMII Extended Status Register (Register 15) . 260
Table 12-29: SGMII Auto-Negotiation Interrupt Control (Register 16) 261
Table 12-30: MDIO Registers for SGMII with Auto-Negotiation. 262
Table 12-31: SGMII Control (Register 0) . 263
Table 12-32: SGMII Status (Register 1). 264
Table 12-33: PHY Identifier (Registers 2 and 3) . 266
Table 12-34: SGMII Auto-Negotiation Advertisement (Register 4) 266
Table 12-35: SGMII Extended Status Register (Register 15) . 267
Table 12-36: Vendor-specific Register: Standard Selection Register (Register 17) 268
Table 12-37: Optional Configuration and Status Vectors . 269

Chapter 13: Auto-Negotiation

Chapter 14: Dynamic Switching of 1000BASE-X and SGMII Standards

Chapter 15: Constraining the Core
Table 15-1: Input TBI Timing . 293
Table 15-2: Input GMII Timing . 299

Chapter 16: Interfacing to Other Cores

Chapter 17: Special Design Considerations

Chapter 18: Implementing the Design

Appendix A: Core Verification, Compliance, and Interoperability

Appendix B: Core Latency

Appendix C: 1000BASE-X State Machines
Table C-1: Defined Ordered Sets . 351

Appendix D: Rx Elastic Buffer Specifications
Table D-1: Maximum Frame Sizes: Transceiver Rx Elastic Buffers

(100ppm Clock Tolerance) . 363
Table D-2: Maximum Frame Sizes: Fabric Rx Elastic Buffers

(100ppm Clock Tolerance) . 365
Table D-3: Maximum Frame Size: (Sustained Frame Reception) Capabilities
of the Rx Elastic Buffers . 368

http://www.xilinx.com

20 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Appendix E: Implementing External GMII

Appendix F: Calculating the DCM Fixed Phase Shift or IODelay Tap
Setting

Appendix G: Debugging Guide

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 21
UG155 March 1, 2011

Preface

About This Guide

The LogiCORE™ IP Ethernet 1000BASE-X PCS/PMA or SGMII User Guide provides
information for generating a Xilinx Ethernet 1000BASE-X PCS/PMA or SGMII core,
customizing and simulating the core using the provided example design, and running the
design files through implementation using the Xilinx tools.

Guide Contents
This guide contains the following information.

• About This Guide introduces the organization and purpose of this guide and the
conventions used in this document.

• Chapter 1 Introduction describes the core and related information, including
recommended design experience, additional documentation resources, technical
support, licensing information, and how to submit feedback to Xilinx.

• Chapter 2 Quick Start Guide provides instructions to quickly generate the core and
run the example design through implementation and simulation using the scripts
provided.

• Chapter 3 Generating and Customizing the Core describes the Graphical User
Interface (GUI) options used to generate and customize the core.

• Chapter 4 CORE Generator Deliverables describes the directory and file structure for
the core deliverables. It also provides and overview of the Xilinx implementation and
simulator scripts provided.

• Chapter 5 Designing with the Core provides general guidelines for creating designs
with the core.

• Chapter 6 Core Architecture provides an overview of the core including all interfaces
and major functional blocks.

• Chapter 7, Chapter 8, Chapter 9, and Chapter 10 describe the physical interface logic
for the core. Select the relevant chapter according to your selected customization
options.

• Chapter 7 The Ten-Bit Interface provides general design guidelines when using the
Ten-Bit Interface (TBI) as the Physical Side of the core, for both 1000BASE-X and
SGMII operation.

• Chapter 8 1000BASE-X with Transceivers provides general design guidelines when
using the 1000BASE-X standard with the device-specific transceiver as the physical
side of the core.

• Chapter 9 SGMII / Dynamic Standards Switching with Transceivers provides general
design guidelines when using either the SGMII standard, or the Dynamic Switching

http://www.xilinx.com

22 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Preface: About This Guide

option (between 1000BASE-X and SGMII standards) with the device-specific
transceiver as the physical side of the core.

• Chapter 10 SGMII Support Using Asynchronous Oversampling over Virtex-6 FPGA
LVDS provides general design guidelines for implementing SGMII in standard
Virtex®-6 SelectIO™ technology.

• Chapter 11 Using the Client-Side GMII Data Path provides general guidelines for
creating designs using client-side GMII of the Ethernet 1000BASE-X PCS/PMA or
SGMII core.

• Chapter 12 Configuration and Status provides general guidelines for configuring and
monitoring the core, including a detailed description of the management registers
present in the core.

• Chapter 13 Auto-Negotiation provides guidelines for Auto-Negotiation function of
the core.

• Chapter 14 Dynamic Switching of 1000BASE-X and SGMII Standards provides
general guidelines for using the core to perform dynamic standards switching
between 1000BASE-X and SGMII.

• Chapter 15 Constraining the Core defines the constraint requirements of the core.

• Chapter 16 Interfacing to Other Cores describes additional design considerations
associated with implementing the core with the Tri-Mode Ethernet MAC core.

• Chapter 17 Special Design Considerations describes additional design considerations
associated with implementing the core.

• Chapter 18 Implementing the Designdescribes how to simulate and implement your
design containing the core.

• Appendix A, Core Verification, Compliance, and Interoperability describes how the
core was verified.

• Appendix B, Core Latency defines the latency of the core.

• Appendix C, 1000BASE-X State Machines serves as a reference for the basic operation
of the 1000BASE-X IEEE 802.3 clause 36 transmitter and receiver state machines.

• Appendix D, Rx Elastic Buffer Specifications describes the depth of the Rx Elastic
Buffers which are available with the core. The size of the buffer is related to the
maximum frame size which the core can accommodate.

• Appendix E, Implementing External GMII describes the extra logic required to allow
external GMII functionality of the Client-Side GMII data path.

• Appendix F, Calculating the DCM Fixed Phase Shift or IODelay Tap Setting instructs
you how to calculate the system timing requirements when using DCMs with the
core.

• Appendix G, Debugging Guide provides information for debugging the core within a
system.

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 23
UG155 March 1, 2011

Additional Resources

Additional Resources
To find additional documentation, see the Xilinx website at:

http://www.xilinx.com/support/documentation/index.htm.

To search the Answer Database of silicon, software, and IP questions and answers, or to
create a technical support WebCase, see the Xilinx website at:

• http://www.xilinx.com/support.

Conventions
This document uses the following conventions. An example illustrates each convention.

Typographical
The following typographical conventions are used in this document:

Convention Meaning or Use Example

Courier font

Messages, prompts, and
program files that the system
displays. Signal names in text
also.

speed grade: - 100

Courier bold
Literal commands that you enter
in a syntactical statement

ngdbuild design_name

Helvetica bold

Commands that you select from
a menu

File  Open

Keyboard shortcuts Ctrl+C

Italic font

Variables in a syntax statement
for which you must supply
values

ngdbuild design_name

References to other manuals
See the User Guide for more
information.

Emphasis in text
If a wire is drawn so that it
overlaps the pin of a symbol, the
two nets are not connected.

Dark Shading
Items that are not supported or
reserved

This feature is not supported

Square brackets []

An optional entry or parameter.
However, in bus specifications,
such as bus[7:0], they are
required.

ngdbuild [option_name]
design_name

Braces { }
A list of items from which you
must choose one or more

lowpwr ={on|off}

Vertical bar |
Separates items in a list of
choices

lowpwr ={on|off}

http://www.xilinx.com/support/documentation/index.htm
http://www.xilinx.com/support
http://www.xilinx.com

24 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Preface: About This Guide

Online Document
The following conventions are used in this document.

List of Acronyms
The following table describes acronyms used in this manual.

Angle brackets < >
User-defined variable or in code
samples

<directory name>

Vertical ellipsis
.
.
.

Repetitive material that has
been omitted

IOB #1: Name = QOUT’
IOB #2: Name = CLKIN’
.
.
.

Horizontal ellipsis . . .
Repetitive material that has
been omitted

allow block block_name loc1
loc2 ... locn;

Notations

The prefix ‘0x’ or the suffix ‘h’
indicate hexadecimal notation

A read of address 0x00112975
returned 45524943h.

An ‘_n’ means the signal is
active low

usr_teof_n is active low.

Convention Meaning or Use Example

Convention Meaning or Use Example

Blue text
Cross-reference link to a location
in the current document

See the section Guide Contents
for details.

Blue, underlined text Hyperlink to a website (URL)
Go to www.xilinx.com for the
latest speed files.

Acronym Spelled Out

CLB Configurable Logic Block

DCM Digital Clock Manager

DDR Double Data Rate

DRP Dynamic Reconfiguration Port

DRU Data Recovery Unit

DSP Digital Signal Processor

FCS Frame Check Sequence

FIFO First In First Out

FPGA Field Programmable Gate Array

Gbps Gigabits per second

GMII Gigabit Media Independent Interface

GUI Graphical User Interface

http://www.xilinx.com
http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 25
UG155 March 1, 2011

Conventions

HDL Hardware Description Language

IES Incisive Enterprise Simulator (Cadence)

IO Input/Output

IOB Input/Output Block

IP Intellectual Property

ISE® Integrated Software Environment

LVDS Low Voltage Differential Signalling

MAC Media Access Controller

Mbps Megabits per second

MMD MDIO Managed Device

MDIO Management Data Input/Output

MGT Multi-Gigabit Transceiver

MHz Mega Hertz

ms milliseconds

NCD Native Circuit Description

NGC Native Generic Circuit

NGD Native Generic Database

ns nanoseconds

PAR Place and Route

PCB Printed Circuit Board

PCF Physical Constraints File

PCS Physical Coding Sublayer

PHY physical-side interface

PMA Physical Medium Attachment

PMD Physical Medium Dependent

SA Source Address

SFD Start of Frame Delimiter

SGMII Serial Gigabit Media Independent Interface

STA Station Management Entity

TBI Ten-Bit-Interface

TWR Timing Wizard Report

UCF User Constraints File

VHDL VHSIC Hardware Description Language (VHSIC an acronym for Very
High-Speed Integrated Circuits).

Acronym Spelled Out

http://www.xilinx.com

26 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Preface: About This Guide

VLAN Virtual LAN (Local Area Network)

XCO Xilinx CORE Generator™ core source file

XST Xilinx Synthesis Technology

Acronym Spelled Out

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 27
UG155 March 1, 2011

Chapter 1

Introduction

The Ethernet 1000BASE-X PCS/PMA or SGMII core is a fully-verified solution that
supports Verilog HDL and VHDL. In addition, the example design provided with the core
supports both Verilog and VHDL.

This chapter introduces the Ethernet 1000BASE-X PCS/PMA or SGMII core and provides
related information, including licensing information, recommended design experience,
additional resources, technical support, and methods for submitting feedback to Xilinx.

System Requirements
Windows

• Windows XP Professional 32-bit/64-bit

• Windows Vista Business 32-bit/64-bit

Linux

• Red Hat Enterprise Linux WS v4.0 32-bit/64-bit

• Red Hat Enterprise Desktop v5.0 32-bit/64-bit (with Workstation Option)

• SUSE Linux Enterprise (SLE) v10.1 32-bit/64-bit

Software

• ISE® software v13.1

About the Core
The Ethernet 1000BASE-X PCS/PMA or SGMII core is a Xilinx CORE Generator™ IP
software core, included in the latest IP Update on the Xilinx IP Center. For detailed
information about the core, see the Ethernet 100BASE-X PCS/PMA product page.

Designs Using Transceivers
Transceivers are defined by device family in the following way:

• For Virtex®-4 devices, RocketIO™ Multi-Gigabit transceivers (MGT)

• For Virtex-5 LXT and SXT devices, RocketIO GTP transceivers; Virtex-5 FXT and TXT
devices, RocketIO GTX transceivers

• For Virtex-6 devices, GTX transceivers

• For Spartan®-6 devices, GTP transceivers

• For Virtex-7 and Kintex®-7 devices, GTX transceivers

http://www.xilinx.com/products/ipcenter/DO-DI-GMIITO1GBSXPCS.htm
http://www.xilinx.com

28 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 1: Introduction

Licensing the Core
This version of the Ethernet 1000BASE-X PCS/PMA or SGMII IP core does not require a
license key. Previous versions of the Ethernet 1000BASE-X PCS/PMA or SGMII IP core
released in ISE v12. 1 and earlier did require a license key; please see the version of the
getting started guide for the version of the core you are using for information. The Ethernet
1000BASE-X PCS/PMA or SGMII core is provided under the terms of the Xilinx End User
License Agreement.

Recommended Design Experience
Although the Ethernet 1000BASE-X PCS/PMA or SGMII core is a fully-verified solution,
the challenge associated with implementing a complete design varies depending on the
configuration and functionality of the application. For best results, previous experience
building high-performance, pipelined FPGA designs using Xilinx implementation
software and User Constraint Files (UCF) is recommended.

Contact your local Xilinx representative for a closer review and estimation for your specific
requirements.

Additional Core Resources
For detailed information and updates about the Ethernet 1000BASE-X PCS/PMA or
SGMII core, see the following documents, located on the Xilinx Ethernet 100BASE-X
PCS/PMA product page.

• Ethernet 1000BASE-X PCS/PMA or SGMII Data Sheet

After generating the core, the following documents are available in the document
directory:

• Ethernet 1000BASE-X PCS/PMA or SGMII Release Notes

• Ethernet 1000BASE-X PCS/PMA or SGMII User Guide

Related Xilinx Ethernet Products and Services
For information about all Xilinx Ethernet solutions, see
www.xilinx.com/products/design_resources/conn_central/protocols/gigabit_ethernet.
htm.

Specifications
• IEEE 802.3-2008

• Serial-GMII Specification (CISCO SYSTEMS, ENG-46158)

http://www.xilinx.com/products/ipcenter/DO-DI-GMIITO1GBSXPCS.htm
www.xilinx.com/products/design_resources/conn_central/protocols/gigabit_ethernet.htm
www.xilinx.com/products/design_resources/conn_central/protocols/gigabit_ethernet.htm
http://www.xilinx.com
http://www.xilinx.com/ise/license/license_agreement.htm
http://www.xilinx.com/ise/license/license_agreement.htm

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 29
UG155 March 1, 2011

Technical Support

Technical Support
To obtain technical support specific to the Ethernet 1000BASE-X PCS/PMA or SGMII core,
visit www.support.xilinx.com. Questions are routed to a team of engineers with expertise
using the Ethernet 1000BASE-X PCS/PMA or SGMII core.

Xilinx provides technical support for use of this product as described in the Ethernet
1000BASE-X PCS/PMA or SGMII User Guide. Xilinx cannot guarantee timing, functionality,
or support of this product for designs that do not follow these guidelines.

Feedback
Xilinx welcomes comments and suggestions about the Ethernet 1000BASE-X PCS/PMA or
SGMII core and the documentation supplied with the core.

Ethernet 1000BASE-X PCS/PMA or SGMII Core
For comments or suggestions about the core, please submit a WebCase from
www.support.xilinx.com. Be sure to include the following information:

• Product name

• Core version number

• Explanation of your comments

Document
For comments or suggestions about this document, please submit a WebCase from
www.support.xilinx.com. Be sure to include the following information:

• Document title

• Document number

• Page number(s) to which your comments refer

• Explanation of your comments

http://support.xilinx.com/
http://support.xilinx.com/
http://support.xilinx.com/
http://www.xilinx.com

30 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 1: Introduction

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 31
UG155 March 1, 2011

Chapter 2

Quick Start Guide

The quick start steps provided in this chapter let you quickly generate an Ethernet
1000BASE-X PCS/PMA or SGMII core, run the design through implementation with the
Xilinx® tools, and simulate the design using the provided demonstration test bench.

Overview
The Ethernet 1000BASE-X PCS/PMA or SGMII core deliverables consists of the following:

• Ethernet 1000BASE-X PCS/PMA core netlist

• Example design HDL top-level and associated HDL files

• Demonstration test bench to exercise the example design

A description of the deliverables will be provided in later chapters.

The Ethernet 1000BASE-X PCS/PMA or SGMII example design has been tested using
Xilinx ISE® software v13.1, Cadence Incisive Enterprise Simulator (IES) v10.2, ModelSim
v6.6d and Synopsys VCS and VCS MX_D 2010.06.
X-Ref Target - Figure 2-1

Figure 2-1: Ethernet 1000BASE-X PCS/PMA or SGMII
Example Design and Test Bench

1000BASE-X

PMA

Monitor

1000BASE-X

PMA

Stimulus

GMII

Stimulus

GMII

Monitor

Ethernet

1000BASE-X

PCS/PMA

Core

Netlist

GMII

IOBs

In

IOBs

Out

Tx

Elastic

Buffer

component_name_block

component_name_example_design

clock
management

logic

demonstration test bench

Device
Specific
Transceiver

http://www.xilinx.com

32 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 2: Quick Start Guide

Generating the Core
This section provides detailed instructions for generating the Ethernet 1000BASE-X
PCS/PMA or SGMII example design core.

To generate the core:

1. Start the CORE Generator™ tool.

For general help with starting and using CORE Generator software on your system,
see the documentation supplied with the ISE software, including the CORE Generator
Guide. These documents can be downloaded from:
www.xilinx.com/support/software_manuals.htm.

2. Create a new project.

3. For project options, select the following:

• Your desired device, within which you intend to implement the Ethernet
1000BASE-X PCS/PMA or SGMII core. See the Ethernet 1000BASE-X PCS/PMA or
SGMII Data Sheet for a list of supported devices.

• In the Design Entry section, select VHDL or Verilog; then select Other for Vendor.

4. Locate the Ethernet 1000BASE-X PCS/PMA or SGMII core in the taxonomy tree, listed
under one of the following:

• Communications & Networking/Ethernet

• Communications & Networking/Networking

• Communications & Networking/Telecommunications

5. Double-click the core.

6. Click OK; the core customization screen appears.
X-Ref Target - Figure 2-2

Figure 2-2: Core Customization Screen

http://www.xilinx.com/support/library.htm
http://www.xilinx.com/support/software_manuals.htm
http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 33
UG155 March 1, 2011

Implementing the Example Design

7. Enter a core instance name in the Component Name field.

8. Click Finish to generate the core using the default options. Alternatively, select your
desired options using Chapter 3, Generating and Customizing the Core as a guide.

The core and its supporting files, including the example design, are generated in your
project directly. For a detailed description of the design example files and directories, see
Chapter 4, CORE Generator Deliverables.

Implementing the Example Design
After the core is generated, the netlists and example design can be processed by the Xilinx
implementation tools. The generated output files include several scripts to assist you in
running the Xilinx software.

To implement the Ethernet 1000BASE-X PCS/PMA or SGMII sample design core:

From the CORE Generator software project directory window, type the following:

Linux

linux-shell> cd <project_dir>/<component_name>/implement

linux-shell> ./implement.sh

Windows

ms-dos> cd <project_dir>\<component_name>\implement

ms-dos> implement.bat

These commands execute a script that synthesizes, builds, maps, and place-and-routes the
example design. The script then creates gate-level netlist HDL files in either VHDL or
Verilog, along with associated timing information (SDF) files.

Simulating the Example Design

Setting up for Simulation
To run the gate-level simulation you must have the Xilinx Simulation Libraries compiled
for your system. See the Compiling Xilinx Simulation Libraries (COMPXLIB) in the Xilinx
ISE Synthesis and Verification Design Guide, and the Xilinx ISE Software Manuals and Help.
You can download these documents from:
www.xilinx.com/support/software_manuals.htm.

In addition, use the following guidelines to determine the simulator type required for your
design:

Designs incorporating a device-specific transceiver require a Verilog LRM-IEEE 1364-2005
encryption-compliant simulator. Currently supported simulators are:

• Mentor Graphics ModelSim v6.6d

• Cadence Incisive Enterprise Simulator (IES) v10.2

• Synopsys VCS and VCS MX 2010.06

• For VHDL simulation, a mixed HDL license is required.

http://www.xilinx.com/support/software_manuals.htm
http://www.xilinx.com

34 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 2: Quick Start Guide

Functional Simulation
This section provides instructions for running a functional simulation of the Ethernet
1000BASE-X PCS/PMA or SGMII core using either VHDL or Verilog. The functional
simulation model is provided when the core generated; implementing the core before
simulation is not required.

To run a VHDL or Verilog functional simulation of the example design:

1. Open a command prompt or shell, then set the current directory to:
<project_dir>/<component_name>/simulation/functional/

2. Launch the simulation script:

ModelSim: vsim -do simulate_mti.do

IES: ./simulate_ncsim.sh

VCS: ./simulate_vcs.sh (Verilog only)

The simulation script compiles the functional simulation model, the example design files,
the demonstration test bench, and adds relevant signals to a wave window. It then runs the
simulation to completion. After completion, you can inspect the simulation transcript and
waveform to observe the operation of the core.

Timing Simulation
This section contains instructions for running a timing simulation of the Ethernet
1000BASE-X PCS/PMA or SGMII core using either VHDL or Verilog. A timing simulation
model is generated when run through the Xilinx tools using the implementation script.
You must implement the core before attempting to run timing simulation.

To run a VHDL or Verilog timing simulation of the example design:

1. Run the implementation script (see Implementing the Example Design).

2. Open a command prompt or shell, then set the current directory to:
<project_dir>/<component_name>/simulation/timing/

3. Launch the simulation script:

ModelSim: vsim -do simulate_mti.do

IES: ./simulate_ncsim.sh

VCS: ./simulate_vcs.sh (Verilog only)

The simulator script compiles the gate-level model and the demonstration test bench, adds
relevant signals to a wave window, and then runs the simulation to completion. You can
then inspect the simulation transcript and waveform to observe the operation of the core.

What’s Next?
For detailed information about the scripts and other deliverables that are provided with
the core netlist by CORE Generator, see Chapter 4, CORE Generator Deliverables.

To generate the core with your desired core options, see Chapter 3, Generating and
Customizing the Core.

To begin using the Ethernet 1000BASE-X PCS/PMA or SGMII core in your own designs,
see Chapter 5, Designing with the Core as a starting point.

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 35
UG155 March 1, 2011

Chapter 3

Generating and Customizing the Core

The Ethernet 1000BASE-X PCS/PMA or SGMII core is generated using the CORE
Generator™ software. This chapter describes the GUI options used to generate and
customize the core.

GUI Interface
Figure 3-1 displays the Ethernet 1000BASE-X PCS/PMA or SGMII customization screen,
used to set core parameters and options. For help starting and using CORE Generator
software on your system, see the documentation included with the ISE® software,
including the CORE Generator Guide, at www.xilinx.com/support/software_manuals.htm

X-Ref Target - Figure 3-1

Figure 3-1: Core Customization Screen

http://www.xilinx.com/support/software_manuals.htm
http://www.xilinx.com

36 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 3: Generating and Customizing the Core

Component Name
The component name is used as the base name of the output files generated for the core.
Names must begin with a letter and must be composed from the following characters: a
through z, 0 through 9 and “_.”Select Standard

Select from the following standards for the core:

• 1000BASE-X. 1000BASE-X Physical Coding Sublayer (PCS) functionality is designed
to the IEEE 802.3 specification. Depending on the choice of physical interface, the
functionality may be extended to include the 1000BASE-X Physical Medium
Attachment (PMA) sublayer. Default setting.

• SGMII. Provides the functionality to provide a Gigabit Media Independent Interface
(GMII) to Serial-GMII (SGMII) bridge, as defined in the Serial-GMII Specification
(Cisco Systems, ENG-46158). SGMII may be used to replace GMII at a much lower pin
count and for this reason often favored by PCB designers.

• Both (a combination of 1000BASE-X and SGMII). Combining the 1000BASE-X and
SGMII standards lets you dynamically configure the core to switch between
1000BASE-X and SGMII standards. The core can be switched by writing through the
MDIO Management Interface. For more information, see Chapter 12, Configuration
and Status.

Core Functionality
Figure 3-2 displays the Ethernet 1000BASE-X PCS/PMA or SGMII functionality screen.

X-Ref Target - Figure 3-2

Figure 3-2: 1000BASE-X Standard Options Screen

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 37
UG155 March 1, 2011

GUI Interface

Physical Interface

Depending on the target architecture, up to three physical interface options are available
for the core.

• Device Specific Transceiver. Uses a transceiver specific to the selected device family
to extend the 1000BASE-X functionality to include both PCS and PMA sub-layers. For
this reason, it is available only for Virtex®-4 FX, Virtex-5 LXT, Virtex-5 SXT, Virtex-5
FXT and Virtex-5 TXT, Spartan®-6 LXT, selective Virtex-6 devices, Virtex-7 and
Kintex®-7 devices. For additional information, see Transceiver Logic.

• Ten Bit Interface (TBI). Available in all supported families and provides 1000BASE-X
or SGMII functionality with a parallel TBI used to interface to an external SERDES.
For more information, see Ten-Bit-Interface Logic. Default setting.

• LVDS Serial. Only available in Virtex-6 devices, -2 speed grade or faster for
performing the SGMII Standard. This option uses Asynchronous Oversampling over
Virtex-6 LVDS to implement full SGMII functionality without the use of a Virtex-6
GTX transceiver.

MDIO Management Interface

Select this option to include the MDIO Management Interface to access the PCS
Configuration Registers. See MDIO Management Interface.

If this option is not selected, the core is generated with a replacement configuration vector.
See Optional Configuration Vector. The Management Interface is selected by default.

Auto-Negotiation

Select this option to include Auto-Negotiation functionality with the core, available only if
the core includes the optional Management Interface. For more information, see
Chapter 13, Auto-Negotiation. The default is to include Auto-Negotiation.

SGMII/Dynamic Standard Switching Elastic Buffer Options
The SGMII/Dynamic Standard Switching Options screen, used to customize the Ethernet
1000BASE-X PCS/PMA or SGMII core, is only displayed if either SGMII or Both is selected
in the Select Standard section of the initial customization screen, and only if the device-
specific transceiver is selected as the Physical Standard.

http://www.xilinx.com

38 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 3: Generating and Customizing the Core

This screen lets you select the Receiver Elastic Buffer type to be used with the core. Before
selecting this option, see Receiver Elastic Buffer Implementations in Chapter 9.

SGMII/Dynamic Standard Mode of Operation
The SGMII/Dynamic Standard Operation Mode screen, used to customize the Ethernet
1000BASE-X PCS/PMA or SGMII core, is only displayed if either SGMII or Both is selected
in the Select Standard section of the initial customization screen.

X-Ref Target - Figure 3-3

Figure 3-3: SGMII/Dynamic Standard Switching Options Screen

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 39
UG155 March 1, 2011

GUI Interface

This screen lets you select the core to operate in the PHY mode or MAC mode.

Transceiver Tile Configuration
The Transceiver Tile Configuration screen is only displayed if the transceiver interface is
used with selective Virtex-4, Virtex-5 and Spartan-6 device families.

Transceivers for Virtex-4 FX, Virtex-5 and Spartan-6 device families are available in tiles,
each tile consisting of a pair of transceivers. The Transceiver Tile Selection has no effect on
the functionality of the core netlist, but determines the functionality of the example design
delivered with the core.

Depending on the option selected, the example design instantiates a single core netlist and
does one of the following:

• MGT A (0). Connects to device-specific transceiver A

• MGT B (1). Connects to device-specific transceiver B

• Both MGTs. Two instantiations of the core are created in the example design and
connected to both device-specific transceiver A and B.

X-Ref Target - Figure 3-4

Figure 3-4: SGMII Operation Mode Options Screen

http://www.xilinx.com

40 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 3: Generating and Customizing the Core

Parameter Values in the XCO File
XCO file parameters are used to run the CORE Generator software from the command line.
XCO file parameter names and their values are similar to the names and values shown in
the GUI, except that underscore characters (_) may be used instead of spaces. The text in an
XCO file is not case sensitive.

Table 3-1 describes the XCO file parameters, values and summarizes the GUI defaults. The
following is an example of the CSET parameters in an XCO file:

CSET component_name=gig_eth_pcs_pma_v11_1
CSET standard=1000BASEX
CSET physical_interface=TBI
CSET management_interface=true
CSET auto_negotiation=true
CSET sgmii_mode=10_100_1000
CSET RocketIO_tile=A

X-Ref Target - Figure 3-5

Figure 3-5: Transceiver Tile Configuration Screen

Table 3-1: XCO File Values and Default Values

Parameter XCO File Values
Default GUI

Setting

component_name
ASCII text starting with a letter and based upon
the following character set: a..z, 0..9 and _

gig_eth_pcs_
pma_v11_1

standard
One of the following keywords: 1000BASEX,
SGMII, Both

1000BASEX

physical_interface One of the following keywords: TBI, RocketIO,
LVDS

TBI

management_interface One of the following keywords: true, false true

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 41
UG155 March 1, 2011

Parameter Values in the XCO File

auto_negotiation One of the following keywords: true, false true

sgmii_mode

One of the following keywords: 10_100_1000,
100_1000

• 10_100_1000 corresponds to “10/100/1000
Mbps (clock tolerance compliant with Ethernet
specification)“

• 100_1000 corresponds to “10/100/1000 Mbps
(restricted tolerance for clocks) OR 100/1000
Mbps“

10_100_1000

sgmii_phy_mode One of the following keywords: true, false false

RocketIO_tile One of the following keywords: A, B, Both A

Table 3-1: XCO File Values and Default Values (Cont’d)

Parameter XCO File Values
Default GUI

Setting

http://www.xilinx.com

42 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 3: Generating and Customizing the Core

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 43
UG155 March 1, 2011

Chapter 4

CORE Generator Deliverables

This chapter provides detailed information about the deliverables provided by the CORE
Generator™ software for the Ethernet 1000BASE-X PCS/PMA or SGMII core. The chapter
begins with a directory and file list description for the deliverables, followed by an
overview of the purpose and contents of the provided scripts.

Deliverables for the core include the following:

• The netlist file for the core

• Supporting CORE Generator software files

• Release notes and documentation

• Subdirectories containing an HDL example design

• Scripts to run the core through the back-end tools and simulate the core using either
Mentor Graphics ModelSim, Cadence IES, and Synopsys simulators

Directory Structure
top directory link - white text invisible

<project directory>
Top-level project directory; name is user-defined.

 <project directory>/<component name>
Core release notes file

 <component name>/doc
Product documentation

 <component name>/example design
Verilog and VHDL design files

<component name>/implement
Implementation script files

implement/results
Results directory, created after implementation scripts are run, and
contains implement script results

 implement/results
Simulation scripts

 simulation/functional
Functional simulation files

 simulation/timing
Timing simulation files

http://www.xilinx.com

44 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 4: CORE Generator Deliverables

Directory and File Contents
The core directories and their associated files are defined in the following tables.

<project directory>
The project directory contains all the CORE Generator software project files.

<project directory>/<component name>
The <component name> directory contains the release notes file provided with the core,
which may include last-minute changes and updates.

Table 4-1: Project Directory

Name Description

<project_dir>

<component_name>.ngc
Top-level netlist. This is instantiated by
the Verilog or VHDL example design.

<component_name>.v[hd]
Verilog or VHDL simulation model;
UniSim-based

<component_name>.v{ho|eo}
Verilog or VHDL instantiation template
for the core

<component_name>.xco

Log file that records the settings used to
generate a core. An XCO file is
generated by the CORE Generator
software for each core that it creates in
the current project directory. An XCO
file can also be used as an input to the
CORE Generator software.

<component_name>.xcp

Similar to the XCO file except that it
does not specify project-specific
settings, such as target architecture and
output products

<component_name>_flist.txt List of files delivered with the core

Table 4-2: Component Name Directory

Name Description

<project_dir>/<component_name>

gig_eth_pcs_pma_readme.txt Core release notes file

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 45
UG155 March 1, 2011

Directory and File Contents

<component name>/doc
The doc directory contains the PDF documentation provided with the core.

<component name>/example design
The example design directory contains the example design files provided with the core,
and may contain files and subdirectories other than those defined in Table 4-4. For more
information, see one of the following:

• Example Design for 1000BASE-X with Transceivers

• Example Designs for the Ten-Bit Interface (TBI)

• SGMII Example Design / Dynamic Switching Example Design with Ten-Bit Interface

• SGMII Example Design / Dynamic Switching Example Design Using a Transceiver

• Chapter 10, SGMII Support Using Asynchronous Oversampling over Virtex-6 FPGA
LVDS

Table 4-3: Doc Directory

Name Description

<project_dir>/<component_name>/doc

gig_eth_pcs_pma_ds264.pdf
Ethernet 1000BASE-X PCS/PMA or SGMII
Data Sheet

gig_eth_pcs_pma_ug155.pdf
Ethernet 1000BASE-X PCS/PMA or SGMII
User Guide

Table 4-4: Example Design Directory

Name Description

<project_dir>/<component_name>/example_design

sync_block.v[hd]
This is a synchronization flip-flop pair, used
for passing signals across a clock domain.

reset_sync.v[hd]
This is a reset synchronization module for
creating a synchronous reset output signal
from an asynchronous input.

_example_design.ucf Example User Constraints File (UCF)
provided for the example design

_example_design.v[hd]
Top-level file that allows example design to
be implemented in a device as a standalone
design.

_block.vhd
A block-level file that is a useful part of
example design and should be instantiated in
all customer designs.

http://www.xilinx.com

46 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 4: CORE Generator Deliverables

<component name>/implement
The implement directory contains the core implementation script files.

implement/results
The results directory is created by the implement script, after which the implement script
results are placed in the results directory.

Table 4-5: Implement Directory

Name Description

<project_dir>/<component_name>/implement

implement.sh

Linux shell script that processes the example
design through the Xilinx tool flow. See
Implementation Scripts for more
information.

implement.bat

Windows batch file that processes the
example design through the Xilinx tool flow.
See Implementation Scripts for more
information.

xst.prj
XST project file for the example design
(VHDL only); it enumerates all of the VHDL
files that need to be synthesized.

xst.scr XST script file for the example design

Table 4-6: Results Directory

Name Description

<project_dir>/<component_name>/implement/results

routed.v[hd]
Back-annotated SimPrim-based model used
for timing simulation

routed.sdf Timing information for simulation

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 47
UG155 March 1, 2011

Directory and File Contents

<component name>/simulation
The simulation directory and subdirectories that provide the files necessary to test a
Verilog or VHDL implementation of the example design. For more information, see:

• Example Design for 1000BASE-X with Transceivers

• Example Designs for the Ten-Bit Interface (TBI)

• SGMII Example Design / Dynamic Switching Example Design with Ten-Bit Interface

• SGMII Example Design / Dynamic Switching Example Design Using a Transceiver

• Chapter 10, SGMII Support Using Asynchronous Oversampling over Virtex-6 FPGA
LVDS

simulation/functional
The functional directory contains functional simulation scripts provided with the core.

Table 4-7: Simulation Directory

Name Description

<project_dir>/<component_name>/simulation

demo_tb.v[hd]

Top-level file of the demonstration test bench
for the example design. Instantiates the
example design (the Device Under Test
(DUT)), generates clocks, resets, and test
bench control semaphores.

stimulus_tb.v[hd]

Creates test bench stimulus in the form of
four Ethernet frames, which are injected into
the DUT. The output from the DUT is also
monitored for errors.

Table 4-8: Functional Directory

Name Description

<project_dir>/<component_name>/simulation/functional

simulate_mti.do
ModelSim macro file that compiles Verilog or
VHDL sources and runs the functional
simulation to completion.

wave_mti.do
ModelSim macro file that opens a wave
window and adds signals of interest to it. It is
called by the simulate_mti.do macro file.

simulate_ncsim.sh
IES script file that compiles the Verilog or
VHDL sources and runs the functional
simulation to completion.

wave_ncsim.sv
IES macro file that opens a wave window and
adds signals of interest to it. It is called by the
simulate_ncsim.sh script file.

simulate_vcs.sh
VCS script file that compiles the Verilog
sources and runs the functional simulation to
completion.

http://www.xilinx.com

48 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 4: CORE Generator Deliverables

simulation/timing
The timing directory contains timing simulation scripts provided with the core.

ucli_commands.key
This file is sourced by VCS at the start of
simulation; it configures the simulator.

vcs_session.tcl
VCS macro file that opens a wave window
and adds signals of interest to it. It is called
by the simulate_vcs.sh script file.

Table 4-8: Functional Directory (Cont’d)

Name Description

Table 4-9: Timing Directory

Name Description

<project_dir>/<component_name>/simulation/timing

simulate_mti.do
ModelSim macro file that compiles Verilog or
VHDL sources and runs the timing
simulation to completion.

wave_mti.do
ModelSim macro file that opens a wave
window and adds signals of interest to it. It is
called by the simulate_mti.do macro file.

simulate_ncsim.sh
IES script file that compiles the Verilog or
VHDL sources and runs the timing
simulation to completion.

wave_ncsim.sv
IES macro file that opens a wave window and
adds signals of interest to it. It is called by the
simulate_ncsim.sh script file.

simulate_vcs.sh
VCS script file that compiles the Verilog
sources and runs the functional simulation to
completion.

ucli_commands.key This file is sourced by VCS at the start of
simulation; it configures the simulator.

vcs_session.tcl
VCS macro file that opens a wave window
and adds signals of interest to it. It is called
by the simulate_vcs.sh script file.

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 49
UG155 March 1, 2011

Implementation Scripts

Implementation Scripts
The implementation script is either a shell script or batch file that processes the example
design through the Xilinx tool flow. It is located at:

Linux

<project_dir>/<component_name>/implement/implement.sh

Windows

<project_dir>/<component_name>/implement/implement.bat

The implement script performs the following steps:

1. The HDL example design files are synthesized using XST.

2. NGDbuild is run to consolidate the core netlist and the example design netlist into the
NGD file containing the entire design.

3. The design is mapped to the target technology.

4. The design is placed-and-routed on the target device.

5. Static timing analysis is performed on the routed design using trce.

6. A bitstream is generated.

7. Netgen runs on the routed design to generate a VHDL or Verilog netlist (as
appropriate for the Design Entry project setting) and timing information in the form of
SDF files.

The Xilinx tool flow generates several output and report files. These are saved in the
following directory, which is created by the implement script:

<project_dir>/<component_name>/implement/results

Simulation Scripts

Functional Simulation
The test script is a ModelSim, IES or VCS macro that automates the simulation of the test
bench and is in the following location:

<project_dir>/<component_name>/simulation/functional/

The test script performs the following tasks:

• Compiles the structural UniSim simulation model

• Compiles HDL example design source code

• Compiles the demonstration test bench

• Starts a simulation of the test bench

• Opens a Wave window and adds signals of interest (wave_mti.do/wave_ncsim.sv)

• Runs the simulation to completion

http://www.xilinx.com

50 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 4: CORE Generator Deliverables

Timing Simulation
The test script is a ModelSim, IES or VCS macro that automates the simulation of the test
bench and is in the following location:

<project_dir>/<component_name>/simulation/timing/

The test script performs the following tasks:

• Compiles the SimPrim-based gate level netlist simulation model

• Compiles the demonstration test bench

• Starts a simulation of the test bench

• Opens a Wave window and adds signals of interest (wave_mti.do/wave_ncsim.sv)

• Runs the simulation to completion

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 51
UG155 March 1, 2011

Chapter 5

Designing with the Core

This chapter provides an introduction into creating your own designs using the Ethernet
1000BASE-X PCS/PMA or SGMII core.

Design Guidelines

Understand the Features and Interfaces Provided by the Core Netlist
Chapter 6, Core Architecture introduces the features and interfaces that are present in the
logic of the Ethernet 1000BASE-X PCS/PMA or SGMII netlist. This chapter assumes a
working knowledge of the IEEE802.3-2008 Ethernet specification, in particular the Gigabit
Ethernet 1000BASE-X sections: clauses 34 through to 37.

Customize and Generate the Core
Generate the core with your desired options using the CORE Generator™ software, as
described in Chapter 2, Quick Start Guide and Chapter 3, Generating and Customizing the
Core.

Examine the Example Design Provided with the Core
An HDL example design built around the core is provided through the CORE Generator
software and allows for a demonstration of core functionality using either a simulation
package or in hardware if placed on a suitable board.

Five different example designs are provided depending upon the core customization
options that have been selected. See the example design description in the appropriate
chapter:

• Example Design for 1000BASE-X with Transceivers

• Example Designs for the Ten-Bit Interface (TBI)

• SGMII Example Design / Dynamic Switching Example Design with Ten-Bit Interface

• SGMII Example Design / Dynamic Switching Example Design Using a Transceiver

• Chapter 10, SGMII Support Using Asynchronous Oversampling over Virtex-6 FPGA
LVDS

Before implementing the core in your application, examine the example design provided
with the core to identify the steps that can be performed:

• Edit the HDL top level of the example design file to change the clocking scheme, add
or remove IOBs as required, and replace the GMII IOB logic with user-specific
application logic (for example, an Ethernet MAC).

http://www.xilinx.com

52 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 5: Designing with the Core

• Synthesize the entire design.

The Xilinx Synthesis Tool (XST) script and Project file in the /implement directory
may be adapted to include any added user HDL files.

• Run the implement script in the /implement directory to create a top-level netlist for
the design.

The script will also run the Xilinx tools map, par, and bitgen to create a bitstream that
can be downloaded to a Xilinx device. SimPrim-based simulation models for the entire
design are also produced by the implement scripts.

• Simulate the entire design using the demonstration test bench provided in
/simulation/timing as a template.

• Download the bitstream to a target device.

Implement the Ethernet 1000BASE-X PCS/PMA or SGMII Core
in Your Application

Before implementing your application, examine the example design delivered with the
core for information about the following:

• Instantiating the core from HDL

• Connecting the physical-side interface of the core (device-specific transceiver or TBI)

• Deriving the clock management logic

It is expected that the block level module from the example design will be instantiated
directly into customer designs rather than the core netlist itself. The block level contains
the core and a completed physical interface.

Write an HDL Application

After reviewing the example design delivered with the core, write an HDL application that
uses single or multiple instances of the block level module for the Ethernet 1000BASE-X
PCS/PMA or SGMII core. Client-side interfaces and operation of the core are described in
Chapter 11, Using the Client-Side GMII Data Path. See the following information for
additional details:

• Using the Ethernet 1000BASE-X PCS/PMA or SGMII core in conjunction with the Tri-
Mode Ethernet MAC core in Chapter 16, Interfacing to Other Cores.

Synthesize your Design

Synthesize your entire design using the desired synthesis tool. The Ethernet 1000BASE-X
PCS/PMA or SGMII core is pre-synthesized and delivered as an NGC netlist—for this
reason, it appears as a black box to synthesis tools.

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 53
UG155 March 1, 2011

Design Guidelines

Create a Bitstream

Run the Xilinx tools map, par, and bitgen to create a bitstream that can be downloaded to
a Xilinx device. The UCF produced by the CORE Generator software should be used as the
basis for your UCF and care must be taken to constrain the design correctly. See
Chapter 15, Constraining the Core and Chapter 18, Implementing the Design for more
information.

Simulate and Download your Design

After creating a bitstream that can be downloaded to a Xilinx device, simulate the entire
design and download it to the desired device.

Know the Degree of Difficulty

An Ethernet 1000BASE-X PCS/PMA or SGMII core is challenging to implement in any
technology and as such, all Ethernet 1000BASE-X PCS/PMA or SGMII core applications
require careful attention to system performance requirements. Pipelining, logic mapping,
placement constraints, and logic duplication are all methods that help boost system
performance.

Keep it Registered

To simplify timing and to increase system performance in an FPGA design, keep all inputs
and outputs registered between the user application and the core. All inputs and outputs
from the user application should come from, or connect to, a flip-flop. While registering
signals may not be possible for all paths, it simplifies timing analysis and makes it easier
for the Xilinx tools to place and route the design.

Recognize Timing Critical Signals

The UCF provided with the example design for the core identifies the critical signals and
the timing constraints that should be applied. See Chapter 15, Constraining the Core for
more information.

Use Supported Design Flows

The core is pre-synthesized and is delivered as an NGC netlist. The example
implementation scripts provided currently uses ISE® v13.1 tools as the synthesis tool for
the HDL example design delivered with the core. Other synthesis tools may be used for the
user application logic. The core will always be unknown to the synthesis tool and should
appear as a black box. Post synthesis, only ISE v13.1 tools are supported.

Make Only Allowed Modifications

The Ethernet 1000BASE-X PCS/PMA or SGMII core should not be modified. Modifications
may have adverse effects on system timing and protocol compliance. Supported user
configurations of the Ethernet 1000BASE-X PCS/PMA or SGMII core can only be made by
the selecting the options from within the CORE Generator software when the core is
generated. See Chapter 3, Generating and Customizing the Core.

http://www.xilinx.com

54 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 5: Designing with the Core

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 55
UG155 March 1, 2011

Chapter 6

Core Architecture

This chapter describes the architecture of the Ethernet 1000BASE-X PCS/PMA or SGMII
core, including all interfaces and major functional blocks.

System Overview
The core provides three different physical interface options which are introduced in the
following sections.

• Ethernet 1000BASE-X PCS/PMA or SGMII Using A Device Specific Transceiver

• Ethernet 1000BASE-X PCS/PMA or SGMII with Ten-Bit-Interface

• SGMII Support Using Asynchronous Oversampling over Virtex-6 FPGA LVDS

Ethernet 1000BASE-X PCS/PMA or SGMII Using A Device Specific
Transceiver

The Ethernet 1000BASE-X PCS/PMA or SGMII core provides the functionality to
implement the 1000BASE-X PCS and PMA sublayers or used to provide a
GMII to SGMII/SGMII to GMII bridge when used with a device-specific transceiver.

Transceivers are defined in the following way:

• Virtex®-4 FPGAs: RocketIO™ Multi-Gigabit transceivers (MGT)

• For Virtex-5 LXT and SXT FPGAs: RocketIO GTP transceivers
Virtex-5 FXT and TXT FPGAs: RocketIO GTX transceiver

• For Virtex-6 FPGAs: GTX transceivers

• For Spartan®-6 FPGAs: GTP transceivers

• For Virtex-7 and Kintex®-7 FPGAs: GTX transceivers

The core interfaces to a device-specific transceiver.k It provides some of the PCS layer
functionality, such as 8B/10B encoding/decoding, the PMA SERDES, and clock recovery.
Figure 6-1 illustrates the remaining PCS sublayer functionality and also shows the major
functional blocks of the core.

http://www.xilinx.com

56 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 6: Core Architecture

X-Ref Target - Figure 6-1

GMII Block

A client-side GMII is provided with the core, which can be used as an internal interface for
connection to an embedded Media Access Controller (MAC) or other custom logic.
Alternatively, the GMII may be routed to device IOBs to provide an external (off chip)
GMII.

Virtex-7 devices support GMII at 3.3V or lower only in certain parts and packages. See the
Virtex-7 Device Documentation. Virtex-6 devices support GMII at 2.5V only. See the Virtex-
6 FPGA Data Sheet: DC and Switching Characteristics for more information. Kintex-7, Virtex-
5, Virtex-4, Spartan-6, and Spartan-3 devices support GMII at 3.3V or lower.

PCS Transmit Engine

The PCS transmit engine converts the GMII data octets into a sequence of ordered sets by
implementing the state diagrams of IEEE 802.3 -2008 (figures 36-5 and 36-6). See Appendix
C, 1000BASE-X State Machine.

PCS Receive Engine and Synchronization

The synchronization process implements the state diagram of IEEE 802.3 (figure 36-9). The
PCS receive engine converts the sequence of ordered sets to GMII data octets by
implementing the state diagrams of IEEE 802.3 -2008 (figures 36-7a and 36-7b). See
Appendix C, 1000BASE-X State Machine.

Optional Auto-Negotiation Block

Clause 37 in the IEEE 802.3 -2008 specification describes the 1000BASE-X Auto-
Negotiation function that allows a device to advertise the modes of operation that it
supports to a device at the remote end of a link segment (link partner), and to detect
corresponding operational modes that the link partner may be advertising.

Auto-Negotiation is controlled and monitored through the PCS Management Registers.
See Chapter 13, Auto-Negotiation.

Figure 6-1: Functional Block Diagram Using Device-Specific Transceiver

PCS Transmit Engine

PCS Receive Engine

and Synchronization

T
ra

n
s
c
e

iv
e

r

Optional PCS

Management

GMII

to MAC

MDIO

Interface

Optional

Auto-Negotiation
To PMD

Sublayer

G
M

II
 B

lo
c
k

LogiCORE Ethernet 1000BASE-X PCS/PMA or SGMII Core

T
ra

n
s
c
e

iv
e

r
 I

/F
 B

lo
c
k

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 57
UG155 March 1, 2011

System Overview

Optional PCS Management Registers

Configuration and status of the core, including access to and from the optional Auto-
Negotiation function, uses the 1000BASE-X PCS Management Registers defined in clause
37 of the IEEE 802.3 -2008 specification. These registers are accessed through the serial
Management Data Input/Output Interface (MDIO), defined in clause 22 of the IEEE 802.3
-2008 specification, as if it were an externally connected PHY.

The PCS Management Registers may be omitted from the core when the core is performing
the 1000BASE-X standard. In this situation, configuration and status of the core is made
possible with the use of an alternative configuration vector and a status signal.

When the core is performing the SGMII standard, the PCS Management Registers become
mandatory and information in the registers takes on a different interpretation. For more
information, see Management Registers.

Transceiver Interface Block

The Transceiver Interface Block enables the core to connect to a Virtex-4, Virtex-5, Virtex-6,
Spartan-6, Virtex-7, or Kintex-7 FPGA Gigabit transceiver.

Ethernet 1000BASE-X PCS/PMA or SGMII with Ten-Bit-Interface
The Ethernet 1000BASE-X PCS/PMA or SGMII core, when used with the Ten-Bit Interface
(TBI), allows you to implement only the 1000BASE-X PCS sublayer.

The optional TBI can be used in place of the device-specific transceiver to provide a
parallel interface for connection to an external PMA SERDES device. In this
implementation, additional logic blocks are required to replace some of the device-specific
transceiver functionality. These are shown in the surrounded by the dotted line box in
Figure 6-2 and are described in the following sections. The other blocks are described
previously in this document.

X-Ref Target - Figure 6-2

Figure 6-2: Functional Block Diagram with a Ten-Bit Interface

PCS Transmit Engine

PCS Receive Engine
and Synchronization

Optional PCS
Management

GMII
to MAC

MDIO
Interface

Optional
Atuo-negotiation

G
M

II
B

lo
ck

8B/10B
Encoder

8B/10B
Decoder

RX
Elastic
Buffer

TB
I B

lo
ck

 LogiCORE Ethernet 1000BASE-X PCS/PMA or SGMII Core

IO
B

s

TBI
to external
SERDES

http://www.xilinx.com

58 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 6: Core Architecture

Virtex-7 devices support TBI at 3.3V or lower only in certain parts and packages: please see
the Virtex-7 Device Documentation. Virtex-6 devices support TBI at 2.5V only. Please see
the Virtex-6 FPGA Data Sheet: DC and Switching Characteristics for more information.
Kintex-7, Virtex-5, Virtex-4, Spartan-6 and Spartan-3 devices support TBI at 3.3V or lower.

8B/10B Encoder

8B10B encoding, as defined in the IEEE 802.3 -2008 specification (Tables 36-1a to 36-1e and
Table 36-2), is implemented in a block SelectRAM™ memory, configured as ROM, and
used as a large look-up table.

8B/10B Decoder

8B10B decoding, as defined in the IEEE 802.3 -2008 specification (Table 36-1a to 36-1e and
Table 36-2), is implemented in a block SelectRAM memory, configured as ROM, and used
as a large look-up table.

Receiver Elastic Buffer

The Receiver Elastic Buffer enables the 10-bit parallel TBI data, received from the PMA
sublayer synchronously to the TBI receiver clocks, to be transferred onto the cores internal
125 MHz clock domain. It is an asynchronous FIFO implemented in internal RAM. The
Receiver Elastic Buffer attempts to maintain a constant occupancy by inserting or
removing Idle sequences as necessary. This causes no corruption to the frames of data.

TBI Block

The core provides a TBI interface that should be routed to device IOBs to provide an off-
chip TBI.

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 59
UG155 March 1, 2011

System Overview

SGMII Support Using Asynchronous Oversampling over Virtex-6 FPGA
LVDS

Virtex-6 devices, -2 speed grade or higher, can fully support SGMII using standard LVDS
SelectIO™ technology logic resources. This enables direct connection to external PHY
devices without the use of a Virtex-6 FPGA GTX Transceiver. This implementation is
illustrated in Figure 6-3.

The core netlist in this implementation remains identical to that of Figure 6-1 and all core
netlist blocks are identical to those described in Ethernet 1000BASE-X PCS/PMA or SGMII
Using A Device Specific Transceiver.

As illustrated in Figure 6-3, the HDL example design for this implementation provides
additional logic to form the LVDS Transceiver module, which fully replaces the
functionality otherwise provided by a Virtex-6 FPGA GTX Transceiver. The LVDS
transceiver block contains IODELAY and ISERDES elements along with A Data Recovery
Unit (DRU). This uses the Virtex-6 FPGA ISERDES elements in a new asynchronous
oversampling mode as described in XAPP 881 1.25Gbs 4x Asynchronous Oversampling over
Virtex-6 LVDS. The full transceiver functionality is then completed with Comma
Alignment, 8B10B Decoder and Rx Elastic buffer blocks.

X-Ref Target - Figure 6-3

Figure 6-3: Functional Block Diagram of the Core with Standard SelectIO Technology Support for SGMII

PCS Transmit Engine

PCS Receive Engine

and Synchronization

Optional PCS

Management

GMII

to MAC

MDIO

Interface

Optional

Auto-Negotiation
Serial SGMII

to

external PHYG
M

II
 B

lo
c
k

LogiCore netlist

T
ra

n
s
c
e
iv

e
r

 I
/F

 B
lo

c
k

8B/10B

Encoder OSERDES

IODELAYISERDES

DRU
Comma

Alignment

Tx
Phase
Buffer

8B/10B
Decoder

IODELAYISERDES

LVDS transceiver

MMCM
clock

alignment
state

machine

clock buffers

various clock
frequencies
and phases

OSERDES

ISERDES

I/O Bank Clocking

Rx
Elastic
Buffer

http://www.xilinx.com

60 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 6: Core Architecture

Figure 6-3 also illustrates the inclusion of the I/O Bank Clocking block which creates all of
the clock frequencies and clock phases which are required by the LVDS transceiver block.
As the name of the block suggests, this logic can be shared across a single Virtex-6 FPGA IO
Bank. This IO Bank can be used for multiple instances of the core with LVDS I/O to create
several independent SGMII ports.

See Chapter 10, SGMII Support Using Asynchronous Oversampling over Virtex-6 FPGA
LVDS for a detailed description of the LVDS SelectIO technology SGMII implementation.

Core Interfaces
All ports of the core are internal connections in FPGA fabric. An HDL example design
(delivered with the core) connects the core, where appropriate, to a device-specific
transceiver, LVDS transceiver logic and/or add IBUFs, OBUFs, and IOB flip-flops to the
external signals of the GMII and TBI. IOBs are added to the remaining unconnected ports
to take the example design through the Xilinx implementation software.

All clock management logic is placed in this example design, allowing you more flexibility
in implementation (such as designs using multiple cores). This example design is provided
in both VHDL and Verilog. For more information on the example design provided, see one
of the following chapters depending on your chosen standard and physical interface:

• Chapter 7, The Ten-Bit Interface

• Chapter 8, 1000BASE-X with Transceivers

• Chapter 9, SGMII / Dynamic Standards Switching with Transceivers

• Chapter 10, SGMII Support Using Asynchronous Oversampling over Virtex-6 FPGA
LVDS

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 61
UG155 March 1, 2011

Core Interfaces

Figure 6-4 shows the pinout for the Ethernet 1000BASE-X PCS/PMA or SGMII core using
a device-specific transceiver, or LVDS transceiver logic, with the optional PCS Management
Registers. The signals shown in the Auto-Negotiation box included only when the core
includes the Auto-Negotiation functionality. For more information, see Chapter 3,
Generating and Customizing the Core.
X-Ref Target - Figure 6-4

Figure 6-4: Component Pinout Using a Transceiver
with PCS Management Registers

mdc
mdio_in

gmii_rxd[7:0]

gmii_txd[7:0]
gmii_tx_en mgt_rx_reset
gmii_tx_er

reset

gmii_rx_dv
gmii_rx_er

GMII

MDIO

phyad[4:0]

signal_detect

mdio_out
mdio_tri

rxbufstatus[1:0]
rxchariscomma
rxcharisk

Transceiver Interface

gmii_isolate

link_timer_value[8:0]
an_interrupt

Auto_Negotiation

mgt_tx_reset

rxclkcorcnt[2:0]
rxdata[7:0]
rxdisperr
rxnotintable
rxrundisp
txbuferr

userclk

dcm_locked
userclk2

powerdown
txchardispmode
txchardispval
txcharisk
txdata
enablealign

status_vector[15:0]

http://www.xilinx.com

62 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 6: Core Architecture

Figure 6-5 shows the pinout for the Ethernet 1000BASE-X PCS/PMA or SGMII core using
a device-specific transceiver, or LVDS transceiver logic without the optional PCS
Management Registers.
X-Ref Target - Figure 6-5

Figure 6-5: Component Pinout Using a Transceiver
without PCS Management Registers

mgt_rx_reset

signal_detect

rxbufstatus[1:0]
rxchariscomma
rxcharisk

Transceiver Interface

mgt_tx_reset

rxclkcorcnt[2:0]
rxdata[7:0]
rxdisperr
rxnotintable
rxrundisp
txbuferr

userclk

dcm_locked
userclk2

powerdown
txchardispmode
txchardispval
txcharisk
txdata
enablealign

gmii_rxd[7:0]

gmii_txd[7:0]
gmii_tx_en
gmii_tx_er

reset

gmii_rx_dv
gmii_rx_er

GMII

gmii_isolate

configuration_vector[3:0]

MDIO Replacement

status_vector[15:0]

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 63
UG155 March 1, 2011

Core Interfaces

Figure 6-6 shows the pinout for the Ethernet 1000BASE-X PCS/PMA or SGMII core when
using the TBI with optional PCS Management Registers. The signals shown in the Auto-
Negotiation box are included only when the core includes the Auto-Negotiation
functionality (see Chapter 3, Generating and Customizing the Core).
X-Ref Target - Figure 6-6).

Figure 6-6: Component Pinout Using the Ten-Bit Interface
with PCS Management Registers

mdc
mdio_in

gmii_rxd[7:0]

gmii_txd[7:0]
gmii_tx_en

tx_code_group[9:0]

rx_code_group0[9:0]

gmii_tx_er

reset

gmii_rx_dv
gmii_rx_er

pma_rx_clk0

GMII

MDIO

phyad[4:0]

gtx_clk signal_detect

mdio_out
mdio_tri

loc_ref
ewrap

pma_rx_clk1

en_cdet

rx_code_group1[9:0]

Ten-Bit Interface (TBI)

gmii_isolate

link_timer_value[8:0]
an_interrupt

Auto_Negotiation
status_vector[15:0]

http://www.xilinx.com

64 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 6: Core Architecture

Figure 6-7 shows the pinout for the Ethernet 1000BASE-X PCS/PMA or SGMII core when
using a TBI without the optional PCS Management Registers.
X-Ref Target - Figure 6-7

Figure 6-7: Component Pinout Using Ten-Bit Interface
without PCS Management Registers

gmii_rxd[7:0]

gmii_txd[7:0]
gmii_tx_en

tx_code_group[9:0]

rx_code_group0[9:0]

gmii_tx_er

reset

gmii_rx_dv
gmii_rx_er

pma_rx_clk0

GMII

gtx_clk signal_detect

loc_ref
ewrap

pma_rx_clk1

en_cdet

rx_code_group1[9:0]

Ten-Bit Interface (TBI)

gmii_isolate

configuration_vector[3:0]

MDIO Replacement

status_vector[15:0]

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 65
UG155 March 1, 2011

Core Interfaces

Figure 6-8 shows the pinout for the Ethernet 1000BASE-X PCS/PMA or SGMII core using
the optional dynamic switching logic (between 1000BASE-X and SGMII standards). This
mode is shown used with a device-specific transceiver interface. For more information, see
Chapter 14, Dynamic Switching of 1000BASE-X and SGMII Standards.
X-Ref Target - Figure 6-8

Figure 6-8: Component Pinout with the Dynamic Switching Logic

mdc
mdio_in

gmii_rxd[7:0]

gmii_txd[7:0]
gmii_tx_en mgt_rx_reset
gmii_tx_er

reset

gmii_rx_dv
gmii_rx_er

GMII

MDIO

phyad[4:0]

signal_detect

mdio_out
mdio_tri

rxbufstatus[1:0]
rxchariscomma
rxcharisk

Transceiver Interface

gmii_isolate

link_timer_basex[8:0]
an_interrupt

Auto_Negotiation

mgt_tx_reset

rxclkcorcnt[2:0]
rxdata[7:0]
rxdisperr
rxnotintable
rxrundisp
txbuferr

userclk

dcm_locked
userclk2

powerdown
txchardispmode
txchardispval
txcharisk
txdata
enablealign

link_timer_sgmii[8:0]
basex_or_sgmii status_vector[15:0]

http://www.xilinx.com

66 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 6: Core Architecture

Client Side Interface

GMII Pinout

Table 6-1 describes the GMII-side interface signals of the core common to all
parameterizations of the core. These are typically attached to an Ethernet MAC, either off-
chip or internally integrated. The HDL example design delivered with the core connects
these signals to IOBs to provide a place-and-route example.

For more information, see Chapter 11, Using the Client-Side GMII Data Path.

Common Signal Pinout

Table 6-2 describes the remaining signals common to all parameterizations of the core.

Table 6-1: GMII Interface Signal Pinout

Signal Direction Description

gmii_txd[7:0] (1) Input GMII Transmit data from MAC.

gmii_tx_en (1) Input GMII Transmit control signal from MAC.

gmii_tx_er (1) Input GMII Transmit control signal from MAC.

gmii_rxd[7:0] (2) Output GMII Received data to MAC.

gmii_rx_dv (2) Output GMII Received control signal to MAC.

gmii_rx_er (2) Output GMII Received control signal to MAC.

gmii_isolate (2) Output
IOB Tri-state control for GMII Isolation. Only of use when
implementing an External GMII as illustrated by the
example design HDL.

Notes:
1. When the Transmitter Elastic Buffer is present, these signals are synchronous to gmii_tx_clk. When the

Transmitter Elastic Buffer is omitted, see (2).
2. These signals are synchronous to the internal 125 MHz reference clock of the core. This is userclk2

when the core is used with the device-specific transceiver; gtx_clk when the core is used with TBI.

Table 6-2: Other Common Signals

Signal Direction Description

reset Input Asynchronous reset for the entire core. Active High. Clock
domain is not applicable.

signal_detect Input

Signal direct from PMD sublayer indicating the presence of light
detected at the optical receiver. If set to ’1,’ indicates that the
optical receiver has detected light. If set to ’0,’ this indicates the
absence of light.

If unused this signal should be set to ’1’to enable correct
operation the core. Clock domain is not applicable.

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 67
UG155 March 1, 2011

Core Interfaces

status_vector
[15:0] (1) Output

Bit[0]: Link Status

Indicates the status of the link.

• When high, the link is valid: synchronization of the link
has been obtained and Auto-Negotiation (if present and
enabled) has successfully completed.

• When low, a valid link has not been established. Either
link synchronization has failed or Auto-Negotiation (if
present and enabled) has failed to complete.

• When auto-negotiation is enabled this signal is identical
to Status Register Bit 1.2: Link Status.

• When auto-negotiation is disabled this signal is identical
to status_vector Bit[1].

Bit[1]: Link Synchronization

Indicates the state of the synchronization state machine
(IEEE802.3-2008 figure 36-9) which is based on the reception of
valid 8B10B code groups. This signal is similar to Bit[0] (Link
Status), but is NOT qualified with Auto-Negotiation.

• When high, link synchronization has been obtained and
in the synchronization state machine, sync_status = OK.

• When low, synchronization has failed.

Bit[2]: RUDI(/C/)

The core is receiving /C/ ordered sets (Auto-Negotiation
Configuration sequences).

Bit[3]: RUDI(/I/)

The core is receiving /I/ ordered sets (Idles).

Bit[4]: RUDI(INVALID)

The core has received invalid data whilst receiving/C/ or /I/
ordered set. See status_vector[15:0] signals for more information.

Bit[5]: RXDISPERR

The core has received a running disparity error during the 8B10B
decoding function.

Bit[6]: RXNOTINTABLE

The core has received a code group which is not recognized from
the 8B10B coding tables.

Bit[7]: PHY Link Status (SGMII mode only)

When operating in SGMII mode, this bit represents the link
status of the external PHY device attached to the other end of the
SGMII link (high indicates that the PHY has obtained a link with
its link partner; low indicates that is has not linked with its link
partner).

When operating in 1000BASE-X mode this bit will remain low
and should be ignored.

Table 6-2: Other Common Signals (Cont’d)

Signal Direction Description

http://www.xilinx.com

68 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 6: Core Architecture

MDIO Management Interface Pinout (Optional)

Table 6-3 describes the optional MDIO interface signals of the core used to access the PCS
Management Registers. These signals are typically connected to the MDIO port of a MAC
device, either off-chip or to an internally integrated MAC core. For more information, see
Management Registers.

status_vector
[15:0] (1)

(contd)
Output

Bit[9:8]: Remote Fault Encoding

This signal indicates the remote fault encoding (IEEE802.3 table
37-3). This signal is validated by bit 13 of status_vector and is
only valid when

Auto-Negotiation is enabled.

This signal has no significance when the core is in SGMII mode
with PHY side implementation and indicates "00". In all the
remaining modes indicates the remote fault encoding.

• Bit [11:10]: SPEED

This signal indicates the speed negotiated and is only valid when
Auto-Negotiation is enabled. The signal encoding follows:

• Bit[11] Bit[10]

1 1 Reserved

1 0 1000 Mb/s

0 1 100 Mb/s

0 0 10 Mb/s

• Bit[12]: Duplex Mode

This bit indicates the Duplex mode negotiated with the link
partner

1 = Full Duplex

0 = Half Duplex

• Bit[13] Remote Fault

When this bit is logic one, it indicates that a remote fault is
detected and the type of remote fault is indicated by
status_vector bits[9:8]. Note: This bit is only de-asserted when a
MDIO read is made to status register (register1).

This signal has no significance in SGMII PHY mode.

• Bits[15;14]: Reserved

These bits are reserved for future use

Notes:
1. These signals are synchronous to the internal 125 MHz reference clock of the core. This is userclk2

when the core is used with the device-specific transceiver; this is gtx_clk when the core is used with
TBI.

Table 6-2: Other Common Signals (Cont’d)

Signal Direction Description

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 69
UG155 March 1, 2011

Core Interfaces

Configuration Vector (Optional)

Table 6-4 shows the alternative to the optional MDIO Management Interface, the
configuration vector. See Optional Configuration Vector.

Table 6-3: Optional MDIO Interface Signal Pinout

Signal Direction
Clock
Domain

Description

mdc Input N/A Management clock (<= 2.5 MHz).

mdio__in (1) Input mdc
Input data signal for communication with MDIO
controller (for example, an Ethernet MAC). Tie high
if unused.

mdio_out (1) Output mdc
Output data signal for communication with MDIO
controller (for example, an Ethernet MAC).

mdio_tri (1) Output mdc
Tri-state control for MDIO signals; ‘0’ signals that the
value on mdio_out should be asserted onto the
MDIO interface.

phyad[4:0] Input N/A
Physical Address of the PCS Management register
set. It is expected that this signal will be tied off to a
logical value.

Notes:
1. These signals can be connected to a Tri-state buffer to create a bidirectional mdio signal suitable for

connection to an external MDIO controller (for example, an Ethernet MAC).

Table 6-4: Optional Configuration and Status Vectors

Signal Direction Description

configuration_vector[3:0] (1) Input

Bit[0]: Reserved (currently unused)

Bit[1]: Loopback Control

• When the core with device-specific transceiver
is used, the core is placed in internal loopback
mode.

• With the TBI version, Bit 1 is connected to
ewrap. When set to ‘1,’ this indicates to the
external PMA module to enter loopback mode.

Bit[2]: Power Down

• When the device-specific transceiver is used
(when set to ‘1’), the MGT is placed in a low
power state. A reset must be applied to clear.

• With the TBI version this bit is unused.

Bit[3]: Isolate

When set to ‘1,’ the GMII should be electrically
isolated. When set to ‘0,’ normal operation is
enabled.

Notes:
1. This signal is synchronous to the internal 125 MHz reference clock of the core. This is userclk2 when

the core is used with the device-specific transceiver; this is gtx_clk when the core is used with TBI.

http://www.xilinx.com

70 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 6: Core Architecture

Auto-Negotiation Signal Pinout

Table 6-5 describes the signals present when the optional Auto-Negotiation functionality is
present. For more information, see Chapter 13, Auto-Negotiation.

Dynamic Switching Signal Pinout

Table 6-6 describes the signals present when the optional Dynamic Switching mode
(between 1000BASE-X and SGMII standards) is selected. In this case, the MDIO (Table 6-3)
and device-specific transceiver (Table 6-7) interfaces are always present.

Table 6-5: Optional Auto-Negotiation Interface Signal Pinout

Signal Direction Description

link_timer_value[8:0] (1) Input

Used to configure the duration of the Auto-
Negotiation Link Timer period. The duration of this
timer is set to the binary number input into this port
multiplied by 4096 clock periods of the 125 MHz
reference clock (8 ns). It is expected that this signal will
be tied off to a logical value.

This port is replaced when using the dynamic
switching mode.

an_interrupt (1) Output

Active high interrupt to signal the completion of an
Auto-Negotiation cycle. This interrupt can be
enabled/disabled and cleared by writing to the
appropriate PCS Management Register.

Notes:
1. These signals are synchronous to the internal 125 MHz reference clock of the core. This is userclk2

when the core is used with the device-specific transceiver; this is gtx_clk when the core is used with
TBI.

Table 6-6: Optional Dynamic Standard Switching Signals

Signal Direction Description

link_timer_basex[8:0](1) Input

Used to configure the duration of the Auto-
Negotiation Link Timer period when performing the
1000BASE-X standard. The duration of this timer is set
to the binary number input into this port multiplied by
4096 clock periods of the 125 MHz reference clock (8
ns). It is expected that this signal will be tied off to a
logical value.

link_timer_sgmii[8:0](1) Input

Used to configure the duration of the Auto-
Negotiation Link Timer period when performing the
SGMII standard. The duration of this timer is set to the
binary number input into this port multiplied by 4096
clock periods of the 125 MHz reference clock (8 ns). It
is expected that this signal will be tied off to a logical
value.

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 71
UG155 March 1, 2011

Core Interfaces

Physical Side Interface

1000BASE-X PCS with PMA Using Transceiver Signal Pinout (Optional)

Table 6-7 describes the optional interface to the device-specific transceiver, or LVDS
transceiver logic. The core is connected to the chosen transceiver in the appropriate HDL
example design delivered with the core. For more information, see Appendix C,
1000BASE-X State Machines.

• Chapter 8, 1000BASE-X with Transceivers

• Chapter 9, SGMII / Dynamic Standards Switching with Transceivers

• Chapter 10, SGMII Support Using Asynchronous Oversampling over Virtex-6 FPGA
LVDS

basex_or_sgmii(1) Input

Used as the reset default to select the standard. It is
expected that this signal will be tied off to a logical
value.

‘0’ signals that the core will come out of reset operating
as 1000BASE-X.

‘1’ signals that the core will come out of reset operating
as SGMII.

Note: The standard can be set following reset through
the MDIO Management.

Notes:
1. Clock domain is userclk2.

Table 6-6: Optional Dynamic Standard Switching Signals (Cont’d)

Signal Direction Description

Table 6-7: Optional Transceiver Interface Pinout

Signal Direction Description

mgt_rx_reset (1) Output
Reset signal issued by the core to the device-specific
transceiver receiver path. Connect to RXRESET signal of
device-specific transceiver.

mgt_tx_reset (1) Output
Reset signal issued by the core to the device-specific
transceiver transmitter path. Connect to TXRESET signal
of device-specific transceiver.

userclk Input Also connected to TXUSRCLK and RXUSRCLK of the
device-specific transceiver. Clock domain is not applicable.

userclk2 Input
Also connected to TXUSRCLK2 and RXUSRCLK2 of the
device-specific transceiver. Clock domain is not applicable.

dcm_locked Input

A DCM may be used to derive userclk and userclk2. This
is implemented in the HDL design example delivered with
the core. The core will use this input to hold the device-
specific transceiver in reset until the DCM obtains lock.
Clock domain is not applicable.

rxbufstatus[1:0] (1) Input
Connect to device-specific transceiver signal of the same
name.

http://www.xilinx.com

72 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 6: Core Architecture

rxchariscomma (1) Input
Connects to device-specific transceiver signal of the same
name.

rxcharisk (1) Input
Connects to device-specific transceiver signal of the same
name.

rxclkcorcnt[2:0] (1) Input
Connect to device-specific transceiver signal of the same
name.

rxdata[7:0] (1) Input
Connect to device-specific transceiver signal of the same
name.

rxdisperr (1) Input
Connects to device-specific transceiver signal of the same
name.

rxnotintable (1) Input
Connects to device-specific transceiver signal of the same
name.

rxrundisp (1) Input
Connects to device-specific transceiver signal of the same
name.

txbuferr (1) Input
Connects to device-specific transceiver signal of the same
name.

powerdown (1) Output
Connects to device-specific transceiver signal of the same
name.

txchardispmode (1) Output
Connects to device-specific transceiver signal of the same
name.

txchardispval(1) Output
Connects to device-specific transceiver signal of the same
name.

txcharisk (1) Output
Connects to device-specific transceiver signal of the same
name.

txdata[7:0] (1) Output
Connect to device-specific transceiver signal of the same
name.

enablealign (1) Output
Allows the transceivers to serially realign to a comma
character. Connects to ENMCOMMAALIGN and
ENPCOMMAALIGN of the device-specific transceiver.

Notes:
1. When the core is used with a device-specific transceiver, userclk2 is used as the 125 MHz reference

clock for the entire core.

Table 6-7: Optional Transceiver Interface Pinout (Cont’d)

Signal Direction Description

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 73
UG155 March 1, 2011

Core Interfaces

1000BASE-X PCS with TBI Pinout

Table 6-8 describes the optional TBI signals, used as an alternative to the transceiver
interfaces. The appropriate HDL example design delivered with the core connects these
signals to IOBs to provide an external TBI suitable for connection to an off-chip PMA
SERDES device. When the core is used with the TBI, gtx_clk is used as the 125 MHz
reference clock for the entire core. For more information, see Chapter 7, The Ten-Bit
Interface.

Table 6-8: Optional TBI Interface Signal Pinout

Signal Direction Clock Domain Description

gtx_clk Input N/A
Clock signal at 125 MHz. Tolerance must
be within IEEE 802.3-2008 specification.

tx_code_group[9:0] Output gtx_clk
10-bit parallel transmit data to PMA
Sublayer (SERDES).

loc_ref Output N/A
Causes the PMA sublayer clock recovery
unit to lock to pma_tx_clk. This signal is
currently tied to Ground.

ewrap Output gtx_clk

When ’1,’ this indicates to the external
PMA SERDES device to enter loopback
mode. When ’0,’ this indicates normal
operation

rx_code_group0[9:0] Input pma_rx_clk0
10-bit parallel received data from PMA
Sublayer (SERDES). This is synchronous
to pma_rx_clk0.

rx_code_group1[9:0] Input pma_rx_clk1
10-bit parallel received data from PMA
Sublayer (SERDES). This is synchronous
to pma_rx_clk1.

pma_rx_clk0 Input N/A
Received clock signal from PMA
Sublayer (SERDES) at 62.5 MHz.

pma_rx_clk1 Input N/A

Received clock signal from PMA
Sublayer (SERDES) at 62.5 MHz. This is
180 degrees out of phase with
pma_rx_clk0.

en_cdet Output gtx_clk

Enables the PMA Sublayer to perform
comma realignment. This is driven from
the PCS Receive Engine during the Loss-
Of-Sync state.

http://www.xilinx.com

74 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 6: Core Architecture

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 75
UG155 March 1, 2011

Chapter 7

The Ten-Bit Interface

This chapter provides general guidelines for creating 1000BASE-X, SGMII or Dynamic
Standards Switching designs using the Ten-Bit Interface (TBI).

This chapter is organized into the following main sections:

• Ten-Bit-Interface Logic

This section provides an explanation of the TBI physical interface logic in all supported
device families. This section is common to both 1000BASE-X and SGMII
implementations.

• Clock Sharing across Multiple Cores with TBI

Providing guidance for using several core instantiations: clock sharing should occur
whenever possible to save device resources.

• Example Designs for the Ten-Bit Interface (TBI)

Providing an introduction to the CORE Generator™ software example design
deliverables, this section is split into the following two sub-sections:

• Example Design for 1000BASE-X with Ten-Bit Interface

• SGMII Example Design / Dynamic Switching Example Design with Ten-Bit
Interface

This section also provides an overview of the demonstration test bench that is
provided with the example designs.

Virtex®-7 devices support TBI at 3.3V or lower only in certain parts and packages: please
see the Virtex-7 Device documentation. Virtex-6 devices support TBI at 2.5V only. Please
see the Virtex-6 FPGA Data Sheet: DC and Switching Characteristics for more information.
Kintex®-7, Virtex-5, Virtex-4, Spartan®-6, and Spartan-3 devices support TBI at 3.3V or
lower.

http://www.xilinx.com

76 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 7: The Ten-Bit Interface

Ten-Bit-Interface Logic
The example design delivered with the core is split between two hierarchical layers, as
illustrated in both Figure 7-14 and Figure 7-16. The block level is designed so that it can be
instantiated directly into customer designs and provides the following functionality:

• Instantiates the core from HDL

• Connects the physical-side interface of the core to device IOBs, creating an external
TBI

The TBI logic implemented in the block level is illustrated in all the figures in this chapter.

Transmitter Logic
Figure 7-1 illustrates the use of the physical transmitter interface of the core to create an
external TBI in a Virtex-5 family device. The signal names and logic shown exactly match
those delivered with the example design when TBI is chosen. If other families are chosen,
equivalent primitives and logic specific to that family will automatically be used in the
example design.

Figure 7-1 shows that the output transmitter data path signals are registered in device IOBs
before driving them to the device pads. The logic required to forward the transmitter clock
is also shown. The logic uses an IOB output Double-Data-Rate (DDR) register so that the
clock signal produced incurs exactly the same delay as the data and control signals. This
clock signal, pma_tx_clk, is inverted with respect to gtx_clk so that the rising edge of
pma_tx_clk occurs in the center of the data valid window to maximize setup and hold
times across the interface.

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 77
UG155 March 1, 2011

Ten-Bit-Interface Logic

X-Ref Target - Figure 7-1

Figure 7-1: Ten-Bit Interface Transmitter Logic

IPAD

IBUFG

IOB LOGIC

gtx_clk
BUFG

gtx_clk_bufg

pma_tx_clk
OBUF

FDDRRSE

IOB LOGIC

OPAD

D Q

D Q

pma_tx_clk_obuf

'0'

'1'

D Q
tx_code_group[0]

OBUF

OPAD
tx_code_group_reg[0]

D Q
tx_code_group[9]

OBUF

OPAD
tx_code_group_reg[9]

Ethernet 1000BASE-X PCS/PMA
or SGMII LogiCORE

tx_code_group_int[0]

tx_code_group_int[9]

gtx_clk

tx_code_group[0]

tx_code_group[9]

component_name_block (Block Level from example design)

http://www.xilinx.com

78 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 7: The Ten-Bit Interface

Receiver Logic

Introduction

Figure 7-2 illustrates the input timing for the TBI interface as defined in IEEE802.3-2008
clause 36 (see also TBI Input Setup/Hold Timing for further information).

The important point to note here is that the input TBI data bus, rx_code_group[9:0], is
synchronous to two clock sources: pma_rx_clk0 and pma_rx_clk1. As defined by the
standard, the TBI data should be sampled alternatively on the rising edge of
pma_rx_clk0, then pma_rx_clk1. Minimum setup and hold constraints are specified
and apply to both clock sources.

In the IEEE802.3-2008 specification, there is no exact requirement that pma_rx_clk0 and
pma_rx_clk1 be exactly 180 degrees out of phase with each other, so the safest approach
is to use both pma_rx_clk0 and pma_rx_clk1 clocks as the specification intends. This is
at the expense of clocking resources.

However, the data sheet for a particular external SERDES device which connects to the TBI
may well specify that this is the case: that pma_rx_clk0 and pma_rx_clk1 are exactly
180 degrees out of phase. If this is the case then the TBI receiver clock logic may be
simplified by ignoring the pma_rx_clk1 clock altogether, and simply using both the
rising and falling edges of pma_rx_clk0.

For this reason, the following sections describe two different alternatives methods for
implementing the TBI receiver clock logic: one which uses both pma_rx_clk0 and
pma_rx_clk1 clock, and a second which only uses pma_rx_clk0 (but both rising and
falling edges). Please select the method carefully by referring to the data sheet of the
external SERDES.

The example designs provided with the core will only provide one of these methods
(which vary on a family by family basis). However, the example design HDL can easily be
edited to convert to the alternative method.

X-Ref Target - Figure 7-2

Figure 7-2: Input TBI timing

tSETUP

tHOLD

rx_code_group[9:0]

PMA_RX_CLK0

tSETUP

tHOLD

PMA_RX_CLK1

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 79
UG155 March 1, 2011

Ten-Bit-Interface Logic

Spartan-3, Spartan-3E and Spartan-3A Devices

Method 1: Using Both pma_rx_clk0 and pma_rx_clk1 (Provided by the Example
Design)

This is the implementation provided by the example design for the Spartan-3 families. This
uses the pma_rx_clk0 and pma_rx_clk1 clocks as intended by the TBI specification.
Please contrast this with Method 2 which can save on clock resources if the external
SERDES devices guarantees that it provides pma_rx_clk0 and pma_rx_clk1 exactly
180 degrees out of phase with each other.

In this implementation, a DCM is used on both the pma_rx_clk0 and pma_rx_clk1
clock paths (see Figure 7-3). Phase shifting should then be applied to the DCM to fine-tune
the setup and hold times at the TBI IOB input flip-flops. Fixed phase shift is applied to the
DCM using constraints in the example UCF for the example design. See Ten-Bit Interface
Constraints for more information.

X-Ref Target - Figure 7-3

Figure 7-3: TBI Receiver Logic for Spartan-3, Spartan-3E, and Spartan-3A Devices (Example Design)

component_name_block (Block Level from example design)

pma_rx_clk0
IBUFG

IOB LOGIC

IPAD

rx_code_group[0]
IBUF

IPAD

rx_code_group_ibuf[0]

DQ

Ethernet 1000BASE-X PCS/PMA
or SGMII LogiCORE

pma_rx_clk0

BUFG

IOB LOGIC

DQ

pma_rx_clk1
IBUFG

IOB LOGIC

IPAD

BUFG

pma_rx_clk1

rx_code_group0[0]

rx_code_group1[0] rx_code_group1_reg[0]

rx_code_group0_reg[0]

DCM

CLKINCLK0

FB

DCM

CLKINCLK0

FB

pma_rx_clk0_bufg
(62.5 MHz)

pma_rx_clk1_bufg
(62.5 MHz)

http://www.xilinx.com

80 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 7: The Ten-Bit Interface

Spartan-3, Spartan-3E, and Spartan-3A Devices

Method 2: An Alternative Using Only pma_rx_clk0

In this implementation, the falling edge of pma_rx_clk0 is used instead of pma_rx_clk1
(see Figure 7-4).

The DCM is used on the pma_rx_clk0 clock path. Phase shifting should then be applied
to the DCM to fine-tune the setup and hold times at the rx_code_group[9:0] IOB input
flip-flops.

The clock derived from the DCM should be inverted, as illustrated, before routing it to the
pma_rx_clk1 input of the core. This will not create a clock on local routing. Instead the
tools will use local clock inversion directly at the clock input of the flip-flops that this clock
is routed to.

Caution! This logic relies on pma_rx_clk0 and pma_rx_clk1 being exactly 180 degrees
out of phase with each other since the falling edge of pma_rx_clk0 is used in place of
pma_rx_clk1. See the data sheet for the attached SERDES to verify that this is the case.

X-Ref Target - Figure 7-4

Figure 7-4: TBI Receiver Logic for Spartan-3, Spartan-3E, and Spartan-3A Devices

pma_rx_clk0
IBUFG

IOB LOGIC

IPAD

rx_code_group[0]
IBUF

IPAD

rx_code_group_ibuf[0]

DQ

Ethernet 1000BASE-X PCS/PMA
or SGMII LogiCORE

pma_rx_clk0

BUFG

IOB LOGIC

DQ

IOB LOGIC

pma_rx_clk1

rx_code_group0[0]

rx_code_group1[0] rx_code_group1_reg[0]

rx_code_group0_reg[0]

DCM

CLKINCLK0

FB

pma_rx_clk0_bufg
(62.5 MHz)

Invert

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 81
UG155 March 1, 2011

Ten-Bit-Interface Logic

Virtex-4 Devices

Method 1: Using Only pma_rx_clk0 (Provided by the Example Design)

The Virtex-4 FPGA logic used by the example design delivered with the core is illustrated
in Figure 7-5. This shows a Virtex-4 device IDDR primitive used with the DDR_CLK_EDGE
attribute set to SAME_EDGE (see the Virtex-4 FPGA User Guide). This uses local inversion of
pma_rx_clk0 within the IOB logic to receive the rx_code_group[9:0] data bus on
both the rising and falling edges of pma_rx_clk0. The SAME_EDGE attribute causes the
IDDR to output both Q1 and Q2 data on the rising edge of pma_rx_clk0.

For this reason, pma_rx_clk0 can be routed to both pma_rx_clk0 and pma_rx_clk1
clock inputs of the core as illustrated.

Caution! This logic relies on pma_rx_clk0 and pma_rx_clk1 being exactly 180 degrees
out of phase with each other since the falling edge of pma_rx_clk0 is used in place of
pma_rx_clk1. See the data sheet for the attached SERDES to verify that this is the case.

The DCM is used on the pma_rx_clk0 clock path. Phase shifting should then be applied
to the DCM to fine-tune the setup and hold times at the rx_code_group[9:0] IOB input
flip-flops. Fixed phase shift is applied to the DCM using constraints in the example UCF
for the example design. See Ten-Bit Interface Constraints for more information.

X-Ref Target - Figure 7-5

Figure 7-5: Ten-Bit Interface Receiver Logic - Virtex-4 Device (Example Design)

component_name_block (Block Level from example design)

pma_rx_clk0
IBUFG

IOB LOGIC

IPAD

rx_code_group[0]

IBUF

IPAD

Ethernet 1000BASE-X PCS/PMA
or SGMII LogiCORE

pma_rx_clk0

BUFG

IOB LOGIC

pma_rx_clk1

rx_code_group0[0]

rx_code_group1[0]
rx_code_group1_reg[0]

rx_code_group0_reg[0]
IDDR

Q1

D
Q2

C

DCM

CLKINCLK0

FB

http://www.xilinx.com

82 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 7: The Ten-Bit Interface

Method 2: An Alternative Using both pma_rx_clk0 and pma_rx_clk1

This logic from method 1 relies on pma_rx_clk0 and pma_rx_clk1 being exactly 180
degrees out of phase with each other since the falling edge of pma_rx_clk0 is used in
place of pma_rx_clk1. See the data sheet for the attached SERDES to verify that this is the
case. If not, then the logic of Figure 7-6 illustrates an alternative implementation where
both pma_rx_clk0 and pma_rx_clk1 are used as intended. Each bit of
rx_code_group[9:0] must be routed to two separate device pads.

In this implementation, a DCM is used on both the pma_rx_clk0 and pma_rx_clk1
clock paths (see Figure 7-6). Phase shifting should then be applied to the DCMs to fine-
tune the setup and hold times at the TBI IOB input flip-flops.

X-Ref Target - Figure 7-6

Figure 7-6: Alternate Ten-Bit Interface Receiver Logic for Virtex-4 Devices

pma_rx_clk0
IBUFG

IOB LOGIC

IPAD

rx_code_group[0]
IBUF

IPAD

Ethernet 1000BASE-X PCS/PMA
or SGMII LogiCORE

pma_rx_clk0

BUFG

IOB LOGIC

pma_rx_clk1

rx_code_group0[0]

rx_code_group1[0]

rx_code_group0_reg[0]
DQ

pma_rx_clk1
IBUFG

IOB LOGIC

IPAD

rx_code_group[0]
IBUF

IPAD

IOB LOGIC

rx_code_group1_reg[0]
DQ

rx_code_group[0]

pma_rx_clk0_bufg
(62.5 MHz)

pma_rx_clk1_bufg
(62.5 MHz)

BUFG

DCM

CLKINCLK0

FB

DCM

CLKINCLK0

FB

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 83
UG155 March 1, 2011

Ten-Bit-Interface Logic

Virtex-5 Devices

Method 1: Using Only pma_rx_clk0 (Provided by the Example Design)

The Virtex-5 FPGA logic used by the example design delivered with the core is illustrated
in Figure 7-7. This shows a Virtex-5 device IDDR primitive used with the DDR_CLK_EDGE
attribute set to SAME_EDGE (see the Virtex-5 FPGA User Guide). This uses local inversion of
pma_rx_clk0 within the IOB logic to receive the rx_code_group[9:0] data bus on
both the rising and falling edges of pma_rx_clk0. The SAME_EDGE attribute causes the
IDDR to output both Q1 and Q2 data on the rising edge of pma_rx_clk0.

For this reason, pma_rx_clk0 can be routed to both pma_rx_clk0 and pma_rx_clk1
clock inputs of the core as illustrated.

Caution! This logic relies on pma_rx_clk0 and pma_rx_clk1 being exactly 180 degrees
out of phase with each other because the falling edge of pma_rx_clk0 is used in place of
pma_rx_clk1. See the data sheet for the attached SERDES to verify that this is the case.

Setup and Hold is achieved using a combination of IODELAY elements on the data, and
using BUFIO and BUFR regional clock routing for the pma_rx_clk0 input clock, as
illustrated in Figure 7-7.

This design provides a simpler solution than the DCM logic required for Virtex-4 devices
(see Figure 7-5). It has therefore been chosen as the example design from version 10.1 of the
core onwards. However, the Virtex-4 FPGA approach could alternatively be adopted.

X-Ref Target - Figure 7-7

Figure 7-7: Ten-Bit Interface Receiver Logic - Virtex-5 Device (Example Design)

component_name_block (Block Level from example design)

pma_rx_clk0

BUFIO

IOB LOGIC

IPAD

rx_code_group[0]

IBUF

IPAD

Ethernet 1000BASE-X PCS/PMA
or SGMII LogiCORE

pma_rx_clk0

BUFR

IOB LOGIC

pma_rx_clk1

rx_code_group0[0]

rx_code_group1[0]

IDDR

Q1

D
Q2

C

IODELAY

DQ

DQ

http://www.xilinx.com

84 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 7: The Ten-Bit Interface

In the Figure 7-7 implementation, a BUFIO is used to provide the lowest form of clock
routing delay from input clock to input rx_code_group[9:0] signal sampling at the
device IOBs. Please note, however, that this creates placement constraints: a BUFIO
capable clock input pin must be selected for pma_rx_clk0, and all
rx_code_group[9:0] input signals must be placed in the respective BUFIO region. The
Virtex-5 FPGA User Guide should be consulted.

The clock is then placed onto regional clock routing using the BUFR component and the
input rx_code_group[9:0] data immediately resampled as illustrated.

The IODELAY elements can be adjusted to fine-tune the setup and hold times at the TBI
IOB input flip-flops. The delay is applied to the IODELAY element using constraints in the
UCF; these can be edited if desired. See Ten-Bit Interface Constraints for more information.

Method 2: An Alternative Using Both pma_rx_clk0 and pma_rx_clk1

The logic from method 1 relies on pma_rx_clk0 and pma_rx_clk1 being exactly 180
degrees out of phase with each other because the falling edge of pma_rx_clk0 is used in
place of pma_rx_clk1. See the data sheet for the attached SERDES to verify that this is the
case. If not, the logic of Figure 7-8 illustrates an alternate implementation where both
pma_rx_clk0 and pma_rx_clk1 are used as intended.

X-Ref Target - Figure 7-8

Figure 7-8: Alternate Ten-Bit Interface Receiver Logic - Virtex-5 Devices

pma_rx_clk0

BUFIO

IOB LOGIC

IPAD

rx_code_group[0]
IBUF

IPAD

Ethernet 1000BASE-X PCS/PMA
or SGMII LogiCORE

pma_rx_clk0

BUFR

IOB LOGIC

pma_rx_clk1

rx_code_group0[0]

rx_code_group1[0]

DQ1

pma_rx_clk0_bufr
(62.5 MHz)

IODELAYDQ

pma_rx_clk0

BUFIO

IOB LOGIC

IPAD

BUFRpma_rx_clk1_bufr
(62.5 MHz)

IDDR_CLK2

Q2DQ

C

CB

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 85
UG155 March 1, 2011

Ten-Bit-Interface Logic

In this method, the logic used on pma_rx_clk0 in Figure 7-7 is duplicated for
pma_rx_clk1. A IDDR_CLK2 primitive replaces the IDDR primitive: this contains two
clock inputs as illustrated.

Virtex-7, Kintex-7, and Virtex-6 Devices

Method 1: Using Only pma_rx_clk0 (Provided by the Example Design)

The FPGA logic used by the example design delivered with the core is illustrated in
Figure 7-7. This shows an IDDR primitive used with the DDR_CLK_EDGE attribute set to
SAME_EDGE. This uses local inversion of pma_rx_clk0 within the IOB logic to receive the
rx_code_group[9:0] data bus on both the rising and falling edges of pma_rx_clk0.
The SAME_EDGE attribute causes the IDDR to output both Q1 and Q2 data on the rising
edge of pma_rx_clk0.

For this reason, pma_rx_clk0 can be routed to both pma_rx_clk0 and pma_rx_clk1
clock inputs of the core as illustrated.

Caution! This logic relies on pma_rx_clk0 and pma_rx_clk1 being exactly 180 degrees
out of phase with each other because the falling edge of pma_rx_clk0 is used in place of
pma_rx_clk1. See the data sheet for the attached SERDES to verify that this is the case.

Setup and Hold is achieved using a combination of IODELAY elements on the data, and
using BUFIO and BUFR regional clock routing for the pma_rx_clk0 input clock, as
illustrated in Figure 7-9.

X-Ref Target - Figure 7-9

Figure 7-9: Ten-Bit Interface Receiver Logic - Virtex-7, Kintex-7, and Virtex-6 Devices (Example Design)

component_name_block (Block Level from example design)

pma_rx_clk0

BUFIO

IOB LOGIC

IPAD

rx_code_group[0]

IBUF

IPAD

Ethernet 1000BASE-X PCS/PMA
or SGMII LogiCORE

pma_rx_clk0

BUFR

IOB LOGIC

pma_rx_clk1

rx_code_group0[0]

rx_code_group1[0]

IDDR

Q1

D
Q2

C

IODELAY

DQ

DQ

http://www.xilinx.com

86 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 7: The Ten-Bit Interface

This design provides a simpler solution than the DCM logic required for Virtex-4 devices.
It has therefore been chosen as the example design for the Virtex-7, Kintex-7 and Virtex-6
family. However, the Virtex-4 FPGA approach could alternatively be adopted: simply
replace the DCM with a MMCM module (see Figure 7-5).

In the Figure 7-9 implementation, a BUFIO is used to provide the lowest form of clock
routing delay from input clock to input rx_code_group[9:0] signal sampling at the
device IOBs. Please note, however, that this creates placement constraints: a BUFIO
capable clock input pin must be selected for pma_rx_clk0, and all
rx_code_group[9:0] input signals must be placed in the respective BUFIO region. The
FPGA Device User Guides should be consulted.

The clock is then placed onto regional clock routing using the BUFR component and the
input rx_code_group[9:0] data immediately resampled as illustrated.

The IODELAY elements can be adjusted to fine-tune the setup and hold times at the TBI
IOB input flip-flops. The delay is applied to the IODELAY element using constraints in the
UCF; these can be edited if desired. See Ten-Bit Interface Constraints for more information.

Method 2: An Alternative Using Both pma_rx_clk0 and pma_rx_clk1

This logic from method 1 relies on pma_rx_clk0 and pma_rx_clk1 being exactly 180
degrees out of phase with each other because the falling edge of pma_rx_clk0 is used in

X-Ref Target - Figure 7-10

Figure 7-10: Alternate Ten-Bit Interface Receiver Logic - Virtex-7, Kintex-7 and Virtex-6 Devices

pma_rx_clk0

BUFIO

IOB LOGIC

IPAD

rx_code_group[0]
IBUF

IPAD

Ethernet 1000BASE-X PCS/PMA
or SGMII LogiCORE

pma_rx_clk0

BUFR

IOB LOGIC

pma_rx_clk1

rx_code_group0[0]

rx_code_group1[0]

DQ1

pma_rx_clk0_bufr
(62.5 MHz)

IODELAYDQ

pma_rx_clk0

BUFIO

IOB LOGIC

IPAD

BUFRpma_rx_clk1_bufr
(62.5 MHz)

IDDR_CLK2

Q2DQ

C

CB

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 87
UG155 March 1, 2011

Ten-Bit-Interface Logic

place of pma_rx_clk1. See the data sheet for the attached SERDES to verify that this is the
case. If not, the logic of Figure 7-10 illustrates an alternate implementation where both
pma_rx_clk0 and pma_rx_clk1 are used as intended. Each bit of
rx_code_group[9:0] must be routed to two separate device pads.

In this method, the logic used on pma_rx_clk0 in Figure 7-9 is duplicated for
pma_rx_clk1. A IDDR_CLK2 primitive replaces the IDDR primitive: this contains two
clock inputs as illustrated.

Spartan-6 Devices

Method 1: Using Only pma_rx_clk0 (Provided by the Example Design)
X-Ref Target - Figure 7-11

Figure 7-11: Ten-Bit Interface Receiver Logic - Spartan-6 Device (Example Design)

component_name_block (Block Level from example design)

pma_rx_clk0

IOB LOGIC

IPAD

rx_code_group[0]

IPAD

Ethernet 1000BASE-X PCS/PMA
or SGMII LogiCORE

pma_rx_clk0

BUFG

IOB LOGIC

pma_rx_clk1

rx_code_group0[0]

rx_code_group1[0]

IDDR2

Q1Q0

D
Q1

C0

IODELAY2

DQ

DQ

C1

DIVCLK

IOCLK

BUFIO2
(I_INVERT=TRUE)

DIVCLK

IOCLK

NC

BUFIO2
(I_INVERT=FALSE)

http://www.xilinx.com

88 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 7: The Ten-Bit Interface

The Spartan-6 FPGA logic used by the example design delivered with the core is illustrated
in Figure 7-11. This figure shows a Spartan-6 device IDDR2 primitive used with the
DDR_ALIGNMENT attribute set to C0 (see the Spartan-6 FPGA User Guide). This
DDR_ALIGNMENT attribute causes the IDDR2 to output both Q1 and Q2 data on the rising
edge of pma_rx_clk0.

For this reason, pma_rx_clk0 can be routed to both pma_rx_clk0 and pma_rx_clk1
clock inputs of the core as illustrated.

Caution! This logic relies on pma_rx_clk0 and pma_rx_clk1 being exactly 180 degrees
out of phase with each other because the falling edge of pma_rx_clk0 is used in place of
pma_rx_clk1. See the data sheet for the attached SERDES to verify that this is the case.

Setup and Hold is achieved using a combination of IODELAY2 elements on the data, and
using BUFIO2 elements and BUFG global clock routing for the pma_rx_clk0 input clock,
as illustrated in Figure 7-11.

This design provides a simpler solution than the DCM logic required for Virtex-4 devices.
It has therefore been chosen as the example design for the Spartan-6 family. However, the
Virtex-4 FPGA approach could alternatively be adopted: simply replace the DCM with a
MMCM module (see Figure 7-5).

In the Figure 7-11 implementation, two BUFIO2s are used to provide the lowest form of
clock routing delay from input clock to input rx_code_group[9:0] signal sampling at
the device IOBs. One BUFIO2 element is used for the rising edge logic; no clock inversion
is performed and the DIVCLK output will connect to the BUFG to provide global clock
routing; the IOCLK output of this BUFIO2 is routed to the IDDR2 primitive to sample data
on the rising edge. The second BUFIO2 element is configured to invert the clock; the
IOCLK output is routed to the IDDR2 to effectively sample the data on the falling edge
position of pma_rx_clk0. The DIVCLK output of this BUFIO2 is not used and is left
unconnected.

The IODELAY2 elements can be adjusted to fine-tune the setup and hold times at the TBI
IOB input flip-flops. The delay is applied to the IODELAY element using constraints in the
UCF; these can be edited if desired. See Ten-Bit Interface Constraints for more information.

Please note, however, that this logic creates placement constraints;
rx_code_group[9:0] input signals must be placed in the respective half-bank region
for the two BUFIO2 elements in use. The Spartan-6 FPGA User Guide should be consulted.

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 89
UG155 March 1, 2011

Ten-Bit-Interface Logic

Method 2: An Alternative Using Both pma_rx_clk0 and pma_rx_clk1

This logic from method 1 relies on pma_rx_clk0 and pma_rx_clk1 being exactly 180
degrees out of phase with each other because the falling edge of pma_rx_clk0 is used in
place of pma_rx_clk1. See the data sheet for the attached SERDES to verify that this is the
case. If not, the logic of Figure 7-12 illustrates an alternate implementation where both
pma_rx_clk0 and pma_rx_clk1 are used as intended. Each bit of
rx_code_group[9:0] must be routed to two separate device pads.

In this method, the logic used on pma_rx_clk0 in Figure 7-11 is duplicated for
pma_rx_clk1.

In the figure, a simplified view of the BUFIO2 elements are provided. The connected
output of each BUFIO is the IOCLK port. Other BUFIO2 output ports are unused and
unconnected.

X-Ref Target - Figure 7-12

Figure 7-12: Alternate Ten-Bit Interface Receiver Logic - Spartan-6 Devices

pma_rx_clk0

BUFIO2

IOB LOGIC

IPAD

rx_code_group[0]

IPAD

Ethernet 1000BASE-X PCS/PMA
or SGMII LogiCORE

pma_rx_clk0

BUFG

IOB LOGIC

pma_rx_clk1

rx_code_group0[0]

rx_code_group1[0]

DQ0

pma_rx_clk0_bufg
(62.5 MHz)

IODELAY2DQ

pma_rx_clk0

BUFIO2

IOB LOGIC

IPAD

BUFGpma_rx_clk1_bufg
(62.5 MHz)

IDDR2

Q1DQ

C0

C1

http://www.xilinx.com

90 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 7: The Ten-Bit Interface

Clock Sharing across Multiple Cores with TBI

Figure 7-13 illustrates sharing clock resources across multiple instantiations of the core
when using the TBI. For all implementations, gtx_clk may be shared between multiple
cores, resulting in a common clock domain across the device.

The receiver clocks pma_rx_clk0 and pma_rx_clk1 (if used) cannot be shared. Each
core will be provided with its own versions of these receiver clocks from its externally
connected SERDES.

Figure 7-13 illustrates only two cores. However, more can be added using the same
principle. This is done by instantiating the cores using the block level (from the example
design) and sharing gtx_clk across all instantiations. The receiver clock logic cannot be
shared and must be unique for every instance of the core.

X-Ref Target - Figure 7-13

Figure 7-13: Clock Management, Multiple Core Instances with Ten-Bit Interface

Block Level

BUFIOBUFR

pma_rx_clk0#1

Ethernet 1000BASE-X
PCS/PMA

 or SGMII Core

pma_rx_clk0

BUFR

pma_rx_clk1#1pma_rx_clk1

Customer Design

gtx_clk

BUFR

pma_rx_clk0#2

Ethernet 1000BASE-X
PCS/PMA

 or SGMII Core

pma_rx_clk0

BUFR

pma_rx_clk1#2pma_rx_clk1

gtx_clk

BUFGIBUFG

gtx_clk
(125MHz)

Block Level

BUFIO

BUFIO

BUFIO

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 91
UG155 March 1, 2011

Example Designs for the Ten-Bit Interface (TBI)

Example Designs for the Ten-Bit Interface (TBI)
Chapter 4, CORE Generator Deliverables provides a full list and description of the
directory and file structure that is provided with the core, including the location of the
HDL example design provided.

Example Design for 1000BASE-X with Ten-Bit Interface
Figure 7-14 illustrates the example design for a top-level HDL with a 10-bit interface (TBI).

As illustrated, the example is split between two hierarchical layers. The block level is
designed so that it can be instantiated directly into customer designs and performs the
following functions:

• Instantiates the core from HDL

• Connects the physical-side interface of the core to device IOBs, creating an external
TBI.

The top level of the example design creates a specific example that can be simulated,
synthesized, implemented, and if required, placed on a suitable board and demonstrated
in hardware. The top level of the example design performs the following functions:

• Instantiates the block level from HDL

• Derives the clock management logic for the core

• Implements an external GMII

The next few pages in this section will now describe each of the example design blocks
(and associated HDL files) in detail, and will conclude with an overview of the
demonstration test bench provided for the design.

X-Ref Target - Figure 7-14

Figure 7-14: Example Design HDL for the Ethernet 1000BASE-X PCS with TBI

Ethernet

1000BASE-X

PCS/PMA

Core

Netlist

GMII

IOBs

Out

TBI

IOBs
Out

IOBs
In

(DDR)

component_name_example_design

component_name_block

Tx
Elastic
Buffer

Clock
Management

Logic

Connect to
Client MAC

TBI
(Connect to
SERDES)

IOBs

In

http://www.xilinx.com

92 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 7: The Ten-Bit Interface

Top-Level Example Design HDL

The following files describe the top-level example design for the Ethernet 1000BASE-X
PCS/PMA core with TBI:

VHDL

<project_dir>/<component_name>/example_design/<component_name>_example
_design.vhd

Verilog

<project_dir>/<component_name>/example_design/<component_name>_example
_design.v

The HDL example design top-level contains the following:

• An instance of the Ethernet 1000BASE-X PCS/PMA block level

• Clock management logic, including DCM and Global Clock Buffer instances, where
required

• A transmitter elastic buffer

• GMII interface logic, including IOB and DDR registers instances, where required

The example design HDL top level connects the GMII of the block level to external IOBs.
This allows the functionality of the core to be demonstrated using a simulation package as
described in this guide. The example design can also be synthesized and placed on a
suitable board and demonstrated in hardware, if required.

Block Level HDL

The following files describe the block level design for the Ethernet 1000BASE-X PCS/PMA
core with TBI:

VHDL

<project_dir>/<component_name>/example_design/<component_name>_block.v
hd

Verilog

<project_dir>/<component_name>/example_design/<component_name>_block.v

The block level HDL contains the following:

• An instance of the Ethernet 1000BASE-X PCS/PMA core

• TBI interface logic, including IOB and DDR registers instances, where required

The block-level HDL connects the TBI of the core to external IOBs (the most useful part of
the example design) and should be instantiated in all customer designs that use the core.

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 93
UG155 March 1, 2011

Example Designs for the Ten-Bit Interface (TBI)

Transmitter Elastic Buffer

The Transmitter Elastic Buffer is described in the following files:

VHDL

<project_dir>/<component_name>/example_design/tx_elastic_buffer.vhd

Verilog

<project_dir>/<component_name>/example_design/tx_elastic_buffer.v

When the GMII is used externally (as in this example design), the GMII transmit signals
(inputs to the core from a remote MAC at the other end of the interface) are synchronous to
a clock, which is likely to be derived from a different clock source to the core. For this
reason, GMII transmit signals must be transferred into the core main clock domain before
they can be used by the core. This is achieved with the Transmitter Elastic Buffer, an
asynchronous FIFO implemented in distributed RAM. The operation of the elastic buffer is
to attempt to maintain a constant occupancy by inserting or removing Idle sequences as
necessary. This causes no corruption to the frames of data.

When the GMII is used as an internal interface, it is expected that the entire interface will
be synchronous to a single clock domain, and the Transmitter Elastic Buffer should be
discarded. See the Ethernet 1000BASE-X PCS/PMA or SGMII User Guide for information
about connecting the core to an internal GMII (for example, an Ethernet MAC).

http://www.xilinx.com

94 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 7: The Ten-Bit Interface

Demonstration Test Bench

Figure 7-15 illustrates the demonstration test bench for the Ethernet 1000BASE-X PCS with
TBI. The demonstration test bench is a simple VHDL or Verilog program to exercise the
example design and the core itself.

The top-level test bench entity instantiates the example design for the core, which is the
Device Under Test (DUT). A stimulus block is also instantiated and clocks, resets and test
bench semaphores are created. The following files describe the top-level of the
demonstration test bench:

VHDL

<project_dir>/<component_name>/simulation/demo_tb.vhd

Verilog

<project_dir>/<component_name>/simulation/demo_tb.v

The stimulus block entity, instantiated from within the test bench top level, creates the
Ethernet stimulus in the form of four Ethernet frames, which are injected into the GMII and
PHY interfaces of the DUT. The output from the DUT is also monitored for errors. The
following files describe the stimulus block of the demonstration test bench:

X-Ref Target - Figure 7-15

Figure 7-15: Demonstration Test Bench for the Ethernet
1000BASE-X PCS with TBI

TBI
Monitor

(8B10B
decoding)

TBI
Stimulus

(8B10B
encoding)

GMII
Stimulus

GMII
Monitor

GMII TBI

DUT

Demonstration Test Bench

Control and Data Structures

Configuration
Stimulus

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 95
UG155 March 1, 2011

Example Designs for the Ten-Bit Interface (TBI)

VHDL

<project_dir>/<component_name>/simulation/stimulus_tb.vhd

Verilog

<project_dir>/<component_name>/simulation/stimulus_tb.v

Together, the top-level test bench file and the stimulus block combine to provide the full
test bench functionality, described in the sections that follow.

Core with MDIO Interface

The demonstration test bench performs the following tasks:

• Input clock signals are generated.

• A reset is applied to the example design.

• The Ethernet 1000BASE-X PCS/PMA core is configured through the MDIO interface
by injecting an MDIO frame into the example design. This disables Auto-Negotiation
(if present) and takes the core out of the Isolate state.

• The following frames are injected into the GMII transmitter by the GMII stimulus
block:

• the first is a minimum-length frame

• the second is a type frame

• the third is an errored frame

• the fourth is a padded frame

• The data received at the TBI transmitter interface is 8B10B decoded. The resulting
frames are checked by the TBI Monitor against the stimulus frames injected into the
GMII transmitter to ensure data integrity.

• The same four frames are generated by the TBI Stimulus block. These are 8B10B
encoded and injected into the TBI receiver interface.

• Data frames received at the GMII receiver are checked by the GMII Monitor against
the stimulus frames injected into the TBI receiver to ensure data integrity.

Core without MDIO Interface

The demonstration test bench performs the following tasks.

• Input clock signals are generated.

• A reset is applied to the example design.

• The Ethernet 1000BASE-X PCS/PMA core is configured via the Configuration Vector
to take the core out of the Isolate state.

• The following frames are injected into the GMII transmitter by the GMII stimulus
block.

• the first is a minimum length frame

• the second is a type frame

• the third is an errored frame

• the fourth is a padded frame

• The data received at the TBI transmitter interface is 8B10B decoded. The resultant
frames are checked by the TBI Monitor against the stimulus frames injected into the
GMII transmitter to ensure data is the same.

http://www.xilinx.com

96 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 7: The Ten-Bit Interface

• The same four frames are generated by the TBI Stimulus block. These are 8B10B
encoded and injected into the TBI receiver interface.

• Data frames received at the GMII receiver are checked by the GMII Monitor against
the stimulus frames injected into the TBI receiver to ensure data is the same.

Customizing the Test Bench

This section provides information about making modifications to the demonstration test
bench files.

Changing Frame Data

You can change the contents of the four frames used by the demonstration test bench by
changing the data and valid fields for each frame defined in the stimulus block. Frames can
be added by defining a new frame of data. Any modified frames are automatically
updated in both stimulus and monitor functions.

Changing Frame Error Status

Errors can be inserted into any of the predefined frames in any position by setting the error
field to ‘1’ in any column of that frame. Injected errors are automatically updated in both
stimulus and monitor functions.

Changing the Core Configuration

The configuration of the Ethernet 1000BASE-X PCS/PMA core used in the demonstration
test bench can be altered.

Caution! Certain configurations of the core can cause the test bench to fail, or to cause
processes to run indefinitely. For example, the demonstration test bench will not auto-negotiate
with the design example. Determine the configurations that can safely be used with the test
bench.

If the MDIO interface option has been selected, the core can be reconfigured by editing the
injected MDIO frame in the demonstration test bench top level. See the Ethernet 1000BASE-
X PCS/PMA or SGMII User Guide for more information about using the MDIO interface.

If the MDIO interface option has not been selected, the core can be reconfigured by
modifying the configuration vector directly. See the Ethernet 1000BASE-X PCS/PMA or
SGMII User Guide for information about using the configuration vector.

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 97
UG155 March 1, 2011

Example Designs for the Ten-Bit Interface (TBI)

SGMII Example Design / Dynamic Switching Example Design with Ten-Bit
Interface

Figure 7-16 illustrates an example design for top-level HDL for the Ethernet 1000BASE-X
PCS/PMA or SGMII core in SGMII mode Or dynamic switching standard) with the TBI.

As illustrated, the example is split between two hierarchical layers. The block level is
designed so that it can be instantiated directly into customer designs and performs the
following functions:

• Instantiates the core from HDL

• Connects the physical-side interface of the core to device IOBs, creating an external
TBI.

• Connects the client side GMII of the core to an SGMII Adaptation Module, which
provides the functionality to operate at speeds of 1 Gbps, 100 Mbps and 10 Mbps

The top level of the example design creates a specific example which can be simulated,
synthesized and implemented. The top level of the example design performs the following
functions:

• Instantiates the block level from HDL

• Derives the clock management logic for the core

• Implements an external GMII-style interface

X-Ref Target - Figure 7-16

Figure 7-16: Example Design HDL for the Ethernet 1000BASE-X PCS/PMA or SGMII
Core in SGMII Mode with TBI

Ethernet

1000BASE-X

PCS/PMA

Core

Netlist

GMII

IOBs

In

IOBs

Out

GMII-style

8-bit I/F

SGMII

Adaptation

Module

Clock

Management

Logic

component_name_example_design

component_name_block

TBI

IOBs

Out

IOBs

In

(DDR)

TBI

(Connect to

SERDES)

http://www.xilinx.com

98 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 7: The Ten-Bit Interface

The next few pages in this section will describe each of the example design blocks (and
associated HDL files) in detail, and will conclude with an overview of the demonstration
test bench provided for the design.

Top-Level Example Design HDL

The top-level example design for the Ethernet 1000BASE-X PCS/PMA core in SGMII mode
is described in the following files:

VHDL

<project_dir>/<component_name>/example_design/<component_name>_example
_design.vhd

Verilog

<project_dir>/<component_name>/example_design/<component_name>_example
_design.v

The example design HDL top level contains the following:

• An instance of the SGMII block level

• Clock management logic, including DCM and Global Clock Buffer instances, where
required

• External GMII logic, including IOB and DDR register instances, where required

The example design HDL top level connects the GMII of the block level to external IOBs.
This allows the functionality of the core to be demonstrated using a simulation package, as
described in this guide.

Block Level HDL

The following files describe the block level for the Ethernet 1000BASE-X PCS/PMA core in
SGMII mode:

VHDL

<project_dir>/<component_name>/example_design/<component_name>_block.v
hd

Verilog

<project_dir>/<component_name>/example_design/<component_name>_block.v

The block level contains the following:

• An instance of the Ethernet 1000BASE-X PCS/PMA core in SGMII mode.

• TBI interface logic, including IOB and DDR registers instances, where required.

• An SGMII adaptation module containing:

• The clock management logic required to enable the SGMII example design to
operate at 10 Mbps, 100 Mbps, and 1 Gbps.

• GMII logic for both transmitter and receiver paths; the GMII style 8-bit interface is
run at 125 MHz for 1 Gbps operation; 12.5 MHz for 100 Mbps operation; 1.25
MHz for 10 Mbps operation.

The block level HDL connects the TBI of the core to external IOBs and the client side to
SGMII Adaptation logic as illustrated in Figure 7-16. This is the most useful part of the
example design and should be instantiated in all customer designs that use the core.

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 99
UG155 March 1, 2011

Example Designs for the Ten-Bit Interface (TBI)

SGMII Adaptation Module

The SGMII Adaptation Module is described in the following files:

VHDL

<project_dir>/<component_name>/example_design/sgmii_adapt/

sgmii_adapt.vhd

clk_gen.vhd

johnson_cntr.vhd

tx_rate_adapt.vhd

rx_rate_adapt.vhd

Verilog

<project_dir>/<component_name>/example_design/sgmii_adapt/

sgmii_adapt.v

clk_gen.v

johnson_cntr.v

tx_rate_adapt.v

rx_rate_adapt.v

The GMII of the core always operates at 125 MHz. The core makes no differentiation
between the three speeds of operation; it always effectively operates at 1 Gbps. However,
at 100 Mbps, every data byte run through the core should be repeated 10 times to achieve
the required bit rate; at 10 Mbps, each data byte run through the core should be repeated
100 times to achieve the required bit rate. Dealing with this repetition of bytes is the
function of the SGMII adaptation module and its component blocks.

The SGMII adaptation module and component blocks are described in detail in Additional
Client-Side SGMII Logic Provided in the Example Design.

http://www.xilinx.com

100 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 7: The Ten-Bit Interface

Demonstration Test Bench

Figure 7-17 illustrates the demonstration test bench for the Ethernet 1000BASE-X
PCS/PMA or SGMII Core in SGMII mode with the TBI. The demonstration test bench is a
simple VHDL or Verilog program to exercise the example design and the core itself.

The top-level test bench entity instantiates the example design for the core, which is the
Device Under Test (DUT). A stimulus block is also instantiated and clocks, resets and test
bench semaphores are created. The following files describe the top-level of the
demonstration test bench.

VHDL

<project_dir>/<component_name>/simulation/demo_tb.vhd

Verilog

<project_dir>/<component_name>/simulation/demo_tb.v

The stimulus block entity, instantiated from within the top-level test bench, creates the
Ethernet stimulus in the form of four Ethernet frames, which are injected into GMII and
TBI interfaces of the DUT. The output from the DUT is also monitored for errors. The
following files describe the stimulus block of the demonstration test bench.

VHDL

<project_dir>/<component_name>/simulation/stimulus_tb.vhd

X-Ref Target - Figure 7-17

Figure 7-17: Demonstration Test Bench for the Ethernet 1000BASE-X PCS/PMA or
SGMII Core in SGMII Mode with TBI

TBI
Monitor

(8B10B
decoding)

TBI
Stimulus

(8B10B
encoding)

GMII
Stimulus

GMII
Monitor

GMII TBI

DUT

Demonstration Test Bench

Control and Data Structures

Configuration
Stimulus

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 101
UG155 March 1, 2011

Example Designs for the Ten-Bit Interface (TBI)

Verilog

<project_dir>/<component_name>/simulation/stimulus_tb.v

Together, the top-level test bench file and the stimulus block combine to provide the full
test bench functionality which is described in the sections that follow.

Test Bench Functionality

The demonstration test bench performs the following tasks:

• Input clock signals are generated.

• A reset is applied to the example design.

• The Ethernet 1000BASE-X PCS/PMA core is configured through the MDIO interface
by injecting an MDIO frame into the example design. This disables Auto-Negotiation
and takes the core out of Isolate state.

• The following frames are injected into the GMII transmitter by the GMII stimulus
block at 1 Gbps.

• the first is a minimum length frame

• the second is a type frame

• the third is an errored frame

• the fourth is a padded frame

• The data received at the TBI transmitter interface is 8B10B decoded. The resulting
frames are checked by the TBI Monitor against the stimulus frames injected into the
GMII transmitter to ensure data integrity.

• The same four frames are generated by the TBI Stimulus block. These are 8B10B
encoded and injected into the TBI receiver interface.

• Data frames received at the GMII receiver are checked by the GMII Monitor against
the stimulus frames injected into the device-specific transceiver receiver to ensure
data integrity.

Customizing the Test Bench

Changing Frame Data

You can change the contents of the four frames used by the demonstration test bench by
changing the data and valid fields for each frame defined in the stimulus block. New frames
can be added by defining a new frame of data. Modified frames are automatically updated
in both stimulus and monitor functions.

Changing Frame Error Status

Errors can be inserted into any of the predefined frames in any position by setting the error
field to ‘1’ in any column of that frame. Injected errors are automatically updated in both
stimulus and monitor functions.

Changing the Core Configuration

The configuration of the Ethernet 1000BASE-X PCS/PMA core used in the demonstration
test bench can be altered.

Caution! Certain configurations of the core cause the test bench to fail, or to cause processes
to run indefinitely. For example, the demonstration test bench will not Auto-Negotiate with the
design example. Determine the configurations that can safely be used with the test bench.

http://www.xilinx.com

102 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 7: The Ten-Bit Interface

The core can be reconfigured by editing the injected MDIO frame in the demonstration test
bench top level. See the Ethernet 1000BASE-X PCS/PMA or SGMII User Guide for
information about using the MDIO interface.

Changing the Operational Speed

SGMII can be used to carry Ethernet traffic at 10 Mbps, 100 Mbps or 1 Gbps. By default, the
demonstration test bench is configured to operate at 1 Gbps. The speed of both the
example design and test bench can be set to the desired operational speed by editing the
following settings, recompiling the test bench, then running the simulation again.

1 Gbps Operation

set speed_is_10_100 to logic 0

100 Mbps Operation

set speed_is_10_100 to logic 1

set speed_is_100 to logic 1

10 Mbps Operation

set speed_is_10_100 to logic 1

set speed_is_100 to logic 0

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 103
UG155 March 1, 2011

Chapter 8

1000BASE-X with Transceivers

This chapter provides general guidelines for creating 1000BASE-X designs that use
transceivers for Virtex®-4, Virtex-5, Virtex-6, Virtex-7, Kintex®-7 and Spartan®-6 devices.

This chapter is organized into the following main sections, with each section being
organized into FPGA families:

• Transceiver Logic

Providing a more detailed look that the Device Specific Transceivers and their
connections to the netlist of the core.

• Clock Sharing Across Multiple Cores with Transceivers

Providing guidance for using several cores and transceiver instantiations: clock
sharing should occur whenever possible to save device resources.

• Example Design for 1000BASE-X with Transceivers

Providing an introduction to the CORE Generator™ software example design
deliverables.

This section also has an overview of the demonstration test bench which is provided
with the example design.

Transceiver Logic
The example is split between two discrete hierarchical layers, as illustrated in Figure 8-16.
The block level is designed so that it can be instantiated directly into customer designs and
provides the following functionality:

• Instantiates the core from HDL

• Connects the physical-side interface of the core to a Virtex-4, Virtex-5, Virtex-6, Virtex-
7, Kintex-7 or Spartan-6 FPGA transceiver

The logic implemented in the block level is illustrated in all the figures and described in
further detail for the remainder of this chapter.

Virtex-4 FX Devices
The core is designed to integrate with the Virtex-4 FPGA RocketIO MGT transceiver.
Figure 8-1 illustrates the connections and logic required between the core and MGT—the
signal names and logic in the figure precisely match those delivered with the example
design when an MGT is used.

Note: A small logic shim (included in the block-level wrapper) is required to convert between the
port differences between the Virtex-5 and Virtex-4 FPGA RocketIO transceivers.

http://www.xilinx.com

104 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 8: 1000BASE-X with Transceivers

The MGT clock distribution in Virtex-4 devices is column-based and consists of multiple
MGT tiles (each tile contains two MGTs). For this reason, the MGT wrapper delivered with
the core always contains two MGT instantiations, even if only a single MGT is in use.
Figure 8-1 illustrates a single MGT tile for clarity.

A GT11CLK_MGT primitive is also instantiated to derive the reference clocks required by
the MGT column-based tiles. See the Virtex-4 RocketIO Multi-Gigabit Transceiver User Guide
(UG076) for information about layout and clock distribution.

The 250 MHz reference clock from the GT11CLK_MGT primitive is routed to the MGT,
configured to internally synthesize a 125 MHz clock. This is output on the TXOUTCLK1
port of the MGT and after placed onto global clock routing, can be used by all core logic.
This clock is input back into the MGT on the user interface clock ports rxusrclk2 and
txusrclk2. With the attribute settings applied to the MGT from the example design, the
txusrclk and rxusrclk ports are derived internally within the MGT using the internal
clock dividers and do not need to be provided from the FPGA fabric.

The Virtex-4 FX FPGA RocketIO MGT transceivers require the inclusion of a calibration
block in the fabric logic; the example design provided with the core instantiates calibration
blocks as required. Calibration blocks require a clock source of between 25 to 50 MHz that
is shared with the Dynamic Reconfiguration Port (DRP) of the MGT, which is named dclk
in the example design. See Xilinx Answer Record 22477 for more information.

Figure 8-1 also illustrates the TX_SIGNAL_DETECT and RX_SIGNAL_DETECT ports of the
calibration block, which should be driven to indicate whether or not dynamic data is being
transmitted and received through the MGT (see Virtex-4 Errata). However,
RX_SIGNAL_DETECT is connected to the signal_detect port of the example design.
signal_detect is intended to be connected to the optical transceiver to indicate the
presence of light. When light is detected, the optical transceiver provides dynamic data to
the Rx ports of the MGT. When no light is detected, the calibration block switches the MGT
into loopback to force dynamic data through the MGT receiver path.

Caution! signal_detect is an optional port in the IEEE 802.3-2008 specification. If this is
not used, the RX_SIGNAL_DETECT port of the calibration block must be driven by an alternative
method. Please see XAPP732 for more information.

http://www.xilinx.com/support/answers/22477.htm
http://www.xilinx.com/xlnx/xweb/xil_publications_display.jsp?iLanguageID=1&sSecondaryNavPick=REFERENCE&category=-1210882&sGlobalNavPick=PRODUCTS&BV_SessionID=@@@@1931102828.1183695341@@@@&BV_EngineID=ccceaddlgidjjhecefeceihdffhdfkf.0
http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 105
UG155 March 1, 2011

Transceiver Logic

X-Ref Target - Figure 8-1

Figure 8-1: 1000BASE-X Connection to Virtex-4 FPGA RocketIO MGT Transceiver

Ethernet 1000BASE-X

PCS/PMA or SGMII

LogiCORE

Virtex-4

GT11

RocketIO

(used)

TXUSRCLK

TXUSRCLK2

RXUSRCLK

RXUSRCLK2

userclk

userclk2

userclk2 (125MHz)

IPAD

IPAD

brefclkn

(250 MHz)

rxbufstatus[1:0]

rxchariscomma

rxcharisk

rxclkcorcnt[2:0]

rxdata[7:0]

rxrundisp

powerdown

txchardispmode

txchardispval

txcharisk

txdata[7:0]

enablealign

RXBUFERR

RXCHARISCOMMA

RXCHARISK

RXSTATUS[5:0]

RXDATA[7:0]

RXRUNDISP

POWERDOWN

TXCHARDISPMODE

TXCHARDISPVAL

TXCHARISK

TXDATA[7:0]

ENPCOMMAALIGN

ENMCOMMAALIGN

BUFG

Virtex-4

GT11CLK_MGT

MGTCLKP

MGTCLKN

SYNCLK1OUT

RXDISPERRrxdisperr

LOGIC

SHIM

Cal Block v1.4.1

brefclkp

(250 MHz)

REFCLK1

synclk1

'0'

'0'

TXOUTCLK1

DCLK

DCLK

component_name_block
(Block Level from
example design)

TX_SIGNAL_DETECT

RX_SIGNAL_DETECT

'1'

signal_detect

dclk

BUFG

http://www.xilinx.com

106 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 8: 1000BASE-X with Transceivers

Virtex-5 LXT and SXT Devices
The core is designed to integrate with the Virtex-5 FPGA RocketIO GTP transceiver.
Figure 8-2 illustrates the connections and logic required between the core and the GTP
transceiver— the signal names and logic in the figure precisely match those delivered with
the example design when a GTP transceiver is used.

A GTP tile consists of a pair of transceivers. For this reason, the GTP transceiver wrapper
delivered with the core always contains two GTP instantiations, even if only a single GTP
transceiver tile is in use. Figure 8-2 illustrates a single GTP transceiver tile.

The 125 MHz differential reference clock is routed directly to the GTP transceiver. The GTP
transceiver is configured to output a version of this clock on the REFCLKOUT port and after
placement onto global clock routing, can be used by all core logic. This clock is input back
into the GTP transceiver on the user interface clock ports rxusrclk, rxusrclk2,
txusrclk, and txusrclk2.

See also Virtex-5 FPGA RocketIO GTP Transceivers for 1000BASE-X Constraints.

Virtex-5 FPGA RocketIO GTP Transceiver Wizard

The two wrapper files immediately around the GTP transceiver pair,
RocketIO_wrapper_gtp_tile and RocketIO_wrapper_gtp (see Figure 8-2), are
generated from the RocketIO GTP Wizard. These files apply all the gigabit Ethernet
attributes. Consequently, these files can be regenerated by customers and therefore be
easily targeted at ES or Production silicon. This core targets production silicon.

The CORE Generator software log file (XCO file) which was created when the RocketIO
GTP Wizard project was generated is available in the following location:

<project_directory>/<component_name>/example_design/transceiver/
RocketIO_wrapper_gtp.xco

This file can be used as an input to the CORE Generator software to regenerate the device-
specific RocketIO transceiver wrapper files. The XCO file itself contains a list of all of the
GTP Wizard attributes which were used. For further information, please see the Virtex-5
FPGA RocketIO GTP Wizard Getting Started Guide (UG188) and the CORE Generator Guide, at
www.xilinx.com/support/software_manuals.htm

http://www.xilinx.com/support/software_manuals.htm
http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 107
UG155 March 1, 2011

Transceiver Logic

X-Ref Target - Figure 8-2

Figure 8-2: 1000BASE-X Connection to Virtex-5 FPGA RocketIO GTP Transceivers

Ethernet 1000BASE-X

PCS/PMA or SGMII

LogiCORE

Virtex-5
GTP

RocketIO
(0)

TXUSRCLK0

TXUSRCLK20

RXUSRCLK0

RXUSRCLK20

userclk

userclk2

rxbufstatus[1:0]

rxchariscomma

rxcharisk

rxclkcorcnt[2:0]

rxdata[7:0]

rxrundisp

powerdown

txchardispmode

txchardispval

txcharisk

txdata[7:0]

enablealign

RXBUFERR0

RXCHARISCOMMA0

RXCHARISK0

RXCLKCORCNT[2:0]

RXDATA0[7:0]

RXRUNDISP0

POWERDOWN0

TXCHARDISPMODE0

TXCHARDISPVAL0

TXCHARISK0

TXDATA0[7:0]

RXENMCOMMAALIGN0

RXENPCOMMAALIGN0

RXDISPERR0rxdisperr

LOGIC

SHIM

CLKIN

REFCLKOUT

component_name_block
(Block Level from
example design)

clkin
(125MHz)

IBUFGDS

IPAD

brefclkp

IPAD

brefclkn

rocketio_wrapper_gtp_tile

rocketio_wrapper_gtp

userclk2 (125MHz)

BUFG

http://www.xilinx.com

108 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 8: 1000BASE-X with Transceivers

Virtex-5 FXT and TXT Devices
The core is designed to integrate with the Virtex-5 FPGA RocketIO GTX transceiver.
Figure 8-3 illustrates the connections and logic required between the core and the GTX
transceiver—the signal names and logic in the figure precisely match those delivered with
the example design when a GTX transceiver is used.

A GTX tile consists of a pair of transceivers. For this reason, the GTX transceiver wrapper
delivered with the core always contains two GTX instantiations, even if only a single GTX
transceiver tile is in use. Figure 8-3 illustrates a single GTX transceiver tile.

The 125 MHz differential reference clock is routed directly to the GTX transceiver. The GTX
transceiver is configured to output a version of this clock on the REFCLKOUT port; this is
then routed to a DCM via a BUFG (global clock routing).

From the DCM, the CLK0 port (125 MHz) is placed onto global clock routing and can be
used as the 125 MHz clock source for all core logic; this clock is also input back into the
GTX transceiver on the user interface clock ports rxusrclk2 and txusrclk2.

From the DCM, the CLKDV port (62.5 MHz) is placed onto global clock routing and is input
back into the GTX transceiver on the user interface clock ports rxusrclk and txusrclk.

See also Virtex-5 FPGA RocketIO GTX Transceivers for 1000BASE-X Constraints.

Virtex-5 FPGA RocketIO GTX Wizard

The two wrapper files immediately around the GTX transceiver pair,
RocketIO_wrapper_gtx_tile and RocketIO_wrapper_gtx (see Figure 8-3), are
generated from the RocketIO GTX Wizard. These files apply all the gigabit Ethernet
attributes. Consequently, these files can be regenerated by customers and therefore be
easily targeted at ES or Production silicon. This core targets production silicon.

The CORE Generator software log file (XCO file) which was created when the RocketIO
GTX Wizard project was generated is available in the following location:

<project_directory>/<component_name>/example_design/transceiver/
RocketIO_wrapper_gtx.xco

This file can be used as an input to the CORE Generator software to regenerate the device-
specific RocketIO transceiver wrapper files. The XCO file itself contains a list of all of the
GTX Wizard attributes which were used. For further information, please see the Virtex-5
FPGA RocketIO GTX Wizard Getting Started Guide and the CORE Generator Guide, at
www.xilinx.com/support/software_manuals.htm

http://www.xilinx.com/support/software_manuals.htm
http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 109
UG155 March 1, 2011

Transceiver Logic

X-Ref Target - Figure 8-3

Figure 8-3: 1000BASE-X Connection to Virtex-5 FPGA RocketIO GTX Transceivers

Ethernet 1000BASE-X

PCS/PMA or SGMII

LogiCORE

Virtex-5
GTX

RocketIO
(0)

TXUSRCLK0

TXUSRCLK20

RXUSRCLK0

RXUSRCLK20

userclk

userclk2

rxbufstatus[1:0]

rxchariscomma

rxcharisk

rxclkcorcnt[2:0]

rxdata[7:0]

rxrundisp

powerdown

txchardispmode

txchardispval

txcharisk

txdata[7:0]

enablealign

RXBUFERR0

RXCHARISCOMMA0

RXCHARISK0

RXCLKCORCNT[2:0]

RXDATA0[7:0]

RXRUNDISP0

POWERDOWN0

TXCHARDISPMODE0

TXCHARDISPVAL0

TXCHARISK0

TXDATA0[7:0]

RXENMCOMMAALIGN0

RXENPCOMMAALIGN0

RXDISPERR0rxdisperr

LOGIC

SHIM

CLKIN

REFCLKOUT

component_name_block
(Block Level from
example design)

clkin
(125MHz)

IBUFGDS

IPAD

brefclkp

IPAD

brefclkn

rocketio_wrapper_gtx_tile

rocketio_wrapper_gtx

userclk2

(125MHz)

DCM

CLKIN CLK0

FB

BUFG

CLKDV

BUFG

userclk

(62.5MHz)

BUFG

http://www.xilinx.com

110 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 8: 1000BASE-X with Transceivers

Virtex-6 Devices
The core is designed to integrate with the Virtex-6 FPGA GTX transceiver. Figure 8-4
illustrates the connections and logic required between the core and the GTX transceiver—
the signal names and logic in the figure precisely match those delivered with the example
design.

The 125 MHz differential reference clock is routed directly to the GTX transceiver from the
specialized IBUFDS_GTXE1 primitive. The GTX transceiver is configured to output a
version of this clock on the TXOUTCLK port and after placement onto global clock routing,
can be used by all core logic. This clock is input back into the GTX transceiver on the user
interface clock ports rxusrclk2 and txusrclk2. The rxusrclk and txusrclk clocks
will be derived internally and can be grounded.

Virtex-6 FPGA GTX Transceiver Wizard

The two wrapper files immediately around the GTX transceiver, gtx_wrapper_gtx and
gtx_wrapper (see Figure 8-4), are generated from the Virtex-6 FPGA GTX Transceiver
Wizard. These files apply all the gigabit Ethernet attributes. Consequently, these files can be
regenerated by customers and therefore be easily targeted at silicon/device versions.

The CORE Generator software log file (XCO file) which was created when the Virtex-6
FPGA GTX Transceiver Wizard project was generated is available in the following location:

<project_directory>/<component_name>/example_design/transceiver/
gtx_wrapper_gtx.xco

This file can be used as an input to the CORE Generator software to regenerate the
transceiver wrapper files. The XCO file itself contains a list of all of the Wizard attributes
which were used. For further information, please see the Virtex-6 FPGA GTX Transceiver
Wizard Getting Started Guide and the CORE Generator Guide, at
www.xilinx.com/support/software_manuals.htm.

http://www.xilinx.com/support/software_manuals.htm
http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 111
UG155 March 1, 2011

Transceiver Logic

X-Ref Target - Figure 8-4

Figure 8-4: 1000BASE-X Connection to Virtex-6 FPGA GTX Transceiver

Ethernet 1000BASE-X

PCS/PMA or SGMII

LogiCORE

Virtex-6
GTXE1

transceiver

TXUSRCLK

TXUSRCLK2

RXUSRCLK

RXUSRCLK2

userclk

userclk2

rxbufstatus[1:0]

rxchariscomma

rxcharisk

rxclkcorcnt[2:0]

rxdata[7:0]

rxrundisp

powerdown

txchardispmode

txchardispval

txcharisk

txdata[7:0]

enablealign

RXBUFERR

RXCHARISCOMMA

RXCHARISK

RXCLKCORCNT[2:0]

RXDATA[7:0]

RXRUNDISP

POWERDOWN

TXCHARDISPMODE

TXCHARDISPVAL

TXCHARISK

TXDATA[7:0]

RXENMCOMMAALIGN

RXENPCOMMAALIGN

RXDISPERRrxdisperr

LOGIC

SHIM

TXOUTCLK

component_name_block
(Block Level from
example design)

mgtrefclk
(125MHz)

IBUFDS_GTXE1

IPAD

mgtrefclk_p

IPAD

mgtrefclk_n

gtx_wrapper_gtx

gtx_wrapper

userclk2 (125MHz)

BUFG

GND

MGTREFCLKTX[0]
MGTREFCLKRX[0]

http://www.xilinx.com

112 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 8: 1000BASE-X with Transceivers

Spartan-6 LXT Devices
The core is designed to integrate with the Spartan-6 FPGA GTP transceiver. Figure 8-5
illustrates the connections and logic required between the core and the GTP transceiver—
the signal names and logic in the figure precisely match those delivered with the example
design when a GTP transceiver is used.

A GTP tile consists of a pair of transceivers. For this reason, the GTP transceiver wrapper
delivered with the core always contains two GTP instantiations, even if only a single GTP
transceiver tile is in use. Figure 8-5 illustrates a single GTP transceiver tile.

The 125 MHz differential reference clock is routed directly to the GTP transceiver. The GTP
transceiver is configured to output a version of this clock on the GTPCLKOUT port and after
placement through a BUFIO2 and BUFG onto global clock routing, can be used by all core
logic. This clock is input back into the GTP transceiver on the user interface clock ports
rxusrclk, rxusrclk2, txusrclk, and txusrclk2.

See also Spartan-6 FPGA GTP Transceivers for 1000BASE-X Constraints.

Spartan-6 FPGA GTP Transceiver Wizard

The two wrapper files immediately around the GTP transceiver pair,
gtp_wrapper_tile and gtp_wrapper (see Figure 8-5), are generated from the Spartan-
6 FPGA GTP Wizard. These files apply all the gigabit Ethernet attributes. Consequently,
these files can be regenerated by customers and therefore be easily targeted at ES or
Production silicon. This core targets production silicon.

The CORE Generator software log file (XCO file) which was created when the GTP Wizard
project was generated is available in the following location:

<project_directory>/<component_name>/example_design/transceiver/
gtp_wrapper.xco

This file can be used as an input to the CORE Generator software to regenerate the device-
specific transceiver wrapper files. The XCO file itself contains a list of all of the GTP Wizard
attributes that were used. For further information, please see the Spartan-6 FPGA GTP
Wizard Getting Started Guide and the CORE Generator Guide, at
www.xilinx.com/support/software_manuals.htm

http://www.xilinx.com/support/software_manuals.htm
http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 113
UG155 March 1, 2011

Transceiver Logic

X-Ref Target - Figure 8-5

Virtex-7 Devices
The core is designed to integrate with the 7 Series FPGA transceiver. Figure 8-6 illustrates
the connections and logic required between the core and the transceiver—the signal
names and logic in the figure precisely match those delivered with the example design
when a 7 Series FPGA transceiver is used.

The 125 MHz differential reference clock is routed directly to the 7 Series transceiver. The
transceiver is configured to output a version of this clock (62.5 MHz) on the TXOUTCLK
port; this is then routed to a MMCM. From the MMCM, the CLKOUT0 port (62.5 MHz) is
placed onto global clock routing and is input back into the GTXE2 transceiver on the user
interface clock ports rxusrclk, rxusrclk2, txusrclk, and txusrclk2. The CLKOUT1 port (125
MHz) of MMCM is placed onto global clock routing and can be used as the 125 MHz clock
source for all core logic. See also 7 Series FPGA GTX Transceivers for 1000BASE-X
Constraints.

Figure 8-5: 1000BASE-X Connection to Spartan-6 FPGA GTP Transceivers

Ethernet 1000BASE-X

PCS/PMA or SGMII

LogiCORE
TXUSRCLK0

TXUSRCLK20

RXUSRCLK0

RXUSRCLK20

userclk

userclk2

rxbufstatus[1:0]

rxchariscomma

rxcharisk

rxclkcorcnt[2:0]

rxdata[7:0]

rxrundisp

powerdown

txchardispmode

txchardispval

txcharisk

txdata[7:0]

enablealign

RXBUFERR0

RXCHARISCOMMA0

RXCHARISK0

RXCLKCORCNT[2:0]

RXDATA0[7:0]

RXRUNDISP0

POWERDOWN0

TXCHARDISPMODE0

TXCHARDISPVAL0

TXCHARISK0

TXDATA0[7:0]

RXENMCOMMAALIGN0

RXENPCOMMAALIGN0

RXDISPERR0rxdisperr

LOGIC

SHIM

CLKIN00

GTPCLKOUT0

component_name_block
(Block Level from
example design)

clkin
(125MHz)

IBUFDS

IPAD

brefclkp

IPAD

brefclkn

gtp_wrapper_tile

gtp_wrapper

userclk2 (125MHz)

BUFG

Spartan-6

Transceiver

GTP

BUFIO2

http://www.xilinx.com

114 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 8: 1000BASE-X with Transceivers

7 Series FPGA Transceiver Wizard

The two wrapper files immediately around the GTX transceiver pair, gtwizard and
gtwizard_gt (Figure 8-6), are generated from the 7 Series FPGA Transceiver Wizard. These
files apply all the gigabit Ethernet attributes. Consequently, these files can be regenerated
by customers. The CORE Generator software log file (XCO file) which was created when
the 7 Series FPGA Transceiver Wizard project was generated is available in the following
location:
<project_directory>/<component_name>/example_design/transceiver/gtwizard.xco.
This file can be used as an input to the CORE Generator software to regenerate the device
specific transceiver wrapper files. The XCO file itself contains a list of all of the Tranceiver
Wizard attributes which were used. For further information, please see the 7 Series FPGAs
GTX Transceivers User Guide.

X-Ref Target - Figure 8-6

Figure 8-6: 1000BASE-X Connection to Virtex-7 Transceivers

Ethernet 1000BASE-X

PCS/PMA or SGMII

LogiCORE

Series-7
GTXE2_CHANNEL

transceiver

TXUSRCLK

TXUSRCLK2

RXUSRCLK

RXUSRCLK2

userclk

userclk2

rxbufstatus[1:0]

rxchariscomma

rxcharisk

rxclkcorcnt[2:0]

rxdata[7:0]

rxrundisp

powerdown

txchardispmode

txchardispval

txcharisk

txdata[7:0]

enablealign

RXBUFSTATUS

RXCHARISCOMMA

RXCHARISK

RXCLKCORCNT[2:0]

RXDATA[7:0]

RXRUNDISP

POWERDOWN

TXCHARDISPMODE

TXCHARDISPVAL

TXCHARISK

TXDATA[7:0]

RXMCOMMAALIGNEN

RXPCOMMAALIGNEN

RXDISPERRrxdisperr

LOGIC

SHIM

TXOUTCLK

component_name_block
(Block Level from
example design)

gtrefclk
(125MHz)

IBUFDS_GTE2

IPAD

gtrefclk_p

IPAD
gtrefclk_n

gtwizard_gt

gtwizard

BUFG

GTREFCLKT0

MMCME2_ADV

CLKOUT0

CLKOUT1

CLKIN1

CLKFBOUTCLKFBIN

BUFG

62.5MHz

125MHz

62.5MHz

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 115
UG155 March 1, 2011

Transceiver Logic

Kintex-7 Devices
The core is designed to integrate with the 7 Series FPGA transceiver. Figure 8-7 illustrates
the connections and logic required between the core and the transceiver—the signal
names and logic in the figure precisely match those delivered with the example design
when a 7 Series FPGA transceiver is used.

The 125 MHz differential reference clock is routed directly to the 7 Series transceiver. The
transceiver is configured to output a version of this clock (62.5 MHz) on the TXOUTCLK
port; this is then routed to a MMCM via a BUFG (global clock routing). From the MMCM,
the CLKOUT0 port (62.5 MHz) is placed onto global clock routing and is input back into
the GTXE2 transceiver on the user interface clock ports rxusrclk, rxusrclk2, txusrclkand
txusrclk2. The CLKOUT1 port (125 MHz) of MMCM is placed onto global clock routing
and can be used as the 125 MHz clock source for all core logic. See also 7 Series FPGA
Transceivers for 1000BASE-X Constraints.

7 Series FPGA Transceiver Wizard

The two wrapper files immediately around the GTX transceiver pair, gtwizard and
gtwizard_gt (Figure 8-7), are generated from the 7 Series FPGA Transceiver Wizard. These
files apply all the gigabit Ethernet attributes. Consequently, these files can be regenerated
by customers.

The CORE Generator software log file (XCO file) which was created when the 7 Series
FPGA Transceiver Wizard project was generated is available in the location:
<project_directory>/<component_name>/example_design/transceiver/gtwizard.xco.
This file can be used as an input to the CORE Generator software to regenerate the device
specific transceiver wrapper files. The XCO file itself contains a list of all of the Tranceiver
Wizard attributes which were used. For further information, please see the 7 Series FPGAs
GTX Transceivers User Guide.

http://www.xilinx.com

116 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 8: 1000BASE-X with Transceivers

X-Ref Target - Figure 8-7

Figure 8-7: 1000BASE-X Connection to Kintex-7 Transceivers

Ethernet 1000BASE-X

PCS/PMA or SGMII

LogiCORE

Series-7
GTXE2_CHANNEL

transceiver

TXUSRCLK

TXUSRCLK2

RXUSRCLK

RXUSRCLK2

userclk

userclk2

rxbufstatus[1:0]

rxchariscomma

rxcharisk

rxclkcorcnt[2:0]

rxdata[7:0]

rxrundisp

powerdown

txchardispmode

txchardispval

txcharisk

txdata[7:0]

enablealign

RXBUFSTATUS

RXCHARISCOMMA

RXCHARISK

RXCLKCORCNT[2:0]

RXDATA[7:0]

RXRUNDISP

POWERDOWN

TXCHARDISPMODE

TXCHARDISPVAL

TXCHARISK

TXDATA[7:0]

RXMCOMMAALIGNEN

RXPCOMMAALIGNEN

RXDISPERRrxdisperr

LOGIC

SHIM

TXOUTCLK

component_name_block
(Block Level from
example design)

gtrefclk
(125MHz)

IBUFDS_GTE2

IPAD

gtrefclk_p

IPAD
gtrefclk_n

gtwizard_gt

gtwizard

BUFG

GTREFCLKT0

MMCME2_ADV

CLKOUT0

CLKOUT1

CLKIN1

CLKFBOUTCLKFBIN

BUFG

BUFG

62.5MHz

125MHz

62.5MHz

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 117
UG155 March 1, 2011

Clock Sharing Across Multiple Cores with Transceivers

Clock Sharing Across Multiple Cores with Transceivers

Virtex-4 FX Devices
Figure 8-8 illustrates sharing clock resources across multiple instantiations of the core
when using MGTs. The example design, when using the Virtex-4 family, can be generated
to connect either a single instance of the core, or connect a pair of core instances to the
transceiver pair present in an MGT tile. Figure 8-8 shows two instantiations of the block
level, where each block contains a pair of cores, subsequently illustrating clock sharing
between four cores in total.

More cores can be added by continuing to instantiate extra block-level modules. Share
clocks only between the MGTs in a single column. For each column, use a single
brefclk_p and brefclk_n differential clock pair and connect this to a GT11CLK_MGT
primitive. The clock output from this primitive should be shared across all used RocketIO
transceiver tiles in the column. See the Virtex-4 RocketIO Multi-Gigabit Transceiver User
Guide (UG076) for more information.

To provide the 125 MHz clock for all core instances, select a TXOUTCLK1 port from any
MGT. This can be routed onto global clock routing using a BUFG as illustrated, and shared
between all cores and MGTs in the column. Although not illustrated in Figure 8-8, dclk
(the clock used for the calibration blocks and for the Dynamic Reconfiguration Port (DRP)
of the MGTs) can also be shared.

http://www.xilinx.com

118 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 8: 1000BASE-X with Transceivers

X-Ref Target - Figure 8-8

Figure 8-8: Clock Management - Multiple Core Instances, MGTs for 1000BASE-X

Ethernet 1000BASE-X

PCS/PMA or

SGMII core

userclk

userclk2

IPAD

brefclkp
(250MHz)

IPAD

brefclkn
(250MHz)

Virtex-4

GT11CLK_MGT

MGTCLKP

MGTCLKN

SYNCLK1OUT

Virtex-4
GT11

RocketIO
(A)

REFCLK1

MGT tile

Virtex-4
GT11

RocketIO
(B)

REFCLK1

TXOUTCLK1

Ethernet 1000BASE-X

PCS/PMA or

SGMII core

userclk

userclk2

NC

userclk2

(125 MHz)

BUFG

TXUSRCLK

TXUSRCLK2

RXUSRCLK

RXUSRCLK2

TXUSRCLK

TXUSRCLK2

RXUSRCLK

RXUSRCLK2

synclk1
(250MHz)

‘0’

‘0’

‘0’

‘0’

TXOUTCLK1

component_name_block
(Block Level)

Ethernet 1000BASE-X

PCS/PMA or

SGMII core

userclk

userclk2

Virtex-4
GT11

RocketIO
(A)

REFCLK1

MGT tile

Virtex-4
GT11

RocketIO
(B)

REFCLK1

TXOUTCLK1

Ethernet 1000BASE-X

PCS/PMA or

SGMII core

userclk

userclk2

NC

TXUSRCLK

TXUSRCLK2

RXUSRCLK

RXUSRCLK2

TXUSRCLK

TXUSRCLK2

RXUSRCLK

RXUSRCLK2

‘0’

‘0’

‘0’

‘0’

TXOUTCLK1

component_name_block
(Block Level)

NC

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 119
UG155 March 1, 2011

Clock Sharing Across Multiple Cores with Transceivers

Virtex-5 LXT and SXT Devices
Figure 8-9 illustrates sharing clock resources across multiple instantiations of the core
when using Virtex-5 FPGA RocketIO GTP transceivers.

The example design can be generated to connect either a single instance of the core or
connect a pair of core instances to the transceiver pair present in a GTP tile. Figure 8-9
illustrates two instantiations of the block level, and each block level contains a pair of
cores, consequently illustrating clock sharing between a total of four cores.

Additional cores can be added by continuing to instantiate extra block level modules.
Share the brefclk_p and brefclk_n differential clock pair. See the Virtex-5 FPGA
RocketIO GTP Transceiver User Guide (UG196) for more information.

To provide the 125 MHz clock for all core instances, select a REFCLKOUT port from any
GTP transceiver. This can be routed onto global clock routing using a BUFG as illustrated
and shared between all cores and GTP transceivers.

http://www.xilinx.com

120 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 8: 1000BASE-X with Transceivers

X-Ref Target - Figure 8-10

X-Ref Target - Figure 8-9

Figure 8-9: Clock Management - Multiple Core Instances, Virtex-5 FPGA
RocketIO GTP Transceivers for 1000BASE-X

Ethernet 1000BASE-X

PCS/PMA or

SGMII core

userclk

userclk2

Virtex-5
GTP

RocketIO
(0)

CLKIN

rocketio_wrapper_gtp_tile

Virtex-5
GTP

RocketIO
(1)

Ethernet 1000BASE-X

PCS/PMA or

SGMII core

userclk

userclk2

userclk2

(125 MHz)

BUFG

TXUSRCLK0

TXUSRCLK20

RXUSRCLK0

RXUSRCLK20

TXUSRCLK1

TXUSRCLK21

RXUSRCLK1

RXUSRCLK21

clkin
(125MHz)

REFCLKOUT

component_name_block
(Block Level)

Ethernet 1000BASE-X

PCS/PMA or

SGMII core

userclk

userclk2

Virtex-5
GTP

RocketIO
(0)

Virtex-5
GTP

RocketIO
(1)

Ethernet 1000BASE-X

PCS/PMA or

SGMII core

userclk

userclk2

TXUSRCLK0

TXUSRCLK20

RXUSRCLK0

RXUSRCLK20

TXUSRCLK1

TXUSRCLK21

RXUSRCLK1

RXUSRCLK21

REFCLKOUT

component_name_block
(Block Level)

NC

IBUFGDS

IPAD

brefclkp

IPAD

brefclkn

CLKIN

rocketio_wrapper_gtp_tile

rocketio_wrapper_gtp

rocketio_wrapper_gtp

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 121
UG155 March 1, 2011

Clock Sharing Across Multiple Cores with Transceivers

Virtex-5 FXT and TXT Devices
Figure 8-11 illustrates sharing clock resources across multiple instantiations of the core
when using Virtex-5 FPGA RocketIO GTX transceivers.

The example design can be generated to connect either a single instance of the core or
connect a pair of core instances to the transceiver pair present in a GTX tile. Figure 8-11
illustrates two instantiations of the block level, and each block level contains a pair of
cores, consequently illustrating clock sharing between a total of four cores.

Additional cores can be added by continuing to instantiate extra block level modules.
Share the brefclk_p and brefclk_n differential clock pair. See the Virtex-5 FPGA
RocketIO GTX Transceiver User Guide for more information.

To provide the FPGA fabric clocks for all core instances, select a REFCLKOUT port from any
GTX transceiver and route this to a single DCM via a BUFG (global clock routing). The
CLK0 (125 MHz) and CLKDV (62.5 MHz) outputs from this DCM, placed onto global clock
routing using BUFGs, can be shared across all core instances and GTX transceivers as
illustrated.

http://www.xilinx.com

122 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 8: 1000BASE-X with Transceivers

X-Ref Target - Figure 8-11

Figure 8-11: Clock Management - Multiple Core Instances, Virtex-5 FPGA RocketIO
GTX Transceivers for 1000BASE-X

Ethernet 1000BASE-X

PCS/PMA or

SGMII core

userclk

userclk2

Virtex-5
GTX

RocketIO
(0)

CLKIN

rocketio_wrapper_gtx_tile

Virtex-5
GTX

RocketIO
(1)

Ethernet 1000BASE-X

PCS/PMA or

SGMII core

userclk

userclk2

TXUSRCLK0

TXUSRCLK20

RXUSRCLK0

RXUSRCLK20

TXUSRCLK1

TXUSRCLK21

RXUSRCLK1

RXUSRCLK21

clkin
(125MHz)

REFCLKOUT

component_name_block
(Block Level)

Ethernet 1000BASE-X

PCS/PMA or

SGMII core

userclk

userclk2

Virtex-5
GTX

RocketIO
(0)

Virtex-5
GTX

RocketIO
(1)

Ethernet 1000BASE-X

PCS/PMA or

SGMII core

userclk

userclk2

TXUSRCLK0

TXUSRCLK20

RXUSRCLK0

RXUSRCLK20

TXUSRCLK1

TXUSRCLK21

RXUSRCLK1

RXUSRCLK21

REFCLKOUT

component_name_block
(Block Level)

NC

IBUFGDS

IPAD

brefclkp

IPAD

brefclkn

CLKIN

rocketio_wrapper_gtx_tile

rocketio_wrapper_gtx

rocketio_wrapper_gtx

userclk2 (125MHz)

DCM

CLKIN CLK0

FB

BUFG

CLKDV

BUFG

userclk (62.5MHz)

BUFG

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 123
UG155 March 1, 2011

Clock Sharing Across Multiple Cores with Transceivers

Virtex-6 Devices
Figure 8-12 illustrates sharing clock resources across two instantiations of the core when
using Virtex-6 FPGA GTX transceivers. Additional cores can be added by continuing to
instantiate extra block level modules.

Share the mgtrefclk_p and mgtrefclk_n differential clock pair clock source across all
of the transceivers in use. To provide the 125 MHz clock for all core instances, select a
TXOUTCLK port from any GTX transceiver. This can be routed onto global clock routing
using a BUFG as illustrated and shared between all cores and GTX transceivers.

See the Virtex-6 GTX Transceiver User Guide for more information on GTX clock resources.
X-Ref Target - Figure 8-12

Figure 8-12: Clock Management - Multiple Core Instances, Virtex-6 FPGA GTX
Transceivers for 1000BASE-X

Ethernet 1000BASE-X

PCS/PMA or

SGMII core

userclk

userclk2

Virtex-6
GTX

Transceiver

gtx_wrapper_gtx

userclk2

(125 MHz)

BUFG

TXUSRCLK2

RXUSRCLK2

TXUSRCLK

RXUSRCLK

mgtrefclk
(125MHz)

component_name_block
(Block Level)

IBUFDS_GTXE1

IPAD

mgtrefclk_p

IPAD

mgtrefclk_n

gtx_wrapper

GND

Ethernet 1000BASE-X

PCS/PMA or

SGMII core

userclk

userclk2

Virtex-6
GTX

Transceiver

gtx_wrapper_gtx

userclk2

(125 MHz)

TXUSRCLK2

RXUSRCLK2

TXUSRCLK

RXUSRCLK

TXOUTCLK

component_name_block
(Block Level)

gtx_wrapper

GND

TXOUTCLK

NC

MGTREFCLKTX[0]
MGTREFCLKRX[0]

MGTREFCLKTX[0]
MGTREFCLKRX[0]

http://www.xilinx.com

124 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 8: 1000BASE-X with Transceivers

Spartan-6 LXT Devices
Figure 8-12 illustrates sharing clock resources across multiple instantiations of the core
when using Spartan-6 FPGA GTP transceivers.

The example design can be generated to connect either a single instance of the core or
connect a pair of core instances to the transceiver pair present in a GTP tile. Figure 8-12
illustrates two instantiations of the block level, and each block level contains a pair of
cores, consequently illustrating clock sharing between a total of four cores.

Additional cores can be added by continuing to instantiate extra block level modules.
Share the brefclk_p and brefclk_n differential clock pair. See the Spartan-6 FPGA GTP
Transceiver User Guide for more information.

To provide the 125 MHz clock for all core instances, select a GTPCLKOUT port from any
GTP transceiver. This can be routed onto global clock routing using a BUFIO2 and BUFG as
illustrated and shared between all cores and GTP transceivers.

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 125
UG155 March 1, 2011

Clock Sharing Across Multiple Cores with Transceivers

X-Ref Target - Figure 8-13

Figure 8-13: Clock Management-Multilple Core Instances, Spartan-6 FPGA
GTP Transceivers for 1000BASE-X

Ethernet 1000BASE-X

PCS/PMA or

SGMII core

userclk

userclk2

CLKIN00

gtp_wrapper_tile

Ethernet 1000BASE-X

PCS/PMA or

SGMII core

userclk

userclk2

userclk2

(125 MHz)

BUFG

TXUSRCLK0

TXUSRCLK20

RXUSRCLK0

RXUSRCLK20

TXUSRCLK1

TXUSRCLK21

RXUSRCLK1

RXUSRCLK21

clkin
(125MHz)

GTPCLKOUT0

component_name_block
(Block Level)

Ethernet 1000BASE-X

PCS/PMA or

SGMII core

userclk

userclk2

Ethernet 1000BASE-X

PCS/PMA or

SGMII core

userclk

userclk2

TXUSRCLK0

TXUSRCLK20

RXUSRCLK0

RXUSRCLK20

TXUSRCLK1

TXUSRCLK21

RXUSRCLK1

RXUSRCLK21

component_name_block
(Block Level)

NC

IBUFDS

IPAD

brefclkp

IPAD

brefclkn

gtp_wrapper_tile

gtp_wrapper

gtp_wrapper

CLKIN01

Spartan-6
Transceiver

GTP
(0)

Spartan-6
Transceiver

GTP
(1)

Spartan-6
Transceiver

GTP
(0)

Spartan-6
Transceiver

GTP
(1)

CLKIN00

CLKIN01

GTPCLKOUT0

GTPCLKOUT1NC

GTPCLKOUT1NC

BUFIO2

http://www.xilinx.com

126 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 8: 1000BASE-X with Transceivers

Virtex-7 Devices
Figure 8-14 illustrates sharing clock resources across two instantiations of the core when
using 7 Series FPGAs Transceivers. Additional cores can be added by continuing to
instantiate extra block level modules.

To provide the FPGA fabric clocks for all core instancess, select a TXOUTCLK port from
anytransceiver and route this to a single MMCM. The CLKOUT0 (62.5 MHz) and
CLKOUT1 (125 MHz) outputs from this MMCM, placed onto global clock routing using
BUFGs, can be shared across all core instances and transceivers as illustrated.

X-Ref Target - Figure 8-14

Figure 8-14: Clock Management-Multiple Core Instances, Virtex-7 FPGA Transceivers for 1000BASE-X

Ethernet 1000BASE-X

PCS/PMA or

SGMII core

userclk

userclk2

Virtex-7
GTX

Transceiver

gtwizard_gt

TXUSRCLK2

RXUSRCLK2

TXUSRCLK

RXUSRCLK

gtrefclk
(125MHz)

component_name_block
(Block Level)

IPAD

IPAD

gtwizard

Ethernet 1000BASE-X

PCS/PMA or

SGMII core

userclk

userclk2

Virtex-7
GTX

Transceiver

gtwizard_gt

userclk

(125 MHz)

TXUSRCLK2

RXUSRCLK2

TXUSRCLK

RXUSRCLK

TXOUTCLK

component_name_block
(Block Level)

gtwizard

TXOUTCLK

NC

GTREFCLK0

IBUFDS_GTE2
gtrefclk_p

gtrefclk_n

GTREFCLK0

BUFG

MMCME2_ADV

CLKOUT0

CLKOUT1

CLKIN1

CLKFBOUTCLKFBIN

BUFG

62.5MHz

62.5MHz

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 127
UG155 March 1, 2011

Clock Sharing Across Multiple Cores with Transceivers

Kintex-7 Devices
Figure 8-15 illustrates sharing clock rssources across two instantiations of the core when
using 7 Series FPGAs Transceivers. Additional cores can be added by continuing to
instantiate extra block level modules.

To provide the FPGA fabric clocks for all core instances, select a TXOUTCLK port from any
transceiver and route this to a single MMCM via a BUFG (global clock routing). The
CLKOUT0 (62.5 MHz) and CLKOUT1 (125 MHz) outputs from this MMCM, placed onto
global clock routing using BUFGs, can be shared across all core instances and transceivers
as illustrated.

http://www.xilinx.com

128 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 8: 1000BASE-X with Transceivers

X-Ref Target - Figure 8-15

Figure 8-15: Clock Management-Multiple Core Instances, Kintex-7 FPGA Transceivers for 1000BASE-X

Ethernet 1000BASE-X

PCS/PMA or

SGMII core

userclk

userclk2

Kintex-7
GTX

Transceiver

gtwizard_gt

TXUSRCLK2

RXUSRCLK2

TXUSRCLK

RXUSRCLK

gtrefcl
(125M

component_name_block
(Block Level)

IPAD

IPAD

gtwizard

Ethernet 1000BASE-X

PCS/PMA or

SGMII core

userclk

userclk2

gtwizard_gt

userclk

(125 MHz)

TXUSRCLK2

RXUSRCLK2

TXUSRCLK

RXUSRCLK

TXOUTCLK

component_name_block
(Block Level)

gtwizard

TXOUTCLK

NC

GTREFCLK0

IBUFDS
gtrefclk_p

gtrefclk_n

GTREFCLK0

BUFG

MMCME2_ADV

CLKOUT0

CLKOUT1

CLKIN1

CLKFBOUTCLKFBIN

BUFG

BUFG

62.5MHz

62.5MHz

Kintex-7
GTX

Transceiver

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 129
UG155 March 1, 2011

Example Design for 1000BASE-X with Transceivers

Example Design for 1000BASE-X with Transceivers
Chapter 4, CORE Generator Deliverables contains a full list and description of the
directory and file structure that is provided with the core, including the location of the
HDL example design.

Figure 8-16 illustrates the complete example design for the Ethernet 1000BASE-X
PCS/PMA using the transceiver specific to the target device (Virtex-4, Virtex-5, Virtex-6,
Virtex-7, Kintex-7 or Spartan-6).

As illustrated, the example is split between two hierarchical layers. The block level is
designed so that it can be instantiated directly into your design and performs the following
functions:

• Instantiates the core from HDL

• Connects the physical-side interface of the core to a device-specific transceiver

The top level of the example design creates a specific example that can be simulated,
synthesized, implemented, and if required, placed on a suitable board and demonstrated
in hardware. The top level of the example design performs the following functions:

• Instantiates the block level from HDL

• Derives the clock management logic for a device-specific transceiver and the core

• Implements an external GMII

The next few pages in this section will now describe each of the example design blocks
(and associated HDL files) in detail, and will conclude with an overview of the
demonstration test bench provided for the design.

X-Ref Target - Figure 8-16

Figure 8-16: Example Design HDL for the Ethernet 1000BASE-X PCS/PMA
Using a Device-Specific Transceiver

Ethernet

1000BASE-X

PCS/PMA

Core

Netlist

GMII

IOBs

In

IOBs

Out

Connect to

Client MA

PMA

(Connect to

Optical

Transceiver)

component_name_block

component_name_example_design

Tx

Elastic

Buffer

Transceiver

Clock
Management

Logic

Device
Specific
Transceiver

http://www.xilinx.com

130 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 8: 1000BASE-X with Transceivers

Top-Level Example Design HDL
The following files describe the top-level example design for the Ethernet 1000BASE-X
PCS/PMA core using a transceiver specific to the desired device.

VHDL

<project_dir>/<component_name>/example_design/<component_name>_example
_design.vhd

Verilog

<project_dir>/<component_name>/example_design/<component_name>_example
_design.v

The example design HDL top level contains the following:

• An instance of the Ethernet 1000BASE-X PCS/PMA block level

• Clock management logic for the core and the device-specific transceiver, including
DCM (if required) and Global Clock Buffer instances

• A transmitter elastic buffer

• GMII interface logic, including IOB instances

The example design HDL top-level connects the GMII of the block level to external IOBs.
This configuration allows the functionality of the core to be demonstrated using a
simulation package as discussed in this guide. The example design can also be synthesized
and, if required, placed on a suitable board and demonstrated in hardware.

Note: In the Virtex-4, Virtex-5 and Spartan-6 architectures, transceivers are provided in pairs. When
generated with the appropriate options, the example design is capable of connecting two instances of
the core to the transceiver pair.

Block Level HDL
The following files describe the block-level design for the Ethernet 1000BASE-X PCS/PMA
core using a device-specific transceiver specific to the target device.

VHDL

<project_dir>/<component_name>/example_design/<component_name>_block.v
hd

Verilog

<project_dir>/<component_name>/example_design/<component_name>_block.v

The block-level HDL contains the following:

• An instance(s) of the Ethernet 1000BASE-X PCS/PMA core

• An instance(s) of a transceiver specific to a Virtex-4, Virtex-5, Virtex-6, Virtex-7,
Kintex-7 or Spartan-6 device

The block-level HDL connects the PHY side interface of the core to a device-specific
transceiver, as illustrated in Figure 8-16. This is the most useful part of the example design
and should be instantiated in all customer designs that use the core.

Note: In the Virtex-4, Virtex-5 and Spartan-6 architectures, transceivers are provided in pairs. When
generated with the appropriate options, the block level is capable of connecting two instances of the
core to the transceiver.

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 131
UG155 March 1, 2011

Example Design for 1000BASE-X with Transceivers

Files for Virtex-7 and Kintex-7 Devices

Transceiver Wrapper

This device-specific transceiver wrapper is instantiated from the block-level HDL file of
the example design and is described in the following files:

VHDL

<project_dir>/<component_name>/example_design/transceiver/

transceiver.vhd

Verilog

<project_dir>/<component_name>/example_design/transceiver/

transceiver.v

This file instances output source files from the Transceiver Wizard (used with Gigabit
Ethernet 1000BASE-X attributes).

Virtex-7 and Kintex-7 FPGA GTX Transceiver Wizard Files

For Virtex-7 and Kintex-7 devices, the transceiver wrapper file directly instantiates device-
specific transceiver wrapper files created from the GT Transceiver Wizard. These files tie
off (or leave unconnected) unused I/O for the GTX and apply the 1000BASE-X attributes.
The files can be edited/tailored by re-running the Wizard and swapping these files. The
files include the following:

VHDL

<project_dir>/<component_name>/example_design/transceiver/
gtwizard.vhd
<project_dir>/<component_name>/example_design/transceiver/
gtwizard_gt.vhd

Verilog

<project_dir>/<component_name>/example_design/transceiver/
gtwizard.v
<project_dir>/<component_name>/example_design/transceiver/
gtwizard_gt.v

To re-run the Transceiver Wizard, a CORE Generator software XCO file for the Wizard is
included. This file defines all the required Wizard attributes used to generate the preceding
files. See the CORE Generator software documentation for further information about XCO
files. The XCO file is in the following location:

<project_dir>/<component_name>/example_design/transceiver/
gtwizard.xco

http://www.xilinx.com

132 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 8: 1000BASE-X with Transceivers

Transceiver Files for Spartan-6 Devices

Transceiver Wrapper

This device-specific transceiver wrapper is instantiated from the block-level HDL file of
the example design and is described in the following files:

VHDL

<project_dir>/<component_name>/example_design/transceiver/

transceiver.vhd

Verilog

<project_dir>/<component_name>/example_design/transceiver/

transceiver.v

This file instances output source files from the Transceiver Wizard (used with Gigabit
Ethernet 1000BASE-X attributes).

Spartan-6 FPGA GTP Transceiver Wizard Files

For Spartan-6 devices, the transceiver wrapper file directly instantiates device-specific
transceiver wrapper files created from the Spartan-6 FPGA GTP Transceiver Wizard. These
files tie off (or leave unconnected) unused I/O for the GTP, and apply the 1000BASE-X
attributes. The files can be edited/tailored by rerunning the Wizard and swapping these
files. The files include the following:

VHDL

<project_dir>/<component_name>/example_design/transceiver/
s6_gtpwizard.vhd
<project_dir>/<component_name>/example_design/transceiver/
s6_gtpwizard_tile.vhd

Verilog

<project_dir>/<component_name>/example_design/transceiver/
s6_gtpwizard.v
<project_dir>/<component_name>/example_design/transceiver/
s6_gtpwizard_tile.v

To re-run the Spartan-6 FPGA GTX Transceiver Wizard, a CORE Generator software XCO
file for the Wizard is included. This file defines all the required Wizard attributes used to
generate the preceding files. See the CORE Generator software documentation for further
information about XCO files. The XCO file is in the following location:

<project_dir>/<component_name>/example_design/transceiver/
s6_gtpwizard.xco

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 133
UG155 March 1, 2011

Example Design for 1000BASE-X with Transceivers

Files for Virtex-6 Devices

Transceiver Wrapper

This device-specific transceiver wrapper is instantiated from the block-level HDL file of
the example design and is described in the following files:

VHDL

<project_dir>/<component_name>/example_design/transceiver/

v6_gtxwizard_top.vhd

Verilog

<project_dir>/<component_name>/example_design/transceiver/

v6_gtxwizard_top.v

This file instances output source files from the Transceiver Wizard (used with Gigabit
Ethernet 1000BASE-X attributes).

Virtex-6 FPGA GTX Transceiver Wizard Files

For Virtex-6 devices, the transceiver wrapper file directly instantiates device-specific
transceiver wrapper files created from the Virtex-6 FPGA GTX Transceiver Wizard. These
files tie off (or leave unconnected) unused I/O for the GTX, and apply the 1000BASE-X
attributes. The files can be edited/tailored by rerunning the Wizard and swapping these
files. The files include the following:

VHDL

<project_dir>/<component_name>/example_design/transceiver/
v6_gtxwizard.vhd
<project_dir>/<component_name>/example_design/transceiver/
v6_gtxwizard_gtx.vhd

Verilog

<project_dir>/<component_name>/example_design/transceiver/
v6_gtxwizard.v
<project_dir>/<component_name>/example_design/transceiver/
v6_gtxwizard_gtx.v

To re-run the Virtex-6 FPGA GTX Transceiver Wizard, a CORE Generator software XCO
file for the Wizard is included. This file defines all the required Wizard attributes used to
generate the preceding files. See the CORE Generator software documentation for further
information about XCO files. The XCO file is in the following location:

<project_dir>/<component_name>/example_design/transceiver/
v6_gtxwizard.xco

http://www.xilinx.com

134 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 8: 1000BASE-X with Transceivers

RocketIO Transceiver Files for Virtex-5 Devices

Transceiver Wrapper

This device-specific RocketIO™ transceiver wrapper is instantiated from the block-level
HDL file of the example design and is described in the following files:

VHDL

<project_dir>/<component_name>/example_design/transceiver/

transceiver.vhd

Verilog

<project_dir>/<component_name>/example_design/transceiver/

transceiver.v

This file instances output source files from the device-specific RocketIO Transceiver
Wizard (used with Gigabit Ethernet 1000BASE-X attributes).

In the Virtex-5 families, RocketIO transceivers are provided in pairs. When generated with
the appropriate options, the block level is capable of connecting two instances of the core to
the device-specific RocketIO transceiver pair. When only a single instance of the core is
requested, the unused device-specific RocketIO transceiver from the pair is still
instantiated from within this transceiver wrapper but left unconnected.

Virtex-5 FPGA RocketIO GTP Transceiver Specific Files

For Virtex-5 LXT and SXT devices, the transceiver wrapper file directly instantiates device-
specific RocketIO GTP transceiver wrapper files created from the Virtex-5 FPGA RocketIO
GTP Transceiver Wizard. These files tie off (or leave unconnected) unused I/O for the GTP
pair, and apply the 1000BASE-X attributes. The files can be edited/tailored by rerunning
the device-specific RocketIO GTP Transceiver Wizard and swapping these files. The files
include the following:

VHDL

<project_dir>/<component_name>/example_design/transceiver/
v5_gtpwizard.vhd
<project_dir>/<component_name>/example_design/transceiver/
v5_gtpwizard_tile.vhd

Verilog

<project_dir>/<component_name>/example_design/transceiver/
v5_gtpwizard.v
<project_dir>/<component_name>/example_design/transceiver/
v5_gtpwizard_tile.v

To re-run the device-specific RocketIO GTP Transceiver Wizard, a CORE Generator
software XCO file for the RocketIO GTP Transceiver Wizard is included. This file defines
all the device-specific RocketIO GTP Transceiver Wizard attributes used to generate the
preceding files. See the CORE Generator software documentation for further information
about XCO files. The XCO file is in the following location:

<project_dir>/<component_name>/example_design/transceiver/
v5_gtpwizard.xco

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 135
UG155 March 1, 2011

Example Design for 1000BASE-X with Transceivers

Virtex-5 FPGA RocketIO GTX Transceiver Specific Files
For Virtex-5 FXT and TXT devices, the transceiver wrapper file directly instantiates
RocketIO GTX transceiver wrapper files created from the Virtex-5 FPGA RocketIO GTX
Transceiver Wizard. These files tie off (or leave unconnected) unused I/O for the GTX pair,
and apply the 1000BASE-X attributes. The files can be edited/tailored by rerunning the
device-specific RocketIO GTX Transceiver Wizard and swapping these files, which include
the following:

VHDL

<project_dir>/<component_name>/example_design/transceiver/
v5_gtxwizard.vhd
<project_dir>/<component_name>/example_design/transceiver/
v5_gtxwizard_tile.vhd

Verilog

<project_dir>/<component_name>/example_design/transceiver/
v5_gtxwizard.v
<project_dir>/<component_name>/example_design/transceiver/
v5_gtxwizard_tile.v

To re-run the device-specific RocketIO GTX Transceiver Wizard, a CORE Generator
software XCO file for the RocketIO GTX Transceiver Wizard has also been included. This
file defines all the device-specific RocketIO GTX Transceiver Wizard attributes used to
generate the preceding files. See the CORE Generator software documentation for more
information about XCO files. The XCO file is in the following location:

<project_dir>/<component_name>/example_design/transceiver/
v5_gtxwizard.xco

RocketIO Transceiver Files for Virtex-4 FX Devices

Transceiver Wrapper

This device-specific RocketIO transceiver wrapper is instantiated from the block-level
HDL file of the example design and is described in the following files:

VHDL

<project_dir>/<component_name>/example_design/transceiver/

transceiver.vhd

Verilog

<project_dir>/<component_name>/example_design/transceiver/

transceiver.v

This file instances the device-specific RocketIO transceiver with Gigabit Ethernet
1000BASE-X attributes applied.

In the Virtex-4 FX devices, RocketIO transceivers are provided in pairs. When generated
with the appropriate options, the block level is capable of connecting two instances of the
core to the device-specific RocketIO transceiver pair. When only a single instance of the
core is requested, the unused device-specific RocketIO transceiver from the pair is still
instantiated from within this transceiver wrapper but left unconnected.

http://www.xilinx.com

136 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 8: 1000BASE-X with Transceivers

Calibration Blocks

For Virtex-4 FX devices only, Calibration Blocks are required. A Calibration block is
connected to both GT11 A and B within the RocketIO transceiver tile. This occurs in the
transceiver wrapper file. See Answer Record 22477 for information about downloading the
Calibration Block User Guide. The Calibration Block is described in the following files:

VHDL

<project_dir>/<component_name>/example_design/transceiver/
cal_block_v1_4_1.vhd

Verilog

<project_dir>/<component_name>/example_design/transceiver/
cal_block_v1_4_1.v

GT11 Reset/Initialization Circuitry

Precise reset/initialization circuitry is required for the GT11 device-specific RocketIO
transceivers.

The reset circuitry for the device-specific RocketIO receiver is illustrated in Figure 2-18 of
the Virtex-4 FPGA RocketIO Multi-Gigabit Transceiver User Guide (UG076) and implemented
in the following files:

VHDL

<project_dir>/<component_name>/example_design/transceiver/
gt11_init_rx.vhd

Verilog

<project_dir>/<component_name>/example_design/transceiver/
gt11_init_rx.v

The reset circuitry for the device-specific RocketIO transmitter is illustrated in Figure 2-13
of the Virtex-4 RocketIO Multi-Gigabit Transceiver User Guide (UG076) and implemented in
the following files:

VHDL

<project_dir>/<component_name>/example_design/transceiver/
gt11_init_tx.vhd

Verilog

<project_dir>/<component_name>/example_design/transceiver/
gt11_init_tx.v

Both receiver and transmitter reset circuitry entities are instantiated from within the block
level of the example design.

http://www.xilinx.com/xlnx/xil_ans_display.jsp?getPagePath=22477
http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 137
UG155 March 1, 2011

Example Design for 1000BASE-X with Transceivers

Transmitter Elastic Buffer
The Transmitter Elastic Buffer is described in the following files:

VHDL

<project_dir>/<component_name>/example_design/tx_elastic_buffer.vhd

Verilog

<project_dir>/<component_name>/example_design/
tx_elastic_buffer.v

When the GMII is used externally (as in this example design), the GMII transmit signals
(inputs to the core from a remote MAC at the other end of the interface) are synchronous to
a clock that is likely to be derived from a different clock source to the core. For this reason,
GMII transmit signals must be transferred into the core main clock domain before they can
be used by the core and device-specific transceiver. This is achieved with the Transmitter
Elastic Buffer, an asynchronous FIFO implemented in distributed RAM. The operation of
the elastic buffer is to attempt to maintain a constant occupancy by inserting or removing
any idle sequences. This causes no corruption to the frames of data.

When the GMII is used as an internal interface, it is expected that the entire interface will
be synchronous to a single clock domain, and the Transmitter Elastic Buffer should be
discarded. See the Ethernet 1000BASE-X PCS/PMA or SGMII User Guide for information
about connecting the core to an internal GMII or an Ethernet MAC.

http://www.xilinx.com

138 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 8: 1000BASE-X with Transceivers

Demonstration Test Bench
Figure 8-17 illustrates the demonstration test bench for the Ethernet 1000BASE-X
PCS/PMA using a device-specific transceiver. The demonstration test bench is a simple
VHDL or Verilog program to exercise the example design and the core.

The top-level test bench entity instantiates the example design for the core, which is the
Device Under Test (DUT). A stimulus block is also instantiated and clocks, resets, and test
bench semaphores are created. The following files describe the top level of the
demonstration test bench:

VHDL

<project_dir>/<component_name>/simulation/demo_tb.vhd

Verilog

<project_dir>/<component_name>/simulation/demo_tb.v

The stimulus block entity, instantiated from within the test bench top level, creates the
Ethernet stimulus in the form of four Ethernet frames, which are injected into the GMII and
PHY interfaces of the DUT. The output from the DUT is also monitored for errors. The
following files describe the stimulus block of the demonstration test bench.

X-Ref Target - Figure 8-17

Figure 8-17: Demonstration Test Bench Using Device-Specific Transceiver

Demonstration Test Bench

PMA
Monitor

(Serial to Parallel
Conversion and

8B10B
Decoding)

PMA
Stimulus

(8B10B Encoding
and Parallel to

Serial
Conversion)

GMII
Stimulus

GMII
Monitor

GMII

DUT

Control and Data Structures

Configuration
Stimulus

Device
Specific
Transceiver

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 139
UG155 March 1, 2011

Example Design for 1000BASE-X with Transceivers

VHDL

<project_dir>/<component_name>/simulation/stimulus_tb.vhd

Verilog

<project_dir>/<component_name>/simulation/stimulus_tb.v

Together, the top-level test bench file and the stimulus block combine to provide the full
test bench functionality, described in the sections that follow.

Note: In the Virtex-4, Virtex-5 and Spartan-6 families, transceivers are provided in pairs. When
generated with the appropriate options, the example design is capable of connecting two instances of
the core to the transceiver pair. When this is the case, two stimulus blocks are instantiated from the
top-level test bench to independently exercise both cores.

Core with MDIO Interface

The demonstration test bench performs the following tasks:

• Input clock signals are generated.

• A reset is applied to the example design.

• The Ethernet 1000BASE-X PCS/PMA core is configured through the MDIO interface
by injecting a MDIO frame into the example design. This disables Auto-Negotiation
(if present) and takes the core out of the Isolate state.

• Four frames are injected into the GMII transmitter by the GMII stimulus block.

• the first frame is a minimum length frame

• the second frame is a type frame

• the third frame is an errored frame

• the fourth frame is a padded frame

• The serial data received at the device-specific transmitter interface is converted to 10-
bit parallel data, then 8B10B decoded. The resulting frames are checked by the PMA
Monitor against the stimulus frames injected into the GMII transmitter to ensure data
integrity.

• The same four frames are generated by the PMA Stimulus block. These are 8B10B
encoded, converted to serial data, and injected into the device-specific transceiver
receiver interface.

• Data frames received at the GMII receiver are checked by the GMII Monitor against
the stimulus frames injected into the device-specific transceiver receiver to ensure
data integrity.

http://www.xilinx.com

140 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 8: 1000BASE-X with Transceivers

Core without MDIO Interface

The demonstration test bench performs the following tasks:

• Input clock signals are generated.

• A reset is applied to the example design.

• The Ethernet 1000BASE-X PCS/PMA core is configured using the Configuration
Vector to take the core out of the Isolate state.

• Four frames are injected into the GMII transmitter by the GMII stimulus block.

• the first frame is a minimum length frame

• the second frame is a type frame

• the third frame is an errored frame

• the fourth frame is a padded frame

• The serial data received at the device-specific transmitter interface is converted to 10-
bit parallel data, then 8B10B decoded. The resultant frames are checked by the PMA
Monitor against the stimulus frames injected into the GMII transmitter to ensure data
integrity.

• The same four frames are generated by the PMA Stimulus block. These are 8B10B
encoded, converted to serial data and injected into the device-specific receiver
interface.

• Data frames received at the GMII receiver are checked by the GMII Monitor against
the stimulus frames injected into the device-specific transceiver receiver to ensure
data is the same.

Customizing the Test Bench

Changing Frame Data

You can change the contents of the four frames used by the demonstration test bench by
changing the data and valid fields for each frame defined in the stimulus block. New frames
can be added by defining a new frame of data. Modified frames are automatically updated
in both stimulus and monitor functions.

Changing Frame Error Status

Errors can be inserted into any of the predefined frames in any position by setting the error
field to ‘1’ in any column of that frame. Injected errors are automatically updated in both
stimulus and monitor functions.

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 141
UG155 March 1, 2011

Example Design for 1000BASE-X with Transceivers

Changing the Core Configuration

The configuration of the Ethernet 1000BASE-X PCS/PMA core used in the demonstration
test bench can be altered.

Caution! Certain configurations of the core will cause the test bench to fail or to cause
processes to run indefinitely. For example, the demonstration test bench will not Auto-Negotiate
with the example design. Determine the configurations that can safely be used with the test
bench.

When the MDIO interface option is selected, the core can be reconfigured by editing the
injected MDIO frame in the demonstration test bench top level. See the Ethernet 1000BASE-
X PCS/PMA or SGMII User Guide for more information on using the MDIO interface.

When the MDIO interface option is not selected, the core can be reconfigured by modifying
the configuration vector directly. See the Ethernet 1000BASE-X PCS/PMA or SGMII User
Guide for information on using the configuration vector.

http://www.xilinx.com

142 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 8: 1000BASE-X with Transceivers

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 143
UG155 March 1, 2011

Chapter 9

SGMII / Dynamic Standards Switching
with Transceivers

This chapter provides general guidelines for creating SGMII designs, and designs capable
of switching between 1000BASE-X and SGMII standards (Dynamic Standards Switching),
using a device-specific transceiver. Throughout this chapter, any reference to SGMII also
applies to the Dynamic Standards Switching implementation.

This chapter is organized into the following main sections:

• Receiver Elastic Buffer Implementations

The section provides an explanation of the two Receiver Elastic Buffer
implementations: one implementation uses the buffer present in the device-specific
transceivers, and the other uses a larger buffer, implemented in the FPGA fabric.

• Transceiver Logic with the Fabric Rx Elastic Buffer or Transceiver Logic with the
Fabric Rx Elastic Buffer

After selecting the type of Receiver Elastic Buffer, refer to the relevant one of these two
sections to obtain an explanation of the device-specific transceiver and core logic in all
supported device families:

• Clock Sharing - Multiple Cores with Transceivers, Fabric Elastic Buffer

Providing guidance for using several cores and transceiver instantiations: clock
sharing should occur whenever possible to save device resources.

• SGMII Example Design / Dynamic Switching Example Design Using a Transceiver

Providing an introduction to the CORE Generator™ software example design
deliverables.

This section also contains an overview of the demonstration test bench which is
provided with the example design.

http://www.xilinx.com

144 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 9: SGMII / Dynamic Standards Switching with Transceivers

Receiver Elastic Buffer Implementations

Selecting the Buffer Implementation from the GUI
The GUI provides two SGMII Capability options:

• 10/100/1000 Mbps (clock tolerance compliant with Ethernet specification)

• 10/100/1000 Mbps (restricted tolerance for clocks) OR 100/1000 Mbps

The first option, 10/100/1000 Mbps (clock tolerance compliant with Ethernet
specification) is the default and provides the implementation using the Receiver Elastic
Buffer in FPGA fabric. This alternative Receiver Elastic Buffer uses a single block RAM to
create a buffer twice as large as the one present in the device-specific transceiver, for this
reason consuming extra logic resources. However, this default mode is reliable for all
implementations using standard Ethernet frame sizes. Further consideration must be
made for jumbo frames.

The second option, 10/100/1000 Mbps (restricted tolerance for clocks) or 100/1000 Mbps,
uses the receiver elastic buffer present in the device-specific transceivers. This is half the
size and can potentially underflow or overflow during SGMII frame reception at 10 Mbps
operation (see the next section). However, there are logical implementations where this can
be reliable and has the benefit of lower logic utilization.

The Requirement for the FPGA Fabric Rx Elastic Buffer
Figure 9-1 illustrates a simplified diagram of a common situation where the core, in SGMII
mode, is interfaced to an external PHY device. Separate oscillator sources are used for the
FPGA and the external PHY. The Ethernet specification uses clock sources with a tolerance
of 100ppm. In Figure 9-1, the clock source for the PHY is slightly faster than the clock
source to the FPGA. For this reason, during frame reception, the receiver elastic buffer
(shown here as implemented in the device-specific transceiver) starts to fill.

Following frame reception, in the interframe gap period, idles are removed from the
received data stream to return the Rx Elastic Buffer to half-full occupancy. This is
performed by the clock correction circuitry (see the device-specific transceiver User Guide
for the targeted device).

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 145
UG155 March 1, 2011

Receiver Elastic Buffer Implementations

Analysis

Assuming separate clock sources, each of tolerance 100 ppm, the maximum frequency
difference between the two devices can be 200 ppm. It can be shown that this translates
into a full clock period difference every 5000 clock periods.

Relating this to an Ethernet frame, there will be a single byte of difference every 5000 bytes
of received frame data, and this will cause the Rx Elastic Buffer to either fill or empty by an
occupancy of one.

The maximum Ethernet frame size (non-jumbo) is 1522 bytes for a VLAN frame.

• At 1 Gbps operation, this translates into 1522 clock cycles.

• At 100 Mbps operation, this translates into 15220 clock cycles (as each byte is repeated
10 times).

• At 10 Mbps operation, this translates into 152200 clock cycles (as each byte is repeated
100 times).

Considering the 10 Mbps case, we would need 152200/5000 = 31 FIFO entries in the Elastic
Buffer above and below the half way point to guarantee that the buffer will not under or
overflow during frame reception. This assumes that frame reception begins when the
buffer is exactly half full.

The size of the Rx Elastic Buffer in the device-specific transceivers is 64 entries. However,
we cannot assume that the buffer is exactly half full at the start of frame reception.
Additionally, the underflow and overflow thresholds are not exact (see Appendix D, Rx
Elastic Buffer Specifications for more information).

To guarantee reliable SGMII operation at 10 Mbps (non-jumbo frames), the device-specific
transceiver Elastic Buffer must be bypassed and a larger buffer implemented in the FPGA
fabric. The fabric buffer, provided by the example design, is twice the size of the device-
specific transceiver alternative. This has been proven to cope with standard (none jumbo)
Ethernet frames at all three SGMII speeds.

X-Ref Target - Figure 9-1

Figure 9-1: SGMII Implementation using Separate Clock Sources

Ethernet 1000BASE-X

PCS/PMA or SGMII

LogiCORE
Transceiver

Rx
Elastic
Buffer

TXP/TXN

RXP/RXN

Twisted

Copper

Pair

SGMII Link

10 BASE-T

100BASE-T

1000BASE-T

PHY

FPGA

125MHz +100ppm125MHz -100ppm

http://www.xilinx.com

146 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 9: SGMII / Dynamic Standards Switching with Transceivers

Appendix D, Rx Elastic Buffer Specifications provides further information about all Rx
Elastic Buffers used by the core. Information about the reception of jumbo frames is also
provided.

The Transceiver Rx Elastic Buffer
The Elastic Buffer in the device-specific transceiver can be used reliably when the
following conditions are met:

• 10 Mbps operation is not required. Both 1 Gbps and 100 Mbps operation can be
guaranteed.

• When the clocks are closely related (see the following section).

If there is any doubt, select the FPGA fabric Rx Elastic Buffer Implementation.

Closely Related Clock Sources

Case 1

Figure 9-2 illustrates a simplified diagram of a common situation where the core, in SGMII
mode, is interfaced to an external PHY device. A common oscillator source is used for both
the FPGA and the external PHY.

If the PHY device sources the receiver SGMII stream synchronously from the shared
oscillator (check PHY data sheet), the device-specific transceiver will receive data at
exactly the same rate as that used by the core. The receiver elastic buffer will neither empty
nor fill, having the same frequency clock on either side.

In this situation, the receiver elastic buffer will not under or overflow, and the elastic buffer
implementation in the device-specific transceiver should be used to save logic resources.

X-Ref Target - Figure 9-2

Figure 9-2: SGMII Implementation using Shared Clock Sources

Ethernet 1000BASE-X

PCS/PMA or SGMII

LogiCORE

Rx
Elastic
Buffer

TXP/TXN

RXP/RXN

Twisted

Copper

Pair

SGMII Link

10 BASE-T

100BASE-T

1000BASE-T

PHY

FPGA

125MHz -100ppm

Transceiver

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 147
UG155 March 1, 2011

Logic Using the Transceiver Rx Elastic Buffer

Case 2

Consider again the case illustrated in Figure 9-1 with the following exception; assume that
the clock sources used are both 50 ppm. Now the maximum frequency difference between
the two devices is 100 ppm. It can be shown that this translates into a full clock period
difference every 10000 clock periods, resulting in a requirement for 16 FIFO entries above
and below the half-full point. This provides reliable operation with the device-specific
transceiver Rx Elastic Buffers. Again, however, check the PHY data sheet to ensure that the
PHY device sources the receiver SGMII stream synchronously to its reference oscillator.

Logic Using the Transceiver Rx Elastic Buffer
When the device-specific transceiver Rx Elastic Buffer implementation is selected, the
connections between the core and the device-specific transceiver as well as all clock
circuitry in the system are identical to the 1000BASE-X implementation. For a detailed
explanation, see the following sections in Chapter 8, 1000BASE-X with Transceivers:

• Transceiver Logic

• Clock Sharing Across Multiple Cores with Transceivers

Transceiver Logic with the Fabric Rx Elastic Buffer
The example design delivered with the core is split between two hierarchical layers, as
illustrated in Figure 9-14. The block level is designed so to be instantiated directly into
customer designs and provides the following functionality:

• Instantiates the core from HDL

• Connects the physical-side interface of the core to a Virtex-4, Virtex-5, Virtex-6, Virtex-
7, Kintex™-7 or Spartan-6 FPGA transceiver via the fabric Rx Elastic Buffer

The logic implemented in the block level is illustrated in all figures throughout the
remainder of this chapter.

Virtex-4 Devices for SGMII or Dynamic Standards Switching
The core is designed to integrate with the Virtex-4 FPGA MGT. The connections and logic
required between the core and MGT transceiver are illustrated in Figure 9-3–the signal
names and logic in the figure precisely match those delivered with the example design
when an MGT transceiver is used.

Note: A small logic shim (included in the “block” level wrapper) is required to convert between the
port differences between the Virtex-5 and Virtex-4 FPGA MGTs. This is not illustrated in Figure 9-3.

The MGT clock distribution in Virtex-4 devices is column-based and consists of multiple
MGT tiles (that contain two MGTs each). For this reason, the MGT transceiver wrapper
delivered with the core always contains two MGT instantiations, even if only a single MGT
is in use. Figure 9-3 illustrates only a single MGT for clarity.

A GT11CLK_MGT primitive is also instantiated to derive the reference clocks required by
the MGT column-based tiles. See the Virtex-4 FPGA RocketIO Multi-Gigabit Transceiver User
Guide (UG076) for more information about layout and clock distribution.

http://www.xilinx.com

148 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 9: SGMII / Dynamic Standards Switching with Transceivers

The 250 MHz reference clock from the GT11CLK_MGT primitive is routed to the MGT,
which is configured to internally synthesize a 125 MHz clock. This is output on the
TXOUTCLK1 port of the MGT and once placed onto global clock routing, can be used by all
core logic. This clock is input back into the MGT on the user interface clock port
txusrclk2. With the attribute settings applied to the MGT from the example design, the
txusrclk port is derived internally within the MGT using the internal clock dividers and
does not need to be provided from the FPGA fabric.

It can be seen from Figure 9-3 that the Rx Elastic Buffer is implemented in the FPGA fabric
between the MGT and the core. This replaces the Rx Elastic Buffer in the MGT (which is
bypassed).

This alternative Receiver Elastic Buffer uses a single block RAM to create a buffer twice as
large as the one present in the MGT. It is able to cope with larger frame sizes before clock
tolerances accumulate and result in emptying or filling of the buffer. This is necessary to
guarantee SGMII operation at 10 Mbps where each frame size is effectively 100 times larger
than the same frame would be at 1 Gbps because each byte is repeated 100 times (see Using
the Core Netlist Client-side GMII for the SGMII Standard).

In bypassing the MGT Rx Elastic Buffer, data is clocked out of the MGT synchronously to
rxrecclk1. This clock can be placed on a BUFR component and is used to synchronize
the transfer of data between the MGT and the Elastic Buffer, as illustrated in Figure 9-3.
See also Virtex-4 FPGA RocketIO MGT Transceivers for SGMII or Dynamic Standards
Switching Constraints.

The MGT transceivers require a calibration block to be included in the fabric logic. The
example design provided with the core instantiates calibration blocks as required.
Calibration blocks require a clock source of between 25 to 50 MHz, which is shared with
the Dynamic Reconfiguration Port (DRP) of the MGT, named dclk in the example design.
See Xilinx Answer Record 22477 for more information.

Figure 9-3 also illustrates the TX_SIGNAL_DETECT and RX_SIGNAL_DETECT ports of the
calibration block, which should be driven to indicate whether or not dynamic data is being
transmitted and received through the MGT (see Virtex-4 Errata). However,
RX_SIGNAL_DETECT is connected to the signal_detect port of the example design.
signal_detect is intended to indicate to the core that valid data is being received. When
not asserted, the calibration block will switch the MGT into loopback to force dynamic data
through the MGT receiver path.

Caution! The PHY connected via SGMII may always provide dynamic SGMII data (when
powered up). If not, and if signal_detect is not present, the RX_SIGNAL_DETECT port of the
calibration block must be driven by an alternative method. See XAPP732 for more information.

http://www.xilinx.com/xlnx/xweb/xil_publications_display.jsp?iLanguageID=1&sSecondaryNavPick=REFERENCE&category=-1210882&sGlobalNavPick=PRODUCTS&BV_SessionID=@@@@1931102828.1183695341@@@@&BV_EngineID=ccceaddlgidjjhecefeceihdffhdfkf.0
http://www.xilinx.com/support/answers/22477.htm
http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 149
UG155 March 1, 2011

Transceiver Logic with the Fabric Rx Elastic Buffer

X-Ref Target - Figure 9-3

Figure 9-3: SGMII Connection to a Virtex-4 FPGA Rocket IO MGT

Ethernet 1000BASE-X

PCS/PMA or SGMII

LogiCORE

Virtex-4

GT11

RocketIO

(used)

TXUSRCLK

TXUSRCLK2

RXUSRCLK

RXUSRCLK2

userclk

userclk2

IPAD

IPAD

brefclkn

(250 MHz)

rxbufstatus[1:0]

rxchariscomma

rxcharisk

rxclkcorcnt[2:0]

rxdata[7:0]

rxrundisp

powerdown

txchardispmode

txchardispval

txcharisk

txdata[7:0]

enablealign

RXCHARISCOMMA[1:0]

RXCHARISK[1:0]

RXDATA[15:0]

RXRUNDISP[1:0]

POWERDOWN

TXCHARDISPMODE

TXCHARDISPVAL

TXCHARISK

TXDATA[7:0]

ENPCOMMAALIGN

ENMCOMMAALIGN

Virtex-4

GT11CLK_MGT

MGTCLKP

MGTCLKN

SYNCLK1OUT

RXDISPERR[1:0]rxdisperr

brefclkp

(250 MHz)

REFCLK1

synclk1

'0'

TXOUTCLK1

FPGA
fabric

Rx
Elastic
Buffer

RXNOTINTABLE[1:0]rxnotintable

BUFR

RXRECCLK1

'0'

userclk2 (125MHz)

BUFG

component_name_block
(Block Level from
example design)

Cal Block v1.4.1

DCLK

DCLK

TX_SIGNAL_DETECT

RX_SIGNAL_DETECT

'1'

signal_detect

dclk

BUFG

http://www.xilinx.com

150 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 9: SGMII / Dynamic Standards Switching with Transceivers

Virtex-5 LXT or SXT Devices for SGMII or Dynamic Standards Switching
The core is designed to integrate with the Virtex-5 FPGA RocketIO™ GTP transceiver. The
connections and logic required between the core and GTP transceiver are illustrated in
Figure 9-4–the signal names and logic in the figure precisely match those delivered with
the example design when a GTP transceiver is used.

A GTP tile consists of a pair of transceivers. For this reason, the GTP transceiver wrapper
delivered with the core will always contain two GTP transceiver instantiations, even if
only a single GTP is in use. Figure 9-4 illustrates only a single GTP transceiver for clarity.

The 125 MHz differential reference clock is routed to the GTP transceiver, which is
configured to output a version of this clock on the REFCLKOUT port, and once placed onto
global clock routing can be used by all core logic. This clock is input back into the GTP
transceiver on the user interface clock port txusrclk and txusrclk2.

It can be seen from Figure 9-4 that the Rx Elastic Buffer is implemented in the FPGA fabric
between the GTP transceiver and the core; this replaces the Rx Elastic Buffer in the GTP
transceiver.

This alternative Receiver Elastic Buffer uses a single block RAM to create a buffer twice as
large as the one present in the GTP transceiver. It is able to cope with larger frame sizes
before clock tolerances accumulate and result in emptying or filling of the buffer. This is
necessary to guarantee SGMII operation at 10 Mbps where each frame size is effectively
100 times larger than the same frame would be at 1 Gbps because each byte is repeated 100
times (see Using the Core Netlist Client-side GMII for the SGMII Standard).

With this fabric Rx Elastic Buffer implementation, data is clocked out of the GTP
transceiver synchronously to rxrecclk0. This clock can be placed on a BUFR component
and is used to synchronize the transfer of data between the GTP and the Elastic Buffer, as
illustrated in Figure 9-4. See also Virtex-5 FPGA RocketIO GTP Transceivers for SGMII or
Dynamic Standards Switching Constraints.

Virtex-5 FPGA RocketIO Transceiver GTP Wizard

The two wrapper files immediately around the GTP transceiver pair,
RocketIO_wrapper_gtp_tile and RocketIO_wrapper_gtp (see Figure 9-4), are
generated from the RocketIO GTP Wizard. These files apply all the gigabit Ethernet
attributes. Consequently, these files can be regenerated by customers and therefore be
easily targeted at ES or Production silicon. This core targets production silicon.

The CORE Generator software log file (XCO file) which was created when the RocketIO
GTP Wizard project was generated is available in the following location:

<project_directory>/<component_name>/example_design/transceiver/
RocketIO_wrapper_gtp.xco

This file can be used as an input to the CORE Generator software to regenerate the device-
specific RocketIO transceiver wrapper files. The XCO file itself contains a list of all of the
GTP Wizard attributes which were used. For further information, please see the Virtex-5
RocketIO GTP Wizard Getting Started Guide (UG188) and the CORE Generator Guide, at
www.xilinx.com/support/software_manuals.htm.

http://www.xilinx.com/support/software_manuals.htm
http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 151
UG155 March 1, 2011

Transceiver Logic with the Fabric Rx Elastic Buffer

X-Ref Target - Figure 9-4

Figure 9-4: SGMII Connection to a Virtex-5 FPGA RocketIO GTP Transceiver

Ethernet 1000BASE-X

PCS/PMA or SGMII

LogiCORE

Virtex-5

GTP

RocketIO

(used)

TXUSRCLK0

TXUSRCLK20

RXUSRCLK20

userclk

userclk2

rxbufstatus[1:0]

rxchariscomma

rxcharisk

rxclkcorcnt[2:0]

rxdata[7:0]

rxrundisp

powerdown

txchardispmode

txchardispval

txcharisk

txdata[7:0]

enablealign

RXCHARISCOMMA0

RXCHARISK0

RXDATA0[7:0]

RXRUNDISP0

POWERDOWN0

TXCHARDISPMODE0

TXCHARDISPVAL0

TXCHARISK0

TXDATA0[7:0]

RXENPCOMMAALIGN0

RXENMCOMMAALIGN0

RXDISPERR0rxdisperr

CLKIN

REFCLKOUT

FPGA
fabric

Rx
Elastic
Buffer

RXNOTINTABLE0rxnotintable

BUFR

RXRECCLK0

userclk2 (125MHz)

BUFG

component_name_block
(Block Level from
example design)

RXUSRCLK0

clkin
(125MHz)

IBUFGDS

IPAD

brefclkp

IPAD

brefclkn

rocketio_wrapper_gtp_tile
rocketio_wrapper_gtp

http://www.xilinx.com

152 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 9: SGMII / Dynamic Standards Switching with Transceivers

Virtex-5 FXT and TXT Devices for SGMII or Dynamic Standards Switching
The core is designed to integrate with the Virtex-5 FPGA RocketIO GTX transceiver. The
connections and logic required between the core and GTX transceiver are illustrated in
Figure 9-5–the signal names and logic in the figure precisely match those delivered with
the example design when a GTX transceiver is used.

A GTX tile consists of a pair of transceivers. For this reason, the GTX transceiver wrapper
delivered with the core will always contain two GTX transceiver instantiations, even if
only a single GTX is in use. Figure 9-5 illustrates only a single GTX transceiver for clarity.

The 125 MHz differential reference clock is routed directly to the GTX transceiver. The GTX
transceiver is configured to output a version of this clock on the REFCLKOUT port; this is
then routed to a DCM via a BUFG (global clock routing).

From the DCM, the CLK0 port (125 MHz) is placed onto global clock routing and can be
used as the 125 MHz clock source for all core logic; this clock is also input back into the
GTX transceiver on the user interface clock port txusrclk2.

From the DCM, the CLKDV port (62.5 MHz) is placed onto global clock routing and is input
back into the GTX transceiver on the user interface clock port txusrclk.

It can be seen from Figure 9-5 that the Rx Elastic Buffer is implemented in the FPGA fabric
between the GTX transceiver and the core; this replaces the Rx Elastic Buffer in the GTX
transceiver.

This alternative Receiver Elastic Buffer uses a single block RAM to create a buffer twice as
large as the one present in the GTX transceiver. It is able to cope with larger frame sizes
before clock tolerances accumulate and result in emptying or filling of the buffer. This is
necessary to guarantee SGMII operation at 10 Mbps where each frame size is effectively
100 times larger than the same frame would be at 1 Gbps because each byte is repeated 100
times (see Using the Core Netlist Client-side GMII for the SGMII Standard).

With this fabric Rx Elastic Buffer implementation, data is clocked out of the GTX
transceiver synchronously to rxrecclk0 (62.5 MHz) on a 16-bit interface. This clock can
be placed on a BUFR component and is used to synchronize the transfer of data between
the GTX and the Elastic Buffer, as illustrated in Figure 9-5. See also Virtex-5 FPGA
RocketIO GTX Transceivers for SGMII or Dynamic Standards Switching Constraints.

Virtex-5 FPGA RocketIO GTX Wizard

The two wrapper files immediately around the GTX transceiver pair,
RocketIO_wrapper_gtx_tile and RocketIO_wrapper_gtx (see Figure 9-5), are
generated from the RocketIO GTP Wizard. These files apply all the gigabit Ethernet
attributes. Consequently, these files can be regenerated by customers and therefore be
easily targeted at ES or Production silicon. This core targets production silicon.

The CORE Generator software log file (XCO file) which was created when the RocketIO
GTX Wizard project was generated is available in the following location:

<project_directory>/<component_name>/example_design/transceiver/
RocketIO_wrapper_gtx.xco

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 153
UG155 March 1, 2011

Transceiver Logic with the Fabric Rx Elastic Buffer

This file can be used as an input to the CORE Generator software to regenerate the device-
specific RocketIO transceiver wrapper files. The XCO file itself contains a list of all of the
GTX Wizard attributes which were used. For further information, please see the Virtex-5
FPGA RocketIO GTX Wizard Getting Started Guide and the CORE Generator Guide, at
www.xilinx.com/support/software_manuals.htm

X-Ref Target - Figure 9-5

Figure 9-5: SGMII Connection to a Virtex-5 FPGA RocketIO GTX Transceiver

Ethernet 1000BASE-X

PCS/PMA or SGMII

LogiCORE

Virtex-5

GTX

RocketIO

(used)

TXUSRCLK0

TXUSRCLK20

RXUSRCLK20

userclk

userclk2

rxbufstatus[1:0]

rxchariscomma

rxcharisk

rxclkcorcnt[2:0]

rxdata[7:0]

rxrundisp

powerdown

txchardispmode

txchardispval

txcharisk

txdata[7:0]

enablealign

RXCHARISCOMMA0

RXCHARISK0

RXDATA0[7:0]

RXRUNDISP0

POWERDOWN0

TXCHARDISPMODE0

TXCHARDISPVAL0

TXCHARISK0

TXDATA0[7:0]

RXENPCOMMAALIGN0

RXENMCOMMAALIGN0

RXDISPERR0rxdisperr

CLKIN

REFCLKOUT

FPGA
fabric

Rx
Elastic
Buffer

RXNOTINTABLE0rxnotintable

BUFR

RXRECCLK0

component_name_block
(Block Level from
example design)

RXUSRCLK0

clkin
(125MHz)

IBUFGDS

IPAD

brefclkp

IPAD

brefclkn

rocketio_wrapper_gtx_tile
rocketio_wrapper_gtx

userclk2

(125MHz)

DCM

CLKIN CLK0

FB

BUFG

CLKDV

BUFG

userclk

(62.5MHz)

BUFG

http://www.xilinx.com/support/software_manuals.htm
http://www.xilinx.com

154 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 9: SGMII / Dynamic Standards Switching with Transceivers

Virtex-6 Devices for SGMII or Dynamic Standards Switching
The core is designed to integrate with the Virtex-6 FPGA GTX transceiver. The connections
and logic required between the core and GTP transceiver are illustrated in Figure 9-6–the
signal names and logic in the figure precisely match those delivered with the example
design when a Virtex-6 FPGA GTX transceiver is used.

The 125 MHz differential reference clock is routed to the GTX transceiver, which is
configured to output a version of this clock on the TXOUTCLK port, and once placed onto
global clock routing can be used by all core logic. This clock is input back into the GTX
transceiver on the user interface clock port txusrclk2. The txusrclk clock signal will
be derived internally in the GTX and so can be connected to ground.

It can be seen from Figure 9-6 that the Rx Elastic Buffer is implemented in the FPGA fabric
between the GTX transceiver and the core; this replaces the Rx Elastic Buffer in the GTX
transceiver.

This alternative Receiver Elastic Buffer uses a single block RAM to create a buffer twice as
large as the one present in the GTX transceiver. It is able to cope with larger frame sizes
before clock tolerances accumulate and result in emptying or filling of the buffer. This is
necessary to guarantee SGMII operation at 10 Mbps where each frame size is effectively
100 times larger than the same frame would be at 1 Gbps because each byte is repeated 100
times (see Using the Core Netlist Client-side GMII for the SGMII Standard).

With this fabric Rx Elastic Buffer implementation, data is clocked out of the GTX
transceiver synchronously to RXRECCLK. This clock can be placed on a BUFR component
and is used to synchronize the transfer of data between the GTX and the Elastic Buffer, as
illustrated in Figure 9-6. See also Virtex-6 FPGA GTX Transceivers for SGMII or Dynamic
Standards Switching Constraints.

Virtex-6 FPGA GTX Transceiver Wizard

The two wrapper files immediately around the GTX transceiver, gtx_wrapper_gtx and
gtx_wrapper (see Figure 9-6), are generated from the Virtex-6 FPGA GTX Transceiver
Wizard. These files apply all the gigabit Ethernet attributes. Consequently, these files can be
regenerated by customers and therefore be easily targeted at silicon/device versions.

The CORE Generator software log file (XCO file) which was created when the Virtex-6
FPGA GTX Transceiver Wizard project was generated is available in the following location:

<project_directory>/<component_name>/example_design/transceiver/
gtx_wrapper_gtx.xco

This file can be used as an input to the CORE Generator software to regenerate the device-
specific transceiver wrapper files. The XCO file itself contains a list of all of the Wizard
attributes which were used. For further information, please see the Virtex-6 FPGA GTX
Transceiver Wizard Getting Started Guide and the CORE Generator Guide, at
www.xilinx.com/support/software_manuals.htm.

http://www.xilinx.com/support/software_manuals.htm
http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 155
UG155 March 1, 2011

Transceiver Logic with the Fabric Rx Elastic Buffer

X-Ref Target - Figure 9-6

Figure 9-6: SGMII Connection to a Virtex-6 FPGA GTX Transceiver

Ethernet 1000BASE-X

PCS/PMA or SGMII

LogiCORE

Virtex-6

GTXE1

Transceiver

TXUSRCLK

TXUSRCLK2

RXUSRCLK2

userclk

userclk2

rxbufstatus[1:0]

rxchariscomma

rxcharisk

rxclkcorcnt[2:0]

rxdata[7:0]

rxrundisp

powerdown

txchardispmode

txchardispval

txcharisk

txdata[7:0]

enablealign

RXCHARISCOMMA

RXCHARISK

RXDATA[7:0]

RXRUNDISP

POWERDOWN

TXCHARDISPMODE

TXCHARDISPVAL

TXCHARISK

TXDATA[7:0]

RXENPCOMMAALIGN

RXENMCOMMAALIGN

RXDISPERRrxdisperr

TXOUTCLK

FPGA
fabric

Rx
Elastic
Buffer

RXNOTINTABLErxnotintable

BUFR

RXRECCLK

userclk2 (125MHz)

BUFG

component_name_block
(Block Level from
example design)

RXUSRCLK

mgtrefclk
(125MHz)

IBUFDS_GTXE1

IPAD

mgtrefclk_p

IPAD

mgtrefclk_n

gtx_wrapper_gtx
gtx_wrapper

GND

MGTREFCLKTX[0]

MGTREFCLKRX[0]

http://www.xilinx.com

156 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 9: SGMII / Dynamic Standards Switching with Transceivers

Spartan-6 LXT Devices for SGMII or Dynamic Standards Switching
The core is designed to integrate with the Spartan-6 FPGA GTP transceiver. The
connections and logic required between the core and GTP transceiver are illustrated in
Figure 9-7. The signal names and logic in the figure precisely match those delivered with
the example design when a GTP transceiver is used.

A GTP tile consists of a pair of transceivers. For this reason, the GTP transceiver wrapper
delivered with the core will always contain two GTP transceiver instantiations, even if
only a single GTP is in use. Figure 9-7 illustrates only a single GTP transceiver for clarity.

The 125 MHz differential reference clock is routed to the GTP transceiver, which is
configured to output a version of this clock on the GTPCLKOUT port, then routed through
a BUFIO2 and BUFG to place onto global clock routing where it can be used by all core
logic. This clock is input back into the GTP transceiver on the user interface clock port
txusrclk and txusrclk2.

It can be seen from Figure 9-7 that the Rx Elastic Buffer is implemented in the FPGA fabric
between the GTP transceiver and the core; this replaces the Rx Elastic Buffer in the GTP
transceiver.

This alternative Receiver Elastic Buffer uses a single block RAM to create a buffer twice as
large as the one present in the GTP transceiver. It is able to cope with larger frame sizes
before clock tolerances accumulate and result in emptying or filling of the buffer. This is
necessary to guarantee SGMII operation at 10 Mbps where each frame size is effectively
100 times larger than the same frame would be at 1 Gbps because each byte is repeated 100
times (see Using the Core Netlist Client-side GMII for the SGMII Standard).

With this fabric Rx Elastic Buffer implementation, data is clocked out of the GTP
transceiver synchronously to rxrecclk0. This clock can be placed on a BUFG component
and is used to synchronize the transfer of data between the GTP and the Elastic Buffer, as
illustrated in Figure 9-4. See also Spartan-6 FPGA GTP Transceivers for SGMII or
Dynamic Standards Switching Constraints.

Spartan-6 FPGA Transceiver GTP Wizard

The two wrapper files immediately around the GTP transceiver pair,
gtp_wrapper_tile and gtp_wrapper (see Figure 9-7), are generated from the GTP
Wizard. These files apply all the gigabit Ethernet attributes. Consequently, these files can be
regenerated by customers and therefore be easily targeted at ES or Production silicon. This
core targets production silicon.

The CORE Generator software log file (XCO file) which was created when the GTP Wizard
project was generated is available in the following location:

<project_directory>/<component_name>/example_design/transceiver/
gtp_wrapper.xco

This file can be used as an input to the CORE Generator software to regenerate the device-
specific transceiver wrapper files. The XCO file itself contains a list of all of the GTP Wizard
attributes which were used. For further information, please see the Spartan-6 GTP Wizard
Getting Started Guide and the CORE Generator Guide, at
www.xilinx.com/support/software_manuals.htm

http://www.xilinx.com/support/software_manuals.htm
http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 157
UG155 March 1, 2011

Transceiver Logic with the Fabric Rx Elastic Buffer

X-Ref Target - Figure 9-7

Figure 9-7: SGMII Connection to a Spartan-6 FPGA GTP Transceiver

Ethernet 1000BASE-X

PCS/PMA or SGMII

LogiCORE
TXUSRCLK0

TXUSRCLK20

RXUSRCLK20

userclk

userclk2

rxbufstatus[1:0]

rxchariscomma

rxcharisk

rxclkcorcnt[2:0]

rxdata[7:0]

rxrundisp

powerdown

txchardispmode

txchardispval

txcharisk

txdata[7:0]

enablealign

RXCHARISCOMMA0

RXCHARISK0

RXDATA0[7:0]

RXRUNDISP0

POWERDOWN0

TXCHARDISPMODE0

TXCHARDISPVAL0

TXCHARISK0

TXDATA0[7:0]

RXENPCOMMAALIGN0

RXENMCOMMAALIGN0

RXDISPERR0rxdisperr

CLKIN00

GTPCLKOUT0

FPGA
fabric

Rx
Elastic
Buffer

RXNOTINTABLE0rxnotintable

BUFG

RXRECCLK0

userclk2 (125MHz)

BUFG

component_name_block
(Block Level from
example design)

RXUSRCLK0

clkin
(125MHz)

IBUFDS

IPAD

brefclkp

IPAD

brefclkn

gtp_wrapper_tile
gtp_wrapper

Spartan-6

Transceiver

GTP

BUFIO2

http://www.xilinx.com

158 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 9: SGMII / Dynamic Standards Switching with Transceivers

Virtex-7 Devices for SGMII or Dynamic Standards Switching
The core is designed to integrate with the 7 Series FPGA transceiver. The connections and
logic required between the core and GTX transceiver are illustrated in Figure 9-8-the signal
names and logic in the figure precisely match those delivered with the example design
when a GTX transceiver is used.

The 125 MHz differential reference clock is routed directly to the GTX transceiver. The GTX
transceiver is configured to output a version of this clock on the TXOUTCLK port; this is
then routed to an MMCM.

From the MMCM, the CLKOUT1 port (125 MHz) is placed onto global clock routing and
can be used as the 125 MHz clock source for all core logic.

From the MMCM, the CLKOUT0 port (62.5 MHz) is placed onto global clock routing and
is input back into the GTX transceiver on the user interface clock port txusrclk and
txusrclk2.

It can be seen from Figure 9-8 that the Rx Elastic Buffer is implemented in the FPGA fabric
between the GTX transceiver and the core; this replaces the Rx Elastic Buffer in the GTX
transceiver.

This alternative Receiver Elastic Buffer uses a single block RAM to create a buffer twice as
large as the one present in the GTX transceiver. It is able to cope with larger frame sizes
before clock tolerances accumulate and result in emptying or filling of the buffer. This is
necessary to guarantee SGMII operation at 10 Mbps where each frame size is effectively
100 times larger than the same frame would be at 1 Gbps because each byte is repeated 100
times (see Using the Core Netlist Client-side GMII for the SGMII Standard).

With this fabric Rx Elastic Buffer implementation, data is clocked out of the GTX
transceiver synchronously to RXOUTCLK. This clock can be placed on a BUFMR followed
by a BUFR component and is used to synchronize the transfer of data between the GTX
and the Elastic Buffer, as illustrated in Figure 9-8. See also 7 Series FPGA GTX Transceivers
for SGMII or Dynamic Standards Switching Constraints.

Virtex-7 FPGA GTX Transceiver Wizard

The two wrapper files immediately around the GTX transceiver, gtwizard_gt and gtwizard
(see Figure 9-8), are generated from the 7 Series FPGA Transceiver Wizard. These files
apply all the gigabit Ethernet attributes. Consequently, these files can be regenerated by
customers and therefore be easily targeted at silicon/device versions.

The CORE Generator software log file (XCO file) which was created when the 7 Series
FPGA Transceiver Wizard project was generated is available in the following location:
<project_directory>/<component_name>/example_design
/transceiver/gtwizard.xco

This file can be used as an input to the CORE Generator software to regenerate the
devicespecific transceiver wrapper files. The XCO file itself contains a list of all of the
Wizard attributes which were used. For further information, please see the 7 Series FPGAs
Transceivers User Guide and the CORE Generator Guide, at
www.xilinx.com/support/software_manuals.htm.

http://www.xilinx.com/support/software_manuals.htm
http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 159
UG155 March 1, 2011

Transceiver Logic with the Fabric Rx Elastic Buffer

X-Ref Target - Figure 9-8

Figure 9-8: SGMII Connection to a Virtex-7 FPGA Transceiver

Ethernet 1000BASE-X

PCS/PMA or SGMII

LogiCORE

Virtex-7

GTXE2_CHANNEL

Transceiver

TXUSRCLK

TXUSRCLK2

RXUSRCLK2

userclk

userclk2

rxbufstatus[1:0]

rxchariscomma

rxcharisk

rxclkcorcnt[2:0]

rxdata[7:0]

rxrundisp

txchardispmode

txchardispval

txcharisk

txdata[7:0]

enablealign

RXCHARISCOMMA

RXCHARISK

RXDATA[7:0]

TXCHARDISPMODE

TXCHARDISPVAL

TXCHARISK

TXDATA[7:0]

RXENPCOMMAALIGN

RXENMCOMMAALIGN

RXDISPERRrxdisperr

TXOUTCLK

FPGA
fabric

Rx
Elastic
Buffer

RXNOTINTABLErxnotintable

BUFMR

RXOUTCLK

(125MHz)

component_name_block
(Block Level from
example design)

 gtrefclk
(125MHz)

IBUFDS_GTE2

IPAD

gtrefclk_p

IPAD

gtrefclk_n

gtwizard_gt
gtwizard

 GTREFCLK0

MMCME2_ADV

CLKOUT0

CLKOUT1

CLKIN1

CLKFBOUTCLKFBIN

BUFG

RXUSRCLK

BUFG
(62.5MHz)

BUFR

http://www.xilinx.com

160 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 9: SGMII / Dynamic Standards Switching with Transceivers

Kintex-7 Devices for SGMII or Dynamic Standards Switching
The core is designed to integrate with the 7 Series FPGA transceiver. The connections and
logic required between the core and GTX transceiver are illustrated in Figure 9-9-the signal
names and logic in the figure precisely match those delivered with the example design
when a GTX transceiver is used.

The 125 MHz differential reference clock is routed directly to the GTX transceiver. The GTX
transceiver is configured to output a version of this clock on the TXOUTCLK port; this is
then routed to an MMCM via a BUFG (global clock routing).

From the MMCM, the CLKOUT1 port (125 MHz) is placed onto global clock routing and
can be used as the 125 MHz clock source for all core logic.

From the MMCM, the CLKOUT0 port (62.5 MHz) is placed onto global clock routing and
is input back into the GTX transceiver on the user interface clock port txusrclk and
txusrclk2.

It can be seen from Figure 9-9 that the Rx Elastic Buffer is implemented in the FPGA fabric
between the GTX transceiver and the core; this replaces the Rx Elastic Buffer in the GTX
transceiver.

This alternative Receiver Elastic Buffer uses a single block RAM to create a buffer twice as
large as the one present in the GTX transceiver. It is able to cope with larger frame sizes
before clock tolerances accumulate and result in emptying or filling of the buffer. This is
necessary to guarantee SGMII operation at 10 Mbps where each frame size is effectively
100 times larger than the same frame would be at 1 Gbps because each byte is repeated 100
times (see Using the Core Netlist Client-side GMII for the SGMII Standard).

With this fabric Rx Elastic Buffer implementation, data is clocked out of the GTX
transceiver synchronously to RXOUTCLK. This clock can be placed on a BUFG component
and is used to synchronize the transfer of data between the GTX and the Elastic Buffer, as
illustrated in Figure 9-9. See also 7 Series FPGA GTX Transceivers for SGMII or Dynamic
Standards Switching Constraints.

Kintex-7 FPGA GTX Transceiver Wizard
The two wrapper files immediately around the GTX transceiver, gtwizard_gt and gtwizard
(Figure 9-9), are generated from the 7 Series FPGA Transceiver Wizard. These files apply all
the gigabit Ethernet attributes. Consequently, these files can be regenerated by customers
and therefore be easily targeted at silicon/device versions.

The CORE Generator software log file (XCO file) which was created when the 7 Series
FPGA Transceiver Wizard project was generated is available in the following location:
<project_directory>/<component_name>/example_design/transceiver
/gtwizard.xco

This file can be used as an input to the CORE Generator software to regenerate the device
specific transceiver wrapper files. The XCO file itself contains a list of all of the Wizard
attributes which were used. For further information, please see the 7 Series FPGA
Transceivers User Guide and the CORE Generator Guide, at
www.xilinx.com/support/software_manuals.htm

http://www.xilinx.com/support/software_manuals.htm
http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 161
UG155 March 1, 2011

Transceiver Logic with the Fabric Rx Elastic Buffer

X-Ref Target - Figure 9-9

Figure 9-9: SGMII Connection to a Kintex-7 FPGA Transceiver

Ethernet 1000BASE-X

PCS/PMA or SGMII

LogiCORE

Kintex-7

GTXE2_CHANNEL

Transceiver

TXUSRCLK

TXUSRCLK2

RXUSRCLK2

userclk

userclk2

rxbufstatus[1:0]

rxchariscomma

rxcharisk

rxclkcorcnt[2:0]

rxdata[7:0]

rxrundisp

txchardispmode

txchardispval

txcharisk

txdata[7:0]

enablealign

RXCHARISCOMMA

RXCHARISK

RXDATA[7:0]

TXCHARDISPMODE

TXCHARDISPVAL

TXCHARISK

TXDATA[7:0]

RXENPCOMMAALIGN

RXENMCOMMAALIGN

RXDISPERRrxdisperr

TXOUTCLK

FPGA
fabric

Rx
Elastic
Buffer

RXNOTINTABLErxnotintable

BUFG

RXOUTCLK

(125MHz)

component_name_block
(Block Level from
example design)

 gtrefclk
(125MHz)

IBUFDS_GTE2

IPAD

gtrefclk_p

IPAD

gtrefclk_n

gtwizard_gt
gtwizard

 GTREFCLK0

MMCME2_ADV

CLKOUT0

CLKOUT1

CLKIN1

CLKFBOUTCLKFBIN

BUFG

RXUSRCLK

BUFG
(62.5MHz)

BUFG

http://www.xilinx.com

162 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 9: SGMII / Dynamic Standards Switching with Transceivers

Clock Sharing - Multiple Cores with Transceivers, Fabric Elastic
Buffer

Virtex-4 FX Devices
Figure 9-10 illustrates sharing clock resources across multiple instantiations of the core
when using the Virtex-4 FPGA RocketIO MGT transceiver. The example design, when
using the Virtex-4 family, can be generated to connect either a single instance of the core, or
connect a pair of core instances to the transceiver pair present in a MGT tile. Figure 9-10
illustrates two instantiations of the block level, and each block level contains a pair of
cores, illustrating clock sharing between four cores.

More cores can be added by continuing to instantiate extra block level modules. Share
clocks only between the MGTs in a single column. For each column, use a single
brefclk_p and brefclk_n differential clock pair and connect this to a GT11CLK_MGT
primitive. The clock output from this primitive should be shared across all used MGT tiles
in the column. See the Virtex-4 RocketIO Multi-Gigabit Transceiver User Guide for more
information.

To provide the 125 MHz clock for all core instances, select a TXOUTCLK1 port from any
MGT. This can be routed onto global clock routing using a BUFG as illustrated, and shared
between all cores and MGTs in the column.

Each MGT and core pair instantiated has its own independent clock domain synchronous
to RXRECCLK1 which is placed on regional clock routing using a BUFR, as illustrated in
Figure 9-10–these cannot be shared across multiple MGTs. Although not illustrated in
Figure 9-10, dclk (the clock used for the calibration blocks and for the Dynamic
Reconfiguration Port (DRP) of the MGTs) can also be shared.

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 163
UG155 March 1, 2011

Clock Sharing - Multiple Cores with Transceivers, Fabric Elastic Buffer

X-Ref Target - Figure 9-10

Figure 9-10: Clock Management with Multiple Core Instances with Virtex-4 FPGA
MGTs for SGMII

component_name_block
(Block Level)

Ethernet 1000BASE-X

PCS/PMA or

SGMII core

userclk

userclk2

IPAD

brefclkp
(250MHz)

IPAD

brefclkn
(250MHz)

Virtex-4

GT11CLK_MGT

MGTCLKP

MGTCLKN

SYNCLK1OUT

Virtex-4
GT11

RocketIO
(A)

REFCLK1

MGT tile

Ethernet 1000BASE-X

PCS/PMA or

SGMII core

userclk

userclk2

NC

userclk2

(125 MHz)

TXUSRCLK

TXUSRCLK2

RXUSRCLK

RXUSRCLK2

synclk1
(250MHz)

‘0’

‘0’

‘0’

‘0’

TXOUTCLK1

RXRECCLK1

FPGA
fabric

Rx
Elastic
Buffer

BUFR
Virtex-4
GT11

RocketIO
(B)

REFCLK1

TXUSRCLK

TXUSRCLK2

RXUSRCLK

RXUSRCLK2

TXOUTCLK1

RXRECCLK1

FPGA
fabric

Rx
Elastic
Buffer

BUFR

BUFG

component_name_block
(Block Level)

Ethernet 1000BASE-X

PCS/PMA or

SGMII core

userclk

userclk2

Virtex-4
GT11

RocketIO
(A)

REFCLK1

MGT tile

Ethernet 1000BASE-X

PCS/PMA or

SGMII core

userclk

userclk2

NC

userclk2

(125 MHz)

TXUSRCLK

TXUSRCLK2

RXUSRCLK

RXUSRCLK2

‘0’

‘0’

‘0’

‘0’

TXOUTCLK1

RXRECCLK1

FPGA
fabric

Rx
Elastic
Buffer

BUFR
Virtex-4
GT11

RocketIO
(B)

REFCLK1

TXUSRCLK

TXUSRCLK2

RXUSRCLK

RXUSRCLK2

TXOUTCLK1

RXRECCLK1

FPGA
fabric

Rx
Elastic
Buffer

BUFR

NC

http://www.xilinx.com

164 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 9: SGMII / Dynamic Standards Switching with Transceivers

Virtex-5 LXT and SXT Devices
Figure 9-11 illustrates sharing clock resources across multiple instantiations of the core
when using the Virtex-5 FPGA RocketIO GTP transceiver. The example design can be
generated to connect either a single instance of the core, or connect a pair of core instances
to the transceiver pair present in a GTP transceiver tile. Figure 9-11 illustrates two
instantiations of the block level, and each block level contains a pair of cores. Figure 9-11
illustrates clock sharing between four cores.

More cores can be added by instantiating extra block level modules. Share the brefclk_p
and brefclk_n differential clock pairs. See the Virtex-5 RocketIO GTP Transceiver User
Guide for more information.

To provide the 125 MHz clock for all core instances, select a REFCLKOUT port from any
GTP transceiver. This can be routed onto global clock routing using a BUFG as illustrated
and shared between all cores and GTP transceivers in the column.

Each GTP and core pair instantiated has its own independent clock domains synchronous
to RXRECCLK0 and RXRECCLK1. These are placed on regional clock routing using a BUFR,
as illustrated in Figure 9-11, and cannot be shared across multiple GTP transceivers.

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 165
UG155 March 1, 2011

Clock Sharing - Multiple Cores with Transceivers, Fabric Elastic Buffer

X-Ref Target - Figure 9-11.

Figure 9-11: Clock Management with Multiple Core Instances with Virtex-5 FPGA
RocketIO GTP Transceivers for SGMII

component_name_block
(Block Level)

Ethernet 1000BASE-X

PCS/PMA or

SGMII core

userclk

userclk2

Virtex-5
GTP

RocketIO
(0)

Ethernet 1000BASE-X

PCS/PMA or

SGMII core

userclk

userclk2

userclk2

(125 MHz)

TXUSRCLK0

TXUSRCLK20

RXUSRCLK0

RXUSRCLK20

REFCLKOUT

RXRECCLK0

FPGA
fabric

Rx
Elastic
Buffer

BUFR
Virtex-5

GTP
RocketIO

(1)

TXUSRCLK1

TXUSRCLK21

RXUSRCLK1

RXUSRCLK21

RXRECCLK1

FPGA
fabric

Rx
Elastic
Buffer

BUFR

BUFG

component_name_block
(Block Level)

Ethernet 1000BASE-X

PCS/PMA or

SGMII core

userclk

userclk2

Virtex-5
GTP

RocketIO
(0)

Ethernet 1000BASE-X

PCS/PMA or

SGMII core

userclk

userclk2

userclk2

(125 MHz)

TXUSRCLK0

TXUSRCLK20

RXUSRCLK0

RXUSRCLK20

REFCLKOUT

RXRECCLK0

FPGA
fabric

Rx
Elastic
Buffer

BUFR
Virtex-5

GTP
RocketIO

(1)

CLKIN

TXUSRCLK1

TXUSRCLK21

RXUSRCLK1

RXUSRCLK21

RXRECCLK1

FPGA
fabric

Rx
Elastic
Buffer

BUFR

clkin
(125MHz)

IBUFGDS

IPAD

brefclkp

IPAD

brefclkn

CLKIN

NC

rocketio_wrapper_gtp_tile

rocketio_wrapper_gtp_tile

rocketio_wrapper_gtp

rocketio_wrapper_gtp

http://www.xilinx.com

166 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 9: SGMII / Dynamic Standards Switching with Transceivers

Virtex-5 FXT and TXT Devices
Figure 9-12 illustrates sharing clock resources across multiple instantiations of the core
when using the Virtex-5 FPGA RocketIO GTX transceiver. The example design can be
generated to connect either a single instance of the core, or connect a pair of core instances
to the transceiver pair present in a GTX transceiver tile. Figure 9-12 illustrates two
instantiations of the block level, and each block level contains a pair of cores. Figure 9-12
illustrates clock sharing between four cores.

More cores can be added by instantiating extra block level modules. Share the brefclk_p
and brefclk_n differential clock pairs. See the Virtex-5 RocketIO GTX Transceiver User
Guide for more information.

To provide the FPGA fabric clocks for all core instances, select a REFCLKOUT port from any
GTX transceiver and route this to a single DCM via a BUFG (global clock routing). The
CLK0 (125 MHz) and CLKDV (62.5 MHz) outputs from this DCM, placed onto global clock
routing using BUFGs, can be shared across all core instances and GTX transceivers as
illustrated.

Each GTX and core pair instantiated has its own independent clock domains synchronous
to RXRECCLK0 and RXRECCLK1. These are placed on regional clock routing using a BUFR,
as illustrated in Figure 9-12, and cannot be shared across multiple GTX transceivers.

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 167
UG155 March 1, 2011

Clock Sharing - Multiple Cores with Transceivers, Fabric Elastic Buffer

X-Ref Target - Figure 9-12.

Figure 9-12: Clock Management with Multiple Core Instances with Virtex-5 FPGA
RocketIO GTX Transceivers for SGMII

component_name_block
(Block Level)

Ethernet 1000BASE-X

PCS/PMA or

SGMII core

userclk

userclk2

Virtex-5
GTX

RocketIO
(0)

Ethernet 1000BASE-X

PCS/PMA or

SGMII core

userclk

userclk2

TXUSRCLK0

TXUSRCLK20

RXUSRCLK0

RXUSRCLK20

REFCLKOUT

RXRECCLK0

FPGA
fabric

Rx
Elastic
Buffer

BUFR
Virtex-5

GTX
RocketIO

(1)

TXUSRCLK1

TXUSRCLK21

RXUSRCLK1

RXUSRCLK21

RXRECCLK1

FPGA
fabric

Rx
Elastic
Buffer

BUFR

component_name_block
(Block Level)

Ethernet 1000BASE-X

PCS/PMA or

SGMII core

userclk

userclk2

Virtex-5
GTX

RocketIO
(0)

Ethernet 1000BASE-X

PCS/PMA or

SGMII core

userclk

userclk2

userclk2

(125 MHz)

TXUSRCLK0

TXUSRCLK20

RXUSRCLK0

RXUSRCLK20

REFCLKOUT

RXRECCLK0

FPGA
fabric

Rx
Elastic
Buffer

BUFR
Virtex-5

GTX
RocketIO

(1)

CLKIN

TXUSRCLK1

TXUSRCLK21

RXUSRCLK1

RXUSRCLK21

RXRECCLK1

FPGA
fabric

Rx
Elastic
Buffer

BUFR

clkin
(125MHz)

IBUFGDS

IPAD

brefclkp

IPAD

brefclkn

CLKIN

NC

rocketio_wrapper_gtx_tile

rocketio_wrapper_gtx_tile

rocketio_wrapper_gtx

rocketio_wrapper_gtx

userclk2 (125MHz)

DCM

CLKIN CLK0

FB

BUFG

CLKDV

BUFG

userclk (62.5MHz)

BUFG

http://www.xilinx.com

168 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 9: SGMII / Dynamic Standards Switching with Transceivers

Virtex-6 Devices
Figure 9-13 illustrates sharing clock resources across two instantiations of the core when
using the Virtex-6 FPGA GTX transceivers. Further cores can be added by instantiating
extra block level modules.

Share the mgtrefclk_p and mgtrefclk_n differential clock pair clock source across all
of the transceivers in use. To provide the 125 MHz clock for all core instances, select a
TXOUTCLK port from any GTX transceiver. This can be routed onto global clock routing
using a BUFG as illustrated and shared between all cores and GTX transceivers.

Each GTX and core pair instantiated has its own independent clock domains synchronous
to RXRECCLK. These are placed on regional clock routing using a BUFR, as illustrated in
Figure 9-13, and cannot be shared across multiple GTX transceivers.

See the Virtex-6 FPGA GTX Transceiver User Guide for more information on GTX clock
resources.
X-Ref Target - Figure 9-13

Figure 9-13: Clock Management with Multiple Core Instances with Virtex-6 FPGA
GTX Transceivers for SGMII

component_name_block
(Block Level)

Ethernet 1000BASE-X

PCS/PMA or

SGMII core

userclk

userclk2

Virtex-6
GTX

Transceiver

userclk2

(125 MHz)

TXUSRCLK

TXUSRCLK2

RXUSRCLK

RXUSRCLK2

RXRECCLK0

FPGA
fabric

Rx
Elastic
Buffer

BUFR

BUFG

mgtrefclk
(125MHz)

IBUFDS_GTXE1

IPAD

mgtrefclk_p

IPAD

mgtrefclk_n

gtx_wrapper_gtx

gtx_wrapper

MGTREFCLKTX[0]
MGTREFCLKRX[0]

TXOUTCLK

GND

GND

component_name_block
(Block Level)

Ethernet 1000BASE-X

PCS/PMA or

SGMII core

userclk

userclk2

Virtex-6
GTX

Transceiver

userclk2

(125 MHz)

TXUSRCLK

TXUSRCLK2

RXUSRCLK

RXUSRCLK2

RXRECCLK0

FPGA
fabric

Rx
Elastic
Buffer

BUFR

gtx_wrapper_gtx

gtx_wrapper

MGTREFCLKTX[0]
MGTREFCLKRX[0]

TXOUTCLK

GND

GND

NC

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 169
UG155 March 1, 2011

Clock Sharing - Multiple Cores with Transceivers, Fabric Elastic Buffer

Spartan-6 LXT Devices
Figure 9-14 illustrates sharing clock resources across multiple instantiations of the core
when using the Spartan-6 FPGA GTP transceiver. The example design can be generated to
connect either a single instance of the core, or connect a pair of core instances to the
transceiver pair present in a GTP transceiver tile. Figure 9-14 illustrates two instantiations
of the block level, and each block level contains a pair of cores. Figure 9-14 illustrates clock
sharing between four cores.

More cores can be added by instantiating extra block level modules. Share the brefclk_p
and brefclk_n differential clock pairs. See the Spartan-6 FPGA GTP Transceiver User Guide
for more information.

To provide the 125 MHz clock for all core instances, select a GTPCLKOUT port from any
GTP transceiver. This can be routed onto global clock routing using a BUFIO2 and BUFG as
illustrated and shared between all cores and GTP transceivers in the column.

Each GTP and core pair instantiated has its own independent clock domains synchronous
to RXRECCLK0 and RXRECCLK1. These are placed on global clock routing using a BUFG, as
illustrated in Figure 9-14, and cannot be shared across multiple GTP transceivers.

http://www.xilinx.com

170 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 9: SGMII / Dynamic Standards Switching with Transceivers

X-Ref Target - Figure 9-14

Figure 9-14: Clock Management with Multiple Core Instances with Spartan-6 FPGA
GTP Transceivers for SGMII

component_name_block
(Block Level)

Ethernet 1000BASE-X

PCS/PMA or

SGMII core

userclk

userclk2

Ethernet 1000BASE-X

PCS/PMA or

SGMII core

userclk

userclk2

userclk2

(125 MHz)

TXUSRCLK0

TXUSRCLK20

RXUSRCLK0

RXUSRCLK20

GTPCLKOUT0

RXRECCLK0

FPGA
fabric

Rx
Elastic
Buffer

BUFG

TXUSRCLK1

TXUSRCLK21

RXUSRCLK1

RXUSRCLK21

RXRECCLK1

FPGA
fabric

Rx
Elastic
Buffer

BUFG

BUFG

component_name_block
(Block Level)

Ethernet 1000BASE-X

PCS/PMA or

SGMII core

userclk

userclk2

Ethernet 1000BASE-X

PCS/PMA or

SGMII core

userclk

userclk2

userclk2

(125 MHz)

TXUSRCLK0

TXUSRCLK20

RXUSRCLK0

RXUSRCLK20

GTPCLKOUT0

RXRECCLK0

FPGA
fabric

Rx
Elastic
Buffer

BUFG

CLKIN00

TXUSRCLK1

TXUSRCLK21

RXUSRCLK1

RXUSRCLK21

RXRECCLK1

FPGA
fabric

Rx
Elastic
Buffer

BUFG

clkin
(125MHz)

IBUFDS

IPAD

brefclkp

IPAD

brefclkn

CLKIN00

NC

gtp_wrapper_tile

gtp_wrapper_tile

gtp_wrapper

gtp_wrapper

Spartan-6
Transceiver

GTP
(0)

Spartan-6
Transceiver

GTP
(0)

Spartan-6
RocketIO

GTP
(1)

Spartan-6
RocketIO

GTP
(1)

CLKIN01

CLKIN01

GTPCLKOUT1

GTPCLKOUT1NC

NC

BUFIO2

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 171
UG155 March 1, 2011

Clock Sharing - Multiple Cores with Transceivers, Fabric Elastic Buffer

Virtex-7 Devices
Figure 9-16 illustrates sharing clock resources across multiple instantiations of the core
when using the 7 Series FPGA transceiver. More cores can be added by instantiating extra
block level modules.

Share the gtrefclk_p and gtrefclk_n differential clock pairs. See the 7 Series GTX
Transceiver User Guide for more information.

To provide the FPGA fabric clocks for all core instances, select a TXOUTCLK port from any
GTX transceiver and route this to a single MMCM. The CLKOUT1 (125 MHz) and
CLKOUT0 (62.5 MHz) outputs from this MMCM, placed onto global clock routing using
BUFGs, can be shared across all core instances and GTX transceivers as illustrated.

Each GTX and core pair instantiated has its own independent clock domains synchronous
to RXOUTCLK. These are placed on BUFMR followed by regional clock routing using a
BUFR, as illustrated in Figure 9-16, and cannot be shared across multiple GTX transceivers.

http://www.xilinx.com

172 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 9: SGMII / Dynamic Standards Switching with Transceivers

X-Ref Target - Figure 9-15

Figure 9-15: Clock Management with Multiple Core Instances with Virtex-7 FPGA Transceivers for SGMII

component_name_block
(Block Level)

Ethernet 1000BASE-X

PCS/PMA or

SGMII core

userclk

userclk2

Virtex-7
GTXE2_CHANNEL

Transceiver

userclk2

(125 MHz)

TXUSRCLK

TXUSRCLK2

RXUSRCLK

RXUSRCLK2

RXOUTCLK

FPGA
fabric

Rx
Elastic
Buffer

BUFR

 gtrefclk
(125MHz)

IBUFDS_GTE2

IPAD

gtrefclk_p

IPAD

gtrefclk_n

gtwizard_gt

gtwizard

 GTREFCLK0

TXOUTCLK

component_name_block
(Block Level)

Ethernet 1000BASE-X

PCS/PMA or

SGMII core

userclk

userclk2

Virtex-7
GTXE2_CHANNEL

Transceiver

userclk2

(125 MHz)

TXUSRCLK

TXUSRCLK2

RXUSRCLK

RXUSRCLK2

RXOUTCLK

FPGA
fabric

Rx
Elastic
Buffer

BUFR

gtwizard_gt

gtwizard

 GTREFCLK0

TXOUTCLKNC

MMCME2_ADV
CLKOUT0

CLKOUT1

CLKIN1

CLKFBOUTCLKFBIN
BUFG

BUFG

 userclk

(62.5 MHz)

BUFMR

BUFMR

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 173
UG155 March 1, 2011

Clock Sharing - Multiple Cores with Transceivers, Fabric Elastic Buffer

Kintex-7 Devices
Figure 9-17 illustrates sharing clock resources across multiple instantiations of the core
when using the 7 Series FPGA GTX transceiver. More cores can be added by instantiating
extra block level modules.

Share the gtrefclk_p and gtrefclk_n differential clock pairs. See the 7 Series Transceiver
User Guide for more information.

To provide the FPGA fabric clocks for all core instances, select a TXOUTCLK port from any
GTX transceiver and route this to a single MMCM via a BUFG (global clock routing). The
CLKOUT1 (125 MHz) and CLKOUT0 (62.5 MHz) outputs from this MMCM, placed onto
global clock routing using BUFGs, can be shared across all core instances and GTX
transceivers as illustrated.

Each GTX and core pair instantiated has its own independent clock domains synchronous
to RXOUTCLK. These are placed on global clock routing using a BUFG, as illustrated in
Figure 9-17, and cannot be shared across multiple GTX transceivers.

http://www.xilinx.com

174 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 9: SGMII / Dynamic Standards Switching with Transceivers

X-Ref Target - Figure 9-16

Figure 9-16: Clock Management with Multiple Core Instances with Kintex-7 FPGA Transceivers for SGMII

component_name_block
(Block Level)

Ethernet 1000BASE-X

PCS/PMA or

SGMII core

userclk

userclk2

Kintex-7
GTXE2_CHANNEL

Transceiver

userclk2

(125 MHz)

TXUSRCLK

TXUSRCLK2

RXUSRCLK

RXUSRCLK2

RXOUTCLK

FPGA
fabric

Rx
Elastic
Buffer

 gtrefclk
(125MHz)

IBUFDS_GTE2

IPAD

gtrefclk_p

IPAD

gtrefclk_n

gtwizard_gt

gtwizard

 GTREFCLK0

TXOUTCLK

component_name_block
(Block Level)

Ethernet 1000BASE-X

PCS/PMA or

SGMII core

userclk

userclk2

userclk2

(125 MHz)

TXUSRCLK

TXUSRCLK2

RXUSRCLK

RXUSRCLK2

RXOUTCLK

FPGA
fabric

Rx
Elastic
Buffer

gtwizard_gt

gtwizard

 GTREFCLK0

TXOUTCLKNC

MMCME2_ADV
CLKOUT0

CLKOUT1

CLKIN1

CLKFBOUTCLKFBIN
BUFG

BUFG

 userclk

(62.5 MHz)

BUFG

BUFG

BUFG

Kintex-7
GTXE2_CHANNEL

Transceiver

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 175
UG155 March 1, 2011

SGMII Example Design / Dynamic Switching Example Design Using a Transceiver

SGMII Example Design / Dynamic Switching Example Design
Using a Transceiver

Chapter 4, CORE Generator Deliverables provides a full list and description of the
directory and file structure that is provided with the core, including the location of the
HDL example design provided.

Figure 9-17 illustrates an example design for top-level HDL for the Ethernet 1000BASE-X
PCS/PMA or SGMII in SGMII (or dynamic standards switching) mode using a device-
specific transceiver (Virtex®-4, Virtex-5, Virtex-6, Virtex-7, Kintex-7 or Spartan®-6).

As illustrated, the example is split between two hierarchical layers. The block level is
designed so that it can be instantiated directly into customer designs and performs the
following functions:

• Instantiates the core from HDL

• Connects the physical-side interface of the core to a device-specific transceiver

• Connects the client side GMII of the core to an SGMII Adaptation Module, which
provides the functionality to operate at speeds of 1 Gbps, 100 Mbps and 10 Mbps

The top level of the example design creates a specific example which can be simulated,
synthesized and implemented. The top level of the example design performs the following
functions:

• Instantiates the block level from HDL

• Derives the clock management logic for device-specific transceiver and the core

• Implements an external GMII-style interface

X-Ref Target - Figure 9-17

Figure 9-17: Example Design HDL for the Ethernet 1000BASE-X PCS/PMA or SGMII
Core in SGMII Mode Using a Device-Specific Transceiver

Ethernet

1000BASE-X

PCS/PMA

Core

GMII

IOBs

In

IOBs

Out

GMII-style
8-bit I/F

Serial GMII
(SGMII)

SGMII
Adaptation

Module

Clock
Management

Logic

Transceiver

Fabric
Rx

Elastic
Buffer

component_name_example_design

component_name_block

Device
Specific
Transceiver

http://www.xilinx.com

176 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 9: SGMII / Dynamic Standards Switching with Transceivers

The next few pages in this section will describe each of the example design blocks (and
associated HDL files) in detail, and will conclude with an overview of the demonstration
test bench provided for the design.

Top-Level Example Design HDL
The top-level example design for the Ethernet 1000BASE-X PCS/PMA core in SGMII mode
is described in the following files:

VHDL

<project_dir>/<component_name>/example_design/<component_name>_example
_design.vhd

Verilog

<project_dir>/<component_name>/example_design/<component_name>_example
_design.v

The example design HDL top level contains the following:

• An instance of the SGMII block level

• Clock management logic for the core and the device-specific transceiver, including
DCM (if required) and Global Clock Buffer instances

• External GMII logic, including IOB and DDR register instances, where required

The example design HDL top level connects the GMII of the block level to external IOBs.
This allows the functionality of the core to be demonstrated using a simulation package, as
described in this guide.

Note: In the Virtex-4, Virtex-5 and Spartan-6 families, transceivers are provided in pairs. When
generated with the appropriate options, the example design is capable of connecting two instances of
the core to the transceiver pair.

Block Level HDL
The following files describe the block level for the Ethernet 1000BASE-X PCS/PMA core in
SGMII mode:

VHDL

<project_dir>/<component_name>/example_design/<component_name>_block.v
hd

Verilog

<project_dir>/<component_name>/example_design/<component_name>_block.v

The block level contains the following:

• An instance of the Ethernet 1000BASE-X PCS/PMA core in SGMII mode.

• An instance of a transceiver specific to the target device (Virtex-4, Virtex-5, Virtex-6,
Virtex-7, Kintex-7 or Spartan-6)

• An SGMII adaptation module containing:

• The clock management logic required to enable the SGMII example design to
operate at 10 Mbps, 100 Mbps, and 1 Gbps.

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 177
UG155 March 1, 2011

SGMII Example Design / Dynamic Switching Example Design Using a Transceiver

• GMII logic for both transmitter and receiver paths; the GMII style 8-bit interface is
run at 125 MHz for 1 Gbps operation; 12.5 MHz for 100 Mbps operation; 1.25
MHz for 10 Mbps operation.

The block-level HDL connects the PHY side interface of the core to a device-specific
transceiver instance and the client side to SGMII Adaptation logic as illustrated in
Figure 9-17. This is the most useful part of the example design and should be instantiated
in all customer designs that use the core.

Note: In the Virtex-4, Virtex-5 and Spartan-6 families, transceivers are provided in pairs. When
generated with the appropriate options, the block level is capable of connecting two instances of the
core to the transceiver.

Files for Virtex-7 and Kintex-7 Devices

Transceiver Wrapper

This device-specific transceiver wrapper is instantiated from the block-level HDL file of
the example design and is described in the following files:

VHDL

<project_dir>/<component_name>/example_design/transceiver/

transceiver.vhd

Verilog

<project_dir>/<component_name>/example_design/transceiver/

transceiver.v

This file instances output source files from the Transceiver Wizard (used with Gigabit
Ethernet 1000BASE-X attributes).

Virtex-7 and Kintex-7 FPGA GTX Transceiver Wizard Files

For Virtex-7 and Kintex-7 devices, the transceiver wrapper file directly instantiates device-
specific transceiver wrapper files created from the GT Transceiver Wizard. These files tie
off (or leave unconnected) unused I/O for the GTX, and apply the 1000BASE-X attributes.
The files can be edited/tailored by rerunning the Wizard and swapping these files. The
files include the following:

VHDL

<project_dir>/<component_name>/example_design/transceiver/
gtwizard.vhd
<project_dir>/<component_name>/example_design/transceiver/
gtwizard_gt.vhd

Verilog

<project_dir>/<component_name>/example_design/transceiver/
gtwizard.v
<project_dir>/<component_name>/example_design/transceiver/
gtwizard_gt.v

http://www.xilinx.com

178 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 9: SGMII / Dynamic Standards Switching with Transceivers

To re-run the Transceiver Wizard, a CORE Generator software XCO file for the Wizard is
included. This file defines all the required Wizard attributes used to generate the preceding
files. See the CORE Generator software documentation for further information about XCO
files. The XCO file is in the following location:

<project_dir>/<component_name>/example_design/transceiver/
gtwizard.xco

Transceiver Files for Spartan-6 Devices

Transceiver Wrapper

This device-specific transceiver wrapper is instantiated from the block-level HDL file of
the example design and is described in the following files:

VHDL

<project_dir>/<component_name>/example_design/transceiver/

transceiver.vhd

Verilog

<project_dir>/<component_name>/example_design/transceiver/

transceiver.v

This file instances output source files from the Transceiver Wizard (used with Gigabit
Ethernet 1000BASE-X attributes).

Spartan-6 FPGA GTP Transceiver Wizard Files

For Spartan-6 devices, the transceiver wrapper file directly instantiates device-specific
transceiver wrapper files created from the Spartan-6 FPGA GTP Transceiver Wizard. These
files tie off (or leave unconnected) unused I/O for the GTP, and apply the 1000BASE-X
attributes. The files can be edited/tailored by rerunning the Wizard and swapping these
files. The files include the following:

VHDL

<project_dir>/<component_name>/example_design/transceiver/
s6_gtpwizard.vhd
<project_dir>/<component_name>/example_design/transceiver/
s6_gtpwizard_tile.vhd

Verilog

<project_dir>/<component_name>/example_design/transceiver/
s6_gtpwizard.v
<project_dir>/<component_name>/example_design/transceiver/
s6_gtpwizard_tile.v

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 179
UG155 March 1, 2011

SGMII Example Design / Dynamic Switching Example Design Using a Transceiver

To re-run the Spartan-6 FPGA GTX Transceiver Wizard, a CORE Generator software XCO
file for the Wizard is included. This file defines all the required Wizard attributes used to
generate the preceding files. See the CORE Generator software documentation for further
information about XCO files. The XCO file is in the following location:

<project_dir>/<component_name>/example_design/transceiver/
s6_gtpwizard.xco

Transceiver Files for Virtex-6 Devices

Transceiver Wrapper

This device-specific transceiver wrapper is instantiated from the block-level HDL file of
the example design and is described in the following files:

VHDL

<project_dir>/<component_name>/example_design/transceiver/

v6_gtxwizard_top.vhd

Verilog

<project_dir>/<component_name>/example_design/transceiver/

v6_gtxwizard_top.v

This file instances output source files from the device-specific Wizard (used with Gigabit
Ethernet 1000BASE-X attributes).

Virtex-6 FPGA GTX Transceiver Wizard Files

For Virtex-6 devices, the transceiver wrapper file directly instantiates transceiver wrapper
files created from the Virtex-6 FPGA GTX Transceiver Wizard. These files tie off (or leaves
unconnected) unused I/O for the GTX, and apply the 1000BASE-X attributes. The files can
be edited/tailored by rerunning the Wizard and swapping these files. The files include the
following:

VHDL

<project_dir>/<component_name>/example_design/transceiver/
v6_gtxwizard.vhd
<project_dir>/<component_name>/example_design/transceiver/
v6_gtxwizard_gtx.vhd

Verilog

<project_dir>/<component_name>/example_design/transceiver/
v6_gtxwizard.v
<project_dir>/<component_name>/example_design/transceiver/
v6_gtxwizard_gtx.v

To re-run the Virtex-6 FPGA GTX Transceiver Wizard, a CORE Generator software XCO
file for the Wizard is included. This file defines all the required Wizard attributes used to
generate the preceding files. See the CORE Generator software documentation for further
information about XCO files. The XCO file is in the following location:

<project_dir>/<component_name>/example_design/transceiver/
v6_gtxwizard.xco

http://www.xilinx.com

180 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 9: SGMII / Dynamic Standards Switching with Transceivers

RocketIO Transceiver Files for Virtex-5 Devices

Transceiver Wrapper

This device-specific RocketIO™ transceiver wrapper is instantiated from the block-level
HDL file of the example design and is described in the following files:

VHDL

<project_dir>/<component_name>/example_design/transceiver/

transceiver.vhd

Verilog

<project_dir>/<component_name>/example_design/transceiver/

transceiver.v

This file instances output source files from the device-specific RocketIO Transceiver
Wizard (used with Gigabit Ethernet 1000BASE-X attributes).

In the Virtex-5 devices, RocketIO transceivers are provided in pairs. When generated with
the appropriate options, the block level is capable of connecting two instances of the core to
the RocketIO transceiver pair. When only a single instance of the core is requested, the
unused RocketIO transceiver from the pair is still instantiated from within this transceiver
wrapper but left unconnected.

Virtex-5 FPGA RocketIO GTP Transceiver Specific Files

For Virtex-5 LXT and SXT devices, the transceiver wrapper file directly instantiates
RocketIO GTP transceiver wrapper files created from the Virtex-5 FPGA RocketIO GTP
Transceiver Wizard. These files tie off (or leave unconnected) unused I/O for the GTP pair,
and apply the 1000BASE-X attributes. The files can be edited/tailored by rerunning the
RocketIO GTP Transceiver Wizard and swapping these files. These are the following files:

VHDL

<project_dir>/<component_name>/example_design/transceiver/
v5_gtpwizard.vhd
<project_dir>/<component_name>/example_design/transceiver/
v5_gtpwizard_tile.vhd

Verilog

<project_dir>/<component_name>/example_design/transceiver/
v5_gtpwizard.v
<project_dir>/<component_name>/example_design/transceiver/
v5_gtpwizard_tile.v

To re-run the device-specific RocketIO Transceiver GTP Wizard, a CORE Generator
software XCO file for the RocketIO Transceiver GTP Wizard has also been included. This
file lists all of the device-specific RocketIO Transceiver GTP Wizard attributes used to
generate the preceding files. See the CORE Generator software documentation for more
information about XCO files. The XCO file is in the following location:

<project_dir>/<component_name>/example_design/transceiver/
v5_gtpwizard.xco

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 181
UG155 March 1, 2011

SGMII Example Design / Dynamic Switching Example Design Using a Transceiver

Virtex-5 FPGA RocketIO GTX Transceiver Specific Files

For Virtex-5 FXT and TXT devices, the transceiver wrapper file directly instantiates
RocketIO GTX transceiver wrapper files created from the Virtex-5 FPGA RocketIO GTX
Transceiver Wizard. These files tie off (or leaves unconnected) unused I/O for the GTX
pair, and apply the 1000BASE-X attributes. The files can be edited/tailored by rerunning
the RocketIO GTX Transceiver Wizard and swapping these files. These are the following
files:

VHDL

<project_dir>/<component_name>/example_design/transceiver/
v5_gtxwizard.vhd
<project_dir>/<component_name>/example_design/transceiver/
v5_gtxwizard_gtx_tile.vhd

Verilog

<project_dir>/<component_name>/example_design/transceiver/
v5_gtxwizard.v
<project_dir>/<component_name>/example_design/transceiver/
v5_gtxwizard_gtx_tile.v

To re-run the device-specific RocketIO GTX Transceiver Wizard, a CORE Generator
software XCO file for the RocketIO GTX Transceiver Wizard has also been included. This
file lists all of the RocketIO GTX Transceiver Wizard attributes which were used in the
generation of the preceding files. Please see the CORE Generator software documentation
for further information about XCO files. The XCO file is located:

<project_dir>/<component_name>/example_design/transceiver/
v5_gtxwizard.xco

RocketIO Transceiver Files for Virtex-4 FX Devices

Transceiver Wrapper

This device-specific RocketIO transceiver wrapper is instantiated from the block-level
HDL file of the example design and is described in the following files:

VHDL

<project_dir>/<component_name>/example_design/transceiver/

transceiver.vhd

Verilog

<project_dir>/<component_name>/example_design/transceiver/

transceiver.v

This file instances the RocketIO transceiver with Gigabit Ethernet 1000BASE-X attributes
applied.

In the Virtex-4 FX families, RocketIO transceivers are provided in pairs. When generated
with the appropriate options, the block level is capable of connecting two instances of the
core to the RocketIO transceiver pair. When only a single instance of the core is requested,
the unused RocketIO transceiver from the pair is still instantiated from within this
transceiver wrapper but left unconnected.

http://www.xilinx.com

182 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 9: SGMII / Dynamic Standards Switching with Transceivers

Calibration Blocks

For Virtex-4 FX devices only, Calibration Blocks are required. A Calibration Block is
connected to both GT11 A and B within the RocketIO transceiver tile. This occurs in the
transceiver wrapper file. See Answer Record 22477 for information about downloading the
Calibration Block User Guide.

The Calibration Block is described in the following files:

VHDL

<project_dir>/<component_name>/example_design/transceiver/
cal_block_v1_4_1.vhd

Verilog

<project_dir>/<component_name>/example_design/transceiver/
cal_block_v1_4_1.v

GT11 Reset/Initialization Circuitry

Precise reset/initialization circuitry is required for the GT11 device-specific RocketIO
transceivers.

The reset circuitry for the device-specific RocketIO receiver is illustrated in Figure 2-18 of
the Virtex-4 RocketIO Multi-Gigabit Transceiver User Guide (UG076). This is implemented in
the following files:

VHDL

<project_dir>/<component_name>/example_design/transceiver/
gt11_init_rx.vhd

Verilog

<project_dir>/<component_name>/example_design/transceiver/
gt11_init_rx.v

The reset circuitry for the RocketIO Transmitter is illustrated in Figure 2-13 of the Virtex-4
FPGA RocketIO Multi-Gigabit Transceiver User Guide (UG076). This is implemented in the
following files:

VHDL

<project_dir>/<component_name>/example_design/transceiver/
gt11_init_tx.vhd

Verilog

<project_dir>/<component_name>/example_design/transceiver/
gt11_init_tx.v

Both receiver and transmitter reset circuitry entities are instantiated from within the block
level of the example design.

http://www.xilinx.com/xlnx/xil_ans_display.jsp?getPagePath=22477
http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 183
UG155 March 1, 2011

SGMII Example Design / Dynamic Switching Example Design Using a Transceiver

Receiver Elastic Buffer
The Receiver Elastic Buffer if present (see Receiver Elastic Buffer Implementations) is
described in the following files:

VHDL

<project_dir>/<component_name>/example_design/transceiver/

rx_elastic_buffer.vhd

Verilog

<project_dir>/<component_name>/example_design/transceiver/

rx_elastic_buffer.v

In SGMII or Dynamic Switching modes, the Rx Buffer in the device-specific transceiver is
optionally bypassed. If bypassed, a larger buffer is implemented in the FPGA fabric and
instantiated from within the transceiver wrapper.

This alternative Receiver Elastic Buffer uses a single block RAM to create a buffer twice as
large as the one present in the device-specific transceiver, which is able to cope with larger
frame sizes before clock tolerances accumulate and result in an emptying or filling of the
buffer. See the Ethernet 1000BASE-X PCS/PMA or SGMII User Guide for additional
information.

SGMII Adaptation Module
The SGMII Adaptation Module is described in the following files:

VHDL

<project_dir>/<component_name>/example_design/sgmii_adapt/

sgmii_adapt.vhd

clk_gen.vhd

johnson_cntr.vhd

tx_rate_adapt.vhd

rx_rate_adapt.vhd

Verilog

<project_dir>/<component_name>/example_design/sgmii_adapt/

sgmii_adapt.v

clk_gen.v

johnson_cntr.v

tx_rate_adapt.v

rx_rate_adapt.v

The GMII of the core always operates at 125 MHz. The core makes no differentiation
between the three speeds of operation; it always effectively operates at 1 Gbps. However,
at 100 Mbps, every data byte run through the core should be repeated 10 times to achieve
the required bit rate; at 10 Mbps, each data byte run through the core should be repeated
100 times to achieve the required bit rate. Dealing with this repetition of bytes is the
function of the SGMII adaptation module and its component blocks.

http://www.xilinx.com

184 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 9: SGMII / Dynamic Standards Switching with Transceivers

The SGMII adaptation module and component blocks are described in detail in the
Additional Client-Side SGMII Logic Provided in the Example Design.

Demonstration Test Bench
Figure 9-18 illustrates the demonstration test bench for the Ethernet 1000BASE-X
PCS/PMA or SGMII core in SGMII mode. The demonstration test bench is a simple VHDL
or Verilog program to exercise the example design and the core itself.

The top-level test bench entity instantiates the example design for the core, which is the
Device Under Test (DUT). A stimulus block is also instantiated and clocks, resets and test
bench semaphores are created. The following files describe the top-level of the
demonstration test bench.

VHDL

<project_dir>/<component_name>/simulation/demo_tb.vhd

X-Ref Target - Figure 9-18

Figure 9-18: Demonstration Test Bench for the Ethernet 1000BASE-X PCS/PMA or
SGMII Core in SGMII Mode Using Device-Specific Transceivers

Demonstration Test Bench

PMA
Monitor

(Serial to Parallel
Conversion and

8B10B
Decoding)

PMA
Stimulus

(8B10B Encoding
and Parallel to

Serial
Conversion)

GMII
Stimulus

GMII
Monitor

GMII

DUT

Control and Data Structures

Configuration
Stimulus

Device
Specific
Transceiver

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 185
UG155 March 1, 2011

SGMII Example Design / Dynamic Switching Example Design Using a Transceiver

Verilog

<project_dir>/<component_name>/simulation/demo_tb.v

The stimulus block entity, instantiated from within the top-level test bench, creates the
Ethernet stimulus in the form of four Ethernet frames, which are injected into GMII and
PHY interfaces of the DUT. The output from the DUT is also monitored for errors. The
following files describe the stimulus block of the demonstration test bench.

VHDL

<project_dir>/<component_name>/simulation/stimulus_tb.vhd

Verilog

<project_dir>/<component_name>/simulation/stimulus_tb.v

Together, the top-level test bench file and the stimulus block combine to provide the full
test bench functionality which is described in the sections that follow.

Note: In the Virtex-4, Virtex-5 and Spartan-6 devices, transceivers are provided in pairs. When
generated with the appropriate options, the example design is capable of connecting two instances of
the core to the device-specific transceiver pair. When this is the case, two stimulus blocks are
instantiated from the top level test bench to independently exercise both cores.

Test Bench Functionality

The demonstration test bench performs the following tasks:

• Input clock signals are generated.

• A reset is applied to the example design.

• The Ethernet 1000BASE-X PCS/PMA core is configured through the MDIO interface
by injecting an MDIO frame into the example design. This disables Auto-Negotiation
and takes the core out of Isolate state.

• The following frames are injected into the GMII transmitter by the GMII stimulus
block at 1 Gbps.

• the first is a minimum length frame

• the second is a type frame

• the third is an errored frame

• the fourth is a padded frame

• The serial data received at the device-specific transceiver transmitter interface is
converted to 10-bit parallel data, then 8B10B decoded. The resulting frames are
checked by the PMA Monitor against the stimulus frames injected into the GMII
transmitter to ensure data integrity.

• The same four frames are generated by the PMA Stimulus block. These are 8B10B
encoded, converted to serial data and injected into the device-specific transceiver
receiver interface at 1 Gbps.

• Data frames received at the GMII receiver are checked by the GMII Monitor against
the stimulus frames injected into the device-specific transceiver receiver to ensure
data integrity.

http://www.xilinx.com

186 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 9: SGMII / Dynamic Standards Switching with Transceivers

Customizing the Test Bench

Changing Frame Data

You can change the contents of the four frames used by the demonstration test bench by
changing the data and valid fields for each frame defined in the stimulus block. New frames
can be added by defining a new frame of data. Modified frames are automatically updated
in both stimulus and monitor functions.

Changing Frame Error Status

Errors can be inserted into any of the predefined frames in any position by setting the error
field to ‘1’ in any column of that frame. Injected errors are automatically updated in both
stimulus and monitor functions.

Changing the Core Configuration

The configuration of the Ethernet 1000BASE-X PCS/PMA core used in the demonstration
test bench can be altered.

Caution! Certain configurations of the core cause the test bench to fail, or to cause processes
to run indefinitely. For example, the demonstration test bench will not Auto-Negotiate with the
design example. Determine the configurations that can safely be used with the test bench.

The core can be reconfigured by editing the injected MDIO frame in the demonstration test
bench top level. See the Ethernet 1000BASE-X PCS/PMA or SGMII User Guide for
information about using the MDIO interface.

Changing the Operational Speed

SGMII can be used to carry Ethernet traffic at 10 Mbps, 100 Mbps or 1 Gbps. By default, the
demonstration test bench is configured to operate at 1 Gbps. The speed of both the
example design and test bench can be set to the desired operational speed by editing the
following settings, recompiling the test bench, then running the simulation again.

1 Gbps Operation

set speed_is_10_100 to logic 0

100 Mbps Operation

set speed_is_10_100 to logic 1

set speed_is_100 to logic 1

10 Mbps Operation

set speed_is_10_100 to logic 1

set speed_is_100 to logic 0

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 187
UG155 March 1, 2011

Chapter 10

SGMII Support Using Asynchronous
Oversampling over Virtex-6 FPGA LVDS

This chapter provides general guidelines for creating SGMII designs using asynchronous
oversampling over Virtex®-6 LVDS. Virtex-6 devices, -2 speed grade or higher, can fully
support SGMII using standard LVDS SelectIO™ technology logic resources. This enables
direct connection to external PHY devices without the use of a Virtex-6 FPGA GTX
Transceiver. This implementation is illustrated in Figure 10-4.

This chapter is organized into the following sections:

• Design Requirements provides the UI specifications for the SGMII receiver.

• Clocking Logic discusses the clocking logic that is required for the asynchronous
oversampling LVDS design.

• Layout and Placement provides guidelines for performing FPGA layout to guide the
tools through PAR and to achieve timing success.

• Example Design Implementation describes the format of the example design
provided, a description of all blocks of the example design, and describes how the
design can be used to create your own custom implementation.

This section also contains an overview of the demonstration test bench that is provided
with the example design.

Users of the core in this mode will benefit from a detailed understanding of Virtex-6 FPGA
Clocking Resources and SelectIO Resources. See Virtex-6 FPGA User Guide (Virtex-6 FPGA
product page).

http://www.xilinx.com
http://www.xilinx.com/support/documentation/virtex-6.htm
http://www.xilinx.com/support/documentation/virtex-6.htm

188 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 10: SGMII Support Using Asynchronous Oversampling over Virtex-6 FPGA LVDS

Design Requirements

SGMII Only
The interface implemented using this asynchronous oversampling method supports
SGMII between the FPGA and an external PHY device; the interface cannot directly
support 1000BASE-X.

Supported in Virtex-6 Devices, -2 Speed Grade or Faster
The SGMII LVDS implementation has only been characterized in the -2 speed grade and
faster Virtex-6 devices.

Timing closure of this interface is challenging: please perform the steps described in
Layout and Placement.

Receiver UI Specification
The DRU must have at least two valid sampling points per data bit, requiring 0.5 UI of
opening. The settings of the FPGA add 0.125 UI of requirement making a total opening
requirement at the receiver of 0.625 UI.

Recommended for Chip to Chip Copper Implementations Only
This interface will support an SGMII link between the FPGA and an external PHY device
across a single PCB; keep the SGMII copper signal lengths to a minimum.

Clocking Logic
The HDL for the IO Bank Level of the Example Design logical block contains the parameter
TX_AND_RX_SHARE_CLOCK; this value is set to true by default, implying that the Tx
and Rx logic of the SGMII ports will share the BUFIO clocks.

• Setting the parameter TX_AND_RX_SHARE_CLOCK to true necessitates that the
transmitter and receiver ports of the SGMII are LOC-ed into the same Virtex-6 FPGA
I/O bank. See SGMII Tx and Rx Ports are in the Same I/O Bank.

Setting the parameter TX_AND_RX_SHARE_CLOCK to false will duplicate the clock
circuitry that is required by the transmitter, allowing the receiver and transmitter ports to
be separated and placed into different Virtex-6 FPGA I/O banks. See SGMII Tx and Rx
Ports are in Different I/O Banks.

Edit the HDL file for the IO Bank Level of the Example Design directly to change the value
of the TX_AND_RX_SHARE_CLOCK parameter.

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 189
UG155 March 1, 2011

Clocking Logic

SGMII Tx and Rx Ports are in the Same I/O Bank
X-Ref Target - Figure 10-1

Figure 10-1: Asynchronous Oversampling LVDS Clocking Logic (Tx and Rx Placed in the Same I/O Bank)

MMCM

I/O Bank Clocking

OSERDESE1

0
1
0
1

D0
D1
D2
D3

CLK

DIVCLK

OFB

ISERDESE1

Q0
Q1
Q2
Q3

CLK

CLKB

DIVCLK

OFB

Clock Alignment
State Machine

INC

CLKFBIN

CLKIN1

PSINCDEC
PSEN

CLKFBOUT

CLKOUT0

CLKOUT1

CLKOUT2

CLKOUT3

CLKOUT4

CLKOUT5

BUFIO

BUFIO

BUFR

BUFG

BUFG

BUFG

RXCLKDIV

IDELAYCTRL

REFCLK

ISERDESE1

Q0
Q1
Q2
Q3

CLK

CLKB

OCLK

ISERDESE1

Q0
Q1
Q2
Q3

CLK

CLKB

OCLK

DDLY

DDLY

IODELAYE1

IODELAYE1

IDELAY_VALUE=0

IDELAY_VALUE=3

rxp

rxn

IBUFDS_DIFF_OUT

DRUComma Alignment8B/10B Decoder

clk clk clkp

Rx Elastic Buffer

rxrecclkclk125m

LogiCore Netlist

userclk
userclk2

8B/10B Encoder

clk

T Phase Buffer

clk125m_tx_bufrclk125m

OSERDESE1

D0
D1
D2
D3

CLK
DIVCLK

OSERDESE1

D0
D1
D2
D3
D4
D5

CLK
DIVCLK

OQ
txp

txn

OBUFDS

refclk125_p
refclk125_n

310 MHz clock source

clk

“Block” Level

“IO Bank” Level

625MHz

625MHz

625MHz,
90 degree
phase shift

125MHz125MHz

312.5MHz

 Same
I/O
Bank

http://www.xilinx.com

190 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 10: SGMII Support Using Asynchronous Oversampling over Virtex-6 FPGA LVDS

Figure 10-1 provides a detailed illustration of the clocking logic provided when the
TX_AND_RX_SHARE_CLOCK parameter is set to true. This necessitates that associated
SGMII Tx and Rx ports are placed into the same IO Bank.

Only a single SGMII port is illustrated but the clocks are identically wired up to all SGMII
ports sharing the same IO Bank.

A major component of the I/O Bank clocking logic is the MMCM module. This module
should be provided with a high quality 125 MHz clock reference as illustrated. The
MMCM is configured to provide the frequency related clocks defined in Table 10-1 which
are used by all SGMII ports within the respective I/O bank.

Table 10-1: MMCM Generated Clocks That Are Shared across the I/O Bank

MMCM
Output

Frequency
Clock
Buffer
Used

HDL Clock name Description

CLKOUT0 625MHz BUFIO clk625m_rx_bufio_0

A 625 MHz clock source with no phase shift. This is
provided on BUFIO clock routing to act as a clock source
for all ISERDES andOSERDES primitives.

The route from the MMCM to the ISERDES and OSERDES
primitives will use high performance clock routing (shown
in red on Figure 10-1).
This clock output is not affected by the dynamic MMCM
phase shift.

CLKOUT1 625MHz BUFIO clk625m_rx_bufio_90

A 625 MHz clock source with 90 degree phase shift with
respect to clk625m_rx_bufio_0. This is provided on BUFIO
clock routing to act as a clock source for the ISERDES
primitives.

The route from the MMCM to the ISERDES and OSERDES
primitives will use high performance clock routing (shown
in red on Figure 10-1).
This clock output is not affected by the dynamic MMCM
phase shift.

CLKOUT2 125MHz BUFR clk125m_tx_buf

A 125 MHz clock source with no phase shift relative to
clk625m_rx_bufio_0. This is used to satisfy the parallel to
serial clock phase relationships within the OSERDES
primitives used by the SGMII transmitter ports.

This clock output is not affected by the dynamic MMCM
phase shift.

CLKOUT3 312.5MHz BUFG clk312p5m

A 312.5 MHz global clock source, used for the DRU and the
receiver path within the LVDS transceiver.

This clock output is affected by the dynamic MMCM phase
shift (performed by the Clock Alignment State Machine).

CLKOUT4 625MHz BUFG clk625m

A 625 MHz global clock source, required by the DRU and
Clock Alignment State Machines.

This clock output is affected by the dynamic MMCM phase
shift (performed by the Clock Alignment State Machine).

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 191
UG155 March 1, 2011

Clocking Logic

Important notes relating to Figure 10-1:

• The differential 125 MHz clock (refclk125_p/n) that is routed to the CLKIN1 pin of the
MMCM should enter the FPGA on a global clock pin. This will enable the clock signal
to be routed to any number of device MMCM modules using dedicated clock routing.
The clock source should confirm to ethernet specifications (100 ppm of accuracy).

• Routing from the MMCM to the BUFIOs should utilize High Performance Clocks
(illustrated in red). A given IO Bank will have a choice of MMCM primitives that can
be selected to utilize this routing; please refer to the Virtex-6 FPGA Clocking Resources
User Guide (UG362).

• All BUFIOs used must be kept to a single clock region to minimize clock distortion.
Therefore, all SGMII Tx and Rx ports in use must be LOC-ed to a single IO Bank. Any
SGMII ports that are required to be placed in additional IO Banks will require a new
instantiation of IO Bank Level of the Example Design for each IO Bank utilized,
thereby duplicating all of this clocking logic.

• The phase of the global 625MHz clock source is automatically phase shifted by the
Clock Alignment State Machine, using the MMCM dynamic phase shifting function, in
order to correctly sample the received data from the oversampling ISERDES elements
to the fabric flip-flops of the DRU.

• Please note that the BUFIO and BUFR clock sources must NOT be subjected to
this dynamic phase shifting to allow the global 625 MHz clock source to be shifted
with respect to the BUFIO 625MHz clock sources.

• Furthermore, to allow the ISE® tools to meet setup and hold times across all
global clock buffer boundaries, this necessitates that the 312.5 MHz and 125 MHz
global clocks are also subjected to the same dynamic phase shifting as per the
global 625 MHz clock source.

• The OSERDES primitives used by the LVDS transceiver must use the BUFIO 625 MHz
clock source to provide the cleanest possible serial output (rather than using the
global 625 MHz clock source). This necessitates that the OSERDES parallel clock
(DIVCLK) must be provided from a 125 MHz regional clock buffer (BUFR). This
necessitates that the OSERDES parallel clock (CLKDIV) must be provided from a 125 MHz
regional clock buffer (BUFR) that is derived from the same MMCM. This requirement is
used to satisfy the parallel to serial clock phase relationships within the OSERDES
primitives: see the Virtex-6 FPGA User Guide (Virtex-6 FPGA product page).

• The Tx Phase Buffer sits between the 125 MHz global and regional clock domains in
the LVDS transceiver. This buffer is used to reliably transfer the 10-bit data between
these domains since there is no fixed phase relationship between these two clock
sources.

CLKOUT5 125MHz BUFG clk125m

A 125 MHz global clock source, used as the 125 MHz
reference clock for the entire core netlist and the transmitter
path of the LVDS transceivers.

This clock output is affected by the dynamic MMCM phase
shift (performed by the Clock Alignment State Machine).

CLKOUT6 Unused

Table 10-1: MMCM Generated Clocks That Are Shared across the I/O Bank (Cont’d)

MMCM
Output

Frequency
Clock
Buffer
Used

HDL Clock name Description

http://www.xilinx.com/support/documentation/virtex-6.htm
http://www.xilinx.com
http://www.xilinx.com/support/documentation/user_guides/ug362.pdf

192 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 10: SGMII Support Using Asynchronous Oversampling over Virtex-6 FPGA LVDS

• An IDELAY Controller module is provided in the IO Bank Clocking module for use
with the IDELAYs required on the receiver input serial path. This MUST be provided
with a 310 MHz clock source.

• The top level of the example design creates a 310 MHz clock source using an
additional MMCM: this logic is not illustrated in Figure 10-1. However, customers
can source this clock source by other methods.

• The 310 MHz clock source does not need to be duplicated once per bank; a single
source can be provided on global clock routing and shared across the entire
FPGA.

Clock Alignment State Machine

The remaining logical block illustrated in Figure 10-1 consists of a logical state machine to
dynamically control the variable phase shift which is applied to the global buffer MMCM
clock outputs. This is designed to deskew the clock domain crossing of the oversampled
data from the ISERDES elements, to the FPGA fabric flip-flops of the DRU.

The calibration circuit used by the clock phase alignment state machine requires the use of
a single IOB from the I/O bank (which cannot then be used for any other I/O). Within this
consumed IOB, a known clock data pattern (0101) is routed through an OSERDES to
provide serial data synchronous to the 625 MHz global clock source. This serial data is then
looped back through an ISERDES to capture the serial data synchronously to the
clk625m_rx_bufio_0 BUFIO clock source. The phase alignment state machine will look for
the correct 01010 clock pattern and use this to adjust the phase of the MMCM clock outputs
to phase align the global 625 MHz clock source with the clk625m_rx_bufio_0 BUFIO clock
(as seen at the ISERDES of the calibration circuit). This results in the reliable data transfer.

The consumed IOB used by the calibration circuitry uses internal loopback between the
OSERDES and ISERDES primitives; the loopback data does not appear on the physical pad
of the FPGA and no pad termination logic is required.

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 193
UG155 March 1, 2011

Clocking Logic

SGMII Tx and Rx Ports are in Different I/O Banks
X-Ref Target - Figure 10-2

Figure 10-2: Asynchronous Oversampling LVDS Clocking logic (Tx and Rx Placed in Different I/O Banks)

MMCM

I/O Bank Clocking

(receive)

OSERDESE1

0
1
0
1

D0
D1
D2
D3

CLK

DIVCLK

OFB

ISERDESE1

Q0
Q1
Q2
Q3

CLK

CLKB

DIVCLK

OFB

Clock Alignment
State Machine

INC

CLKFBIN

CLKIN1

PSINCDEC
PSEN

CLKFBOUT

CLKOUT0

CLKOUT1

CLKOUT2

CLKOUT3

CLKOUT4

CLKOUT5

BUFIO

BUFIO

BUFG

BUFG

BUFG

RXCLKDIV

IDELAYCTRL

REFCLK

ISERDESE1

Q0
Q1
Q2
Q3

CLK

CLKB

OCLK

ISERDESE1

Q0
Q1
Q2
Q3

CLK

CLKB

OCLK

DDLY

DDLY

IODELAYE1

IODELAYE1

IDELAY_VALUE=0

IDELAY_VALUE=3

rxp

rxn

IBUFDS_DIFF_OUT

DRUComma Alignment8B/10B Decoder

clk clk clkp

Rx Elastic Buffer

rxrecclkclk125m

LogiCore Netlist

userclk
userclk2

8B/10B Encoder

clk

T Phase Buffer

clk125m_tx_bufrclk125m

OSERDESE1

D0
D1
D2
D3

CLK
DIVCLK

OSERDESE1

D0
D1
D2
D3
D4
D5

CLK
DIVCLK

OQ
txp

txn

OBUFDS

refclk125_p
refclk125_n

310 MHz clock source

clk

“Block” Level

“IO Bank” Level

625MHz

625MHz

625MHz,
90 degree
phase shift

125MHz

125MHz

312.5MHz

Different
I/O
Banks

MMCM

CLKFBIN

CLKIN1

PSINCDEC
PSEN

CLKFBOUT

CLKOUT0

CLKOUT1

CLKOUT2

CLKOUT3

CLKOUT4

CLKOUT5

BUFIO

BUFR

GND

625MHz

I/O Bank Clocking

(transmit)

http://www.xilinx.com

194 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 10: SGMII Support Using Asynchronous Oversampling over Virtex-6 FPGA LVDS

Figure 10-2 provides a detailed illustration of the clocking logic provided when the
TX_AND_RX_SHARE_CLOCK parameter is set to false. This necessitates that associated
SGMII Tx and Rx ports are split up and placed into separate IO Banks.

Only a single SGMII port is illustrated but the clocks are identically wired up to all SGMII
ports of which the Rx SGMII ports share one bank and the Tx SGMII ports share a different
IO Bank.

Major components of the I/O Bank clocking logic are the two MMCM modules. These
should both be provided with the same high quality 125 MHz clock reference as illustrated.
The MMCMs are configured to provide the frequency related clocks defined in Table 10-2
and Table 10-3 which are used by all SGMII ports using these Rx and Tx IO banks.

Table 10-2: MMCM Generated Clocks That Are Shared across the Rx SGMII I/O Bank (plus global clocks)

MMCM
Output

Frequency
Clock
Buffer
Used

HDL Clock name Description

CLKOUT0 625MHz BUFIO clk625m_rx_bufio_0

A 625 MHz clock source with no phase shift. This is
provided on BUFIO clock routing to act as a clock source
for all ISERDES primitives (and the single OSERDES of the
Clock Alignment State Machine calibration circuitry).
The route from the MMCM to the ISERDES and OSERDES
primitives will use high performance clock routing (shown
in red on Figure 10-2).
This clock output is not affected by the dynamic MMCM
phase shift.

CLKOUT1 625MHz BUFIO clk625m_rx_bufio_90

A 625 MHz clock source with 90 degree phase shift with
respect to clk625m_rx_bufio_0. This is provided on BUFIO
clock routing to act as a clock source for the ISERDES
primitives.

The route from the MMCM to the ISERDES primitives will
use high performance clock routing (shown in red on
Figure 10-2).
This clock output is not affected by the dynamic MMCM
phase shift.

CLKOUT2 Unused

CLKOUT3 312.5MHz BUFG clk312p5m

A 312.5 MHz global clock source, used for the DRU and the
receiver path within the LVDS transceiver.

This clock output is affected by the dynamic MMCM phase
shift (performed by the Clock Alignment State Machine.)

CLKOUT4 625MHz BUFG clk625m

A 625 MHz global clock source, required by the DRU and
Clock Alignment State Machines.

This clock output is affected by the dynamic MMCM phase
shift (performed by the Clock Alignment State Machine.)

CLKOUT5 125MHz BUFG clk125m

A 125 MHz global clock source, used as the 125 MHz
reference clock for the entire core netlist and the transmitter
path of the LVDS transceivers.

This clock output is affected by the dynamic MMCM phase
shift (performed by the Clock Alignment State Machine.)

CLKOUT6 Unused

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 195
UG155 March 1, 2011

Clocking Logic

Important notes relating to Figure 10-2:

• The differential 125 MHz clock (refclk125_p/n) that is routed to the CLKIN1 pin of the
MMCM should enter the FPGA on a global clock pin. This will enable the clock signal
to be routed to any number of device MMCM modules using dedicated clock routing.
The clock source should confirm to ethernet specifications (100 ppm of accuracy).

• Routing from the MMCM to the BUFIOs should utilize High Performance Clocks
(illustrated in red). A given IO Bank will have a choice of MMCM primitives that can
be selected to utilize this routing; please refer to the Virtex-6 Clocking User Guide
(UG362)

• All BUFIOs used must be kept to a single clock region to minimize clock distortion.
Therefore:

• All Rx SGMII ports in use must be LOC-ed to a single IO Bank and are serviced by
the clk625m_rx_bufio_0 and clk625m_rx_bufio_90 clock sources.

• All SGMII Tx ports used must be LOC-ed to a different IO Bank and are serviced
by the clk625m_tx_bufio clock source.

• The phase of the global 625 MHz clock source (see Table 10-3) is automatically phase
shifted by the Clock Alignment State Machine, using the MMCM dynamic phase
shifting function, in order to correctly sample the received data from the
oversampling ISERDES elements to the fabric flip-flops of the DRU.

• Please note that the clk625m_rx_bufio_0 and clk625m_rx_bufio_09 BUFIO clock
sources must NOT be subjected to this dynamic phase shifting to allow the global
625 MHz clock source to be shifted with respect to these BUFIO 625 MHz clock
sources.

• Furthermore, to allow the ISE® tools to meet setup and hold times across all
global clock buffer boundaries, this necessitates that the 312.5 MHz and 125 MHz

Table 10-3: MMCM Generated Clocks That Are Shared across the Tx I/O Bank

MMCM
Output

Frequency
Clock
Buffer
used

HDL Clock name Description

CLKOUT0 625MHz BUFIO clk625m_tx_bufio

A 625 MHz clock source. This is provided on BUFIO clock
routing to act as a clock source for all OSERDES primitives.

The route from the MMCM to the ISERDES and OSERDES
primitives will use high performance clock routing (shown
in red on Figure 10-2).

CLKOUT1 125MHz BUFR clk125m_tx_bufr

A 125MHz clock source with no phase shift relative to
clk625m_tx_bufio. This is used to satisfy the parallel to
serial clock phase relationships within the OSERDES
primitives used by the SGMII transmitter ports.

CLKOUT2 Unused

CLKOUT3 Unused

CLKOUT4 Unused

CLKOUT5 Unused

CLKOUT6 Unused

http://www.xilinx.com
http://www.xilinx.com/support/documentation/user_guides/ug362.pdf

196 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 10: SGMII Support Using Asynchronous Oversampling over Virtex-6 FPGA LVDS

global clocks of Table 10-3 are also subjected to the same dynamic phase shifting
as per the global 625 MHz clock source.

• The OSERDES primitives used by the LVDS transceiver must use the clk625m_tx_bufio
BUFIO 625 MHz clock source to provide the cleanest possible serial output (rather
than using the global 625 MHz clock source). This necessitates that the OSERDES
parallel clock (DIVCLK) must be provided from a 125 MHz regional clock
(clk125m_tx_bufr). This necessitates that the OSERDES parallel clock (CLKDIV) must be
provided from a 125 MHz regional clock (clk125m_tx_bufr) that is derived from the same
MMCM. This requirement is used to satisfy the parallel to serial clock phase relationships
within the OSERDES primitives: see the Virtex-6 FPGA User Guide (Virtex-6 FPGA
product page).

• The sits between the 125 MHz global and regional clock domains in the transmitter of
the LVDS transceiver. This buffer is used to reliably transfer the 10-bit data between
these domains since there is no fixed phase relationship between these two clock
sources.

• An IDELAY Controller module is provided in the IO Bank Clocking module for use
with the IDELAYs required on the receiver input serial path. This MUST be provided
with a 310 MHz clock source.

• The top level of the example design creates a 310 MHz clock source using an
additional MMCM: this logic is not illustrated in Figure 10-2. However, customers
can source this clock source by other methods.

• The 310 MHz clock source does not need to be duplicated once per bank; a single
source can be provided on global clock routing and shared across the entire
FPGA.

http://www.xilinx.com/support/documentation/virtex-6.htm
http://www.xilinx.com/support/documentation/virtex-6.htm
http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 197
UG155 March 1, 2011

Layout and Placement

Clock Alignment State Machine

The remaining logical block illustrated in Figure 10-2 consists of a logical state machine to
dynamically control the variable phase shift which is applied to the global buffer MMCM
clock outputs. This is designed to deskew the clock domain crossing of the oversampled
data from the ISERDES elements, to the FPGA fabric flip-flops of the DRU.

The calibration circuit used by the clock phase alignment state machine requires the use of
a single IOB from the I/O bank (which cannot then be used for any other I/O). Within this
consumed IOB, a known clock data pattern (0101) is routed through an OSERDES to
provide serial data synchronous to the 625 MHz global clock source. This serial data is then
looped back through an ISERDES to capture the serial data synchronously to the
clk625m_rx_bufio_0 BUFIO clock source. The phase alignment state machine will look for
the correct 01010 clock pattern and use this to adjust the phase of the MMCM clock outputs
to phase align the global 625 MHz clock source with the clk625m_rx_bufio_0 BUFIO clock
(as seen at the ISERDES of the calibration circuit). This results in the reliable data transfer.

The consumed IOB used by the calibration circuitry uses internal loopback between the
OSERDES and ISERDES primitives; the loopback data does not appear on the physical pad
of the FPGA and no pad termination logic is required.

Layout and Placement
A hands on approach is required for placing this design. The steps provided here are a
useful guide, but other knowledge is assumed. To aid with these guidelines, users of the
core in this mode would benefit from:

• A detailed understanding of Virtex-6 FPGA Clocking Resources and SelectIO
Resources. See Virtex-6 FPGA User Guide (Virtex-6 FPGA product page).

• A working knowledge of the Xilinx PlanAhead™ tool (or alternatively FPGA Editor)
in order to locate particular clock buffers and slices.

Guidelines
1. Select an IO Bank in your chosen device for use with for your transmitter and receiver

SGMII ports (this will be either in the same bank, or with the transmitter ports in a
separate bank: see Clocking Logic).

2. LOC down the BUFIO and BUFR clock buffers that are required:

a. Identify the precise BUFIOs and BUFRs that are associated with and available for
the chosen IO Bank(s): there are four available BUFIOs per bank, and up to 8
available BUFRs per bank.

b. LOC down the two 625 MHz clock BUFIO buffers that are required for the
clk625m_rx_bufio_0 and clk625m_rx_bufio_90 clock nets (see Table 10-1 or
Table 10-2) using two of the available BUFIOs. The following UCF syntax achieves this
in the example design provided:

INST "core_bank_wrapper/clock_logic_per_bank/clk625m_rx_bufio_0_inst" LOC =BUFIODQS_X0Y1;
INST "core_bank_wrapper/clock_logic_per_bank/clk625m_rx_bufio_90_inst" LOC =BUFIODQS_X0Y2;

If necessary (only when using the SGMII Tx and Rx Ports are in Different I/O Banks,
page 193 clocking scheme) then LOC down the BUFIO for the clk625m_tx_bufio clock
net (see Table 10-3) to one of the BUFIOs associated with the transmitter IO Bank. Use the
following UCF syntax as a guide:

INST "core_bank_wrapper/clock_logic_per_bank/*clk625m_tx_bufio_inst" LOC = BUFIODQS_XxYy;

http://www.xilinx.com/support/documentation/virtex-6.htm
http://www.xilinx.com

198 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 10: SGMII Support Using Asynchronous Oversampling over Virtex-6 FPGA LVDS

c. LOC down the BUFR buffer that is required for the clk125m_tx_buf clock net (see
Table 10-1 or Table 10-3) using just one of the available BUFRs. The following UCF
syntax achieves this in the example design provided:

INST "core_bank_wrapper/clock_logic_per_bank/*regional_oserdes_clk" LOC = BUFR_X0Y1;

3. A single IDELAYCTRL is instantiated by the IO Bank Level of the Example Design for
use with a single IO Bank. This primitive needs to be associated with the various
IODELAYE1 elements used in that IO Bank. The following UCF syntax achieves this in
the example design provided:

Link the IDELAY Controller to the IODELAYs of the I/O Bank
INST "core_bank_wrapper/clock_logic_per_bank/dlyctrl" IODELAY_GROUP = "oversample_bank12";
INST
"core_bank_wrapper/instantiate_ethernet_ports[*].core_wrapper/transceiver_inst/lvds_rx/IOD
ELAYE1_RXP"
IODELAY_GROUP = "oversample_bank12";
INST
"core_bank_wrapper/instantiate_ethernet_ports[*].core_wrapper/transceiver_inst/lvds_rx/IOD
ELAYE1_RXN"
IODELAY_GROUP = "oversample_bank12";

4. LOC down the RLOC origin of the DRU module to a particular slice for every SGMII
port in use.

The oversampled data is transferred from the ISERDESE1 oversampling elements into
the DRU module at 625 MHz; a proportion of the logic with the DRU is required to run
at 625 MHz. To help the tools achieve this, flip-flips of this logic are placed relatively to
each other using RLOC constraints embedded in the HDL of the DRU. It now remains
for you to LOC the origin of this RLOC group to a particular slice in the design.

The slice assigned to the RLOC origin for each SGMII port should be to the slice at the
lower left of the group of two slices which are immediately to the right of the
oversampling ISERDESE1 pair. In turn this ISERDESE1 pair will be immediately to the
right of the differential LVDS pair which is used for the receiver ports of the SGMII.

The following UCF syntax achieves this in the example design provided for the SGMII
numbered as 0:

Tx
Net txp<2> LOC = AK33;
Net txn<2> LOC = AK32;

Rx
Net rxp<2> LOC = AL31;
Net rxn<2> LOC = AK31;

Place the critical 625MHz sampling flip-flops adjacent to the oversampling ISERDESE1
elements
INST
"*core_bank_wrapper/instantiate_ethernet_ports[2].core_wrapper/transceiver_inst/lvds_rx/dy
namic_realignment/ii_0" RLOC_ORIGIN=X0Y8;

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 199
UG155 March 1, 2011

Layout and Placement

Figure 10-3 illustrates an FPGA Editor screen shot capture to illustrate the RLOC
Origin description.

X-Ref Target - Figure 10-3R

Figure 10-3: RLOC Origin Slice Location Captured from FPGA Editor

DifferentialDifferential
LVDSLVDS
InputInput

ISERDESE1ISERDESE1
pairpair

RLOC OriginRLOC Origin
HEREHERE

http://www.xilinx.com

200 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 10: SGMII Support Using Asynchronous Oversampling over Virtex-6 FPGA LVDS

Example Design Implementation
Chapter 4, CORE Generator Deliverables provides a full list and description of the
directory and file structure that is provided with the core, including the location of the
HDL example design provided.

Figure 10-4 illustrates the HDL example design that is provided for the SGMII
Asynchronous Oversampling over Virtex-6 FPGA LVDS implementation. As illustrated,
the example is split between several hierarchical layers.

The top level of the example design creates a specific example that can be simulated,
synthesized and implemented.

The IO Bank hierarchical level is designed so that it can be instantiated directly into
customer designs. As the name of the IO Bank suggests, this logic can be shared across a
single Virtex-6 FPGA IO Bank. This IO Bank can be used for multiple instances of the core
with LVDS I/O to create several independent SGMII ports (four ports are delivered by the
example design by default as shown in Figure 10-4). Additional ports can be added to the
IO Bank simply by editing a single parameter when instancing the IO Bank hierarchical
level in your design.

The core netlist in this implementation remains identical to that of Ethernet 1000BASE-X
PCS/PMA or SGMII Using A Device Specific Transceiver, described in Chapter 6, Core
Architecture.

Also illustrated in Figure 10-4, the HDL example design for this implementation provides
additional logic to form the "LVDS transceiver" module, which fully replaces the
functionality otherwise provided by a Virtex-6 FPGA GTX Transceiver. The LVDS
transceiver block contains IODELAYs and ISERDES elements along with a Data Recovery
Unit (DRU). This uses the Virtex-6 ISERDES elements in a new asynchronous
oversampling mode as described in XAPP 881 1.25Gbs 4x Asynchronous Oversampling over
Virtex-6 LVDS. The full transceiver functionality is then completed with Comma
Alignment, 8B10B Decoder and Rx Elastic buffer blocks.

The example design logical blocks and files are discussed in detail in the next sections.

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 201
UG155 March 1, 2011

Example Design Implementation

.

X-Ref Target - Figure 10-4

Figure 10-4: Virtex-6 FPGA Asynchronous Oversampling Example Design

Ethernet

1000BASE-X

PCS/PMA

Core

GMII

IOBs

In

IOBs

Out

GMII-style

8-bit I/F

SGMII

Adaptation

Module

component_name_iobank

component_name_block

LV
D

S
 t

ra
n

sc
e

iv
e

r

Serial GMII
(SGMII)

Ethernet

1000BASE-X

PCS/PMA

Core

GMII

IOBs

In

IOBs

Out

GMII-style

8-bit I/F

SGMII

Adaptation

Module

component_name_block

LV
D

S
 t

ra
n
sc

e
iv

e
r

Serial GMII
(SGMII)

Ethernet

1000BASE-X

PCS/PMA

Core

GMII

IOBs

In

IOBs

Out

GMII-style

8-bit I/F

SGMII

Adaptation

Module

component_name_block

LV
D

S
 t

ra
n

sc
e

iv
e

r

Serial GMII
(SGMII)

Ethernet

1000BASE-X

PCS/PMA

Core

GMII

IOBs

In

IOBs

Out

GMII-style

8-bit I/F

SGMII

Adaptation

Module

component_name_block

LV
D

S
 t

ra
n

sc
e

iv
e

r

Serial GMII
(SGMII)

MMCM
clock

alignment
state

machine

clock buffers

various clock
frequencies
and phases

OSERDES

ISERDES

I/O Bank Clocking

component_name_example_design

Serial SGMII

(SGMII)

8B/10B

Encoder OSERDES

IODELAYISERDES

DRU
Comma

Alignment

Tx
Phase
Buffer

8B/10B
Decoder

IODELAYISERDES

LVDS transceiver

Rx
Elastic
Buffer

http://www.xilinx.com

202 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 10: SGMII Support Using Asynchronous Oversampling over Virtex-6 FPGA LVDS

Example Design Top Level
The top-level example design for the core with SGMII using Asynchronous Oversampling
over Virtex-6 FPGA LVDS is described in the following files:

VHDL

<project_dir>/<component_name>/example_design/<component_name>_example
_design.vhd

Verilog

<project_dir>/<component_name>/example_design/<component_name>_example
_design.v

The example design HDL top level contains the following:

• An instance of the IO Bank level HDL

• External GMII logic, including IOB and DDR register instances, where required

• The parameter NUM_ETH_PORTS; this value is set to 4 by default to create four unique
SGMII ports as illustrated in Figure 10-4. To decrease or increase the number of ports,
simply change the value of this parameter.

This module adds I/O logic to the GMII of the SGMII ports. This is included only to create
a standalone design which can be implemented in an FPGA and simulated in both
functional and timing simulation - for the purposes of providing a complete SGMII design
example.

Please discard this level of hierarchy and instantiate the IO Bank Level of the Example
Design in your own design.

IO Bank Level of the Example Design
The IO Bank level for the core with SGMII using Asynchronous Oversampling over Virtex-
6 FPGA LVDS is described in the following files:

VHDL

<project_dir>/<component_name>/example_design/

<component_name>_iobank.vhd

Verilog

<project_dir>/<component_name>/example_design/

<component_name>_iobank.v

The IO Bank level HDL contains the following:

• The parameter NUM_ETH_PORTS; this value is set to 4 by default to create four unique
SGMII ports (as illustrated in Figure 10-4). To decrease or increase the number of
SGMII ports used in a single IO Bank, simply change the value of this parameter
when instancing this module.

• Instances of the Block Level to create unique SGMII ports (the number of instances is
set by the NUM_ETH_PORTS parameter).

• A single instance of the logic.

This is the most useful part of the example design and should be instantiated in all
customer designs that use the core in this mode.

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 203
UG155 March 1, 2011

Example Design Implementation

Up to ten separate SGMII ports can be achieved in most FPGA device IO Banks. If
additional SGMII ports are required (to be placed in additional IO Banks), then a new
instance of the entire IO Bank Level component is required per I/O Bank in use.

Block Level of the Example Design
The following files describe the block level for the Ethernet 1000BASE-X PCS/PMA core in
SGMII mode:

VHDL

<project_dir>/<component_name>/example_design/

<component_name>_block.vhd

Verilog

<project_dir>/<component_name>/example_design/<component_name>_block.v

The block level of the example design connects together all of the components for a single
SGMII port. These are:

A core netlist (introduced in Ethernet 1000BASE-X PCS/PMA or SGMII Using A Device
Specific Transceiver).

• The LVDS Transceiver, connected to the PHY side of the core netlist, to perform the
SERDES functionality using the Asynchronous Oversampling method.

• The SGMII Adaptation Module Top Level, connected to the MAC (GMII) side of the
core netlist, containing:

• The clock management logic required to enable the SGMII example design to
operate at 10 Mbps, 100 Mbps, and 1 Gbps.

• GMII logic for both transmitter and receiver paths; the GMII style 8-bit interface is
run at 125 MHz for 1 Gbps operation; 12.5 MHz for 100 Mbps operation; 1.25
MHz for 10 Mbps operation.

LVDS Transceiver
The LVDS transceiver block fully replaces the functionality otherwise provided by a
Virtex-6 FPGA GTX Transceiver. Please note that this is ONLY possible at a serial line rate
of 1.25 Gbps. See Figure 10-4 for a block diagram of the LVDS transceiver. This is split up
into several sub-blocks which are described in further detail in the following sections.

On the transmitter path, data sourced by the core netlist is routed through the 8B/10B
Encoder to translate the 8-bit code groups into 10-bit data. The 10-bit data is then passed
through the Tx Phase Buffer, then routed into the parallel interfaces of a Virtex-6 FPGA
primitive master slave pair; the parallel 10-bit data is then clocked out serially at a line rate
of 1.25 Gbps.

The receiver path has further complexity. Serial data received at 1.25 Gbps is routed in
parallel to two IODELAYs and ISERDES elements as illustrated in Figure 10-4. Each of the
two ISERDES elements is used in a new oversampling mode to sample the input data. By
controlling the respective routing delays through the IODELAYs prior to the ISERDES, the
two ISERDES devices are each able to oversample at different points in time, resulting in a
combination of four times oversampling of each bit received. The oversampled data is then

http://www.xilinx.com

204 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 10: SGMII Support Using Asynchronous Oversampling over Virtex-6 FPGA LVDS

routed through a Data Realignment Unit (DRU) to detect the correct sampling point and to
recover parallel data.

The functionality provided by the IODELAYs and ISERDES and Data Realignment Unit
(DRU) is covered in Xilinx Application Note XAPP881, 1.25Gbps 4x Asynchronous
Oversampling over Virtex-6 LVDS.

Having recovered parallel data from the serial stream, the Comma Alignment module,
next on the receiver path, will detect specific 8b10b bit patterns (commas) and use these to
realign the 10-bit parallel data to contain unique 8b10b code groups. These code groups are
then routed through the 8B/10B Encoder module to obtain the unencoded 8-bit code
groups that the core netlist can accept.

The final piece of the receiver path is to use a 8B/10B Encoder. The data path thus far, from
the DRU through to the , is synchronous to a 312.5 MHz clock source; a clock enable
sourced from the DRU indicates valid data. Using the 312.5 MHz clock and associated
clock enable, data is written into the elastic buffer. Data is read out of the elastic buffer on
a pure 125 MHz clock frequency; this is the clock source used for the transmitter path and
for all logic within the core netlist.

The following files describe the top level of the hierarchal levels of the LVDS transceiver:

VHDL

<project_dir>/<component_name>/example_design/lvds_transceiver/

lvds_transceiver.vhd

<project_dir>/<component_name>/example_design/lvds_transceiver/tx/

lvds_transceiver_tx.vhd

<project_dir>/<component_name>/example_design/lvds_transceiver/rx/

lvds_transceiver_rx.vhd

Verilog

<project_dir>/<component_name>/example_design/lvds_transceiver/

lvds_transceiver.v

<project_dir>/<component_name>/example_design/lvds_transceiver/tx/

lvds_transceiver_tx.v

<project_dir>/<component_name>/example_design/lvds_transceiver/rx/

lvds_transceiver_rx.v

8B/10B Encoder

The implemented 8b/10b coding scheme is an industry standard, DC-balanced, byte-
oriented transmission code ideally suited for high-speed local area networks and serial
data links. As such, the coding scheme is used in several networking standards, including
ethernet.

The 8B/10B Encoder block is taken from Xilinx Application Note XAPP1122,
Parameterizable 8b10b Encoder.

XAPP1122 provides two possible approaches: a choice of a block RAM-based
implementation or a LUT-based implementation. The SGMII LVDS example design uses
the LUT-based implementation, but XAPP1122 can be used to swap this for the block
RAM-based approach if this better suits device logic resources.

The following files describe the 8B/10B Encoder:

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 205
UG155 March 1, 2011

Example Design Implementation

VHDL

<project_dir>/<component_name>/example_design/lvds_transceiver/tx/

encode_8b10b_pkg.vhd

encode_8b10b_lut_base.vhd

Verilog

<project_dir>/<component_name>/example_design/lvds_transceiver/tx/

encode_8b10b_lut_base.v

Tx Phase Buffer

The parallel data that is clocked into the OSERDES must use a 125 MHz BUFR regional
clock buffer. But the data received from the core netlist uses a 125 MHz global clock buffer
(BUFG). The job of the Tx Phase Buffer is therefore to account for the phase relationship
between the BUFG and BUFR 125 MHz clocks.

Data is written into the Tx Phase Buffer synchronously to the global clock and read out
synchronously to the regional clock. Since these clocks are derived from the same clock
source (see Clocking Logic), there is no frequency drift. So the Tx Phase Buffer is
implemented as a simple asynchronous FIFO. The occupancy of the FIFO is kept low to
minimize latency and no precautions are taken against underflow/overflow conditions.

The following files describe the Tx Phase FIFO:

VHDL

<project_dir>/<component_name>/example_design/lvds_transceiver/tx/

tx_phase_buffer.vhd

Verilog

<project_dir>/<component_name>/example_design/lvds_transceiver/tx/

tx_phase_buffer.v

OSERDES

The OSERDES primitive (actually a MASTER-SLAVE pair of primitives) is used in a
standard mode: 10-bit input parallel data synchronous to a 125 MHz regional clock buffer
source (BUFR) is clocked into the OSERDES. Internally within the OSERDES, the data is
serialized and output at a rate of 1.25 Gbps. The clock source used for the serial data is a
625 MHz clock source using a BUFIO regional clock buffer at double data rate.

• The 625 MHz BUFIO and 125 MHz BUFR clocks for serial and parallel data are both
derived from the same MMCM (see IO Bank Clocking) so there is no frequency drift.

• The use of the BUFIO clock buffer for the serial data rate provides the OSERDES
primitives with a clock of lower duty cycle distortion than could be obtained by using
a global clock source.

• The use of the BUFR regional clock buffer for the parallel clock is a requirement of the
OSERDES: when using a BUFIO clock for serial data, a BUFR clock source, derived
from the same MMCM source, must be used for the parallel data to satisfy clock phase
alignment constraints within the OSERDES primitives.

http://www.xilinx.com

206 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 10: SGMII Support Using Asynchronous Oversampling over Virtex-6 FPGA LVDS

IODELAYs and ISERDES

This logic, along with the DRU, have been taken from the accompanying reference design
to Xilinx Application Note XAPP881, 1.25Gbps 4x Asynchronous Oversampling over Virtex-6
LVDS.

The ISERDES primitives are used in a new oversampling mode to oversample the input
data; the ISERDES can perform four times oversampling with respect to the input
reference clock. The reference clock used in this implementation is 625 MHz (half the
frequency of the serial data rate), resulting in each serial bit received being sampled,
nominally, twice by each ISERDES.

By controlling the respective routing delays through the IODELAYs prior to the two
ISERDES elements, the two ISERDES devices are each able to sample the input data at
different points in time, resulting in a combination of four times oversampling of each data
bit received. See IODELAYs and ISERDES.

Data Realignment Unit (DRU)

This logic, along with the IODELAY and ISERDES logic, have been taken from the
accompanying reference design to Xilinx Application Note XAPP881, 1.25Gbps 4x
Asynchronous Oversampling over Virtex-6 LVDS. See .

The four times oversampled data from the ISERDES pair is received synchronously to the
625 MHz ISERDES reference clock. Using a voter scheme that compares the oversampled
data and selects the best data sample, the module will output parallel data synchronously
to a 312.5 MHz clock source (frequency related to the 625 MHz clock). A clock enable will
be driven with the 312 MHz clock to indicate valid data to the downstream modules.

The following files describe the DRU:

VHDL

<project_dir>/<component_name>/example_design/lvds_transceiver/rx/

dru.vhd

Verilog

<project_dir>/<component_name>/example_design/lvds_transceiver/rx/

dru.v

Comma Alignment

Data received from the DRU is in parallel form, but the bits of the parallel bus have not
been aligned into correct 10-bit word boundaries.

By detecting a unique 7-bit serial sequence known as a ‘comma’ (however the commas
may fall across the 10-bit parallel words), the comma alignment logic will control bit
shifting of the data so as to provide correct alignment to the data leaving the module. Note
that the bitslip input of the DRU is driven by the comma alignment module’s state
machine, so the actual bit shift logic is performed by the DRU.

In 8b10b encoding, both +ve and -ve bit sequences exist for each defined code group. The
comma alignment logic is able to detect and control realignment on both +ve and -ve
comma versions.

The following files describe the Comma Alignment block:

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 207
UG155 March 1, 2011

Example Design Implementation

VHDL

<project_dir>/<component_name>/example_design/lvds_transceiver/rx/

bit_alignment.vhd

Verilog

<project_dir>/<component_name>/example_design/lvds_transceiver/rx/

bit_alignment.v

8B/10B Decoder

The implemented 8b/10b coding scheme is an industry standard, DC-balanced, byte-
oriented transmission code ideally suited for high-speed local area networks and serial
data links. As such, the coding scheme is used in several networking standards, including
ethernet.

The 8B/10B Decoder block is taken from Xilinx Application Note XAPP1112,
Parameterizable 8b10b Decoder.

XAPP1112 provides two possible approaches: a choice of a block RAM-based
implementation or a LUT-based implementation. The SGMII LVDS example design uses
the LUT-based implementation, but XAPP1112 can be used to swap this for the block
RAM-based approach if this better suits device logic resources.

The following files describe the 8B/10B Decoder:

VHDL

<project_dir>/<component_name>/example_design/lvds_transceiver/rx/

decode_8b10b_pkg.vhd

decode_8b10b_lut_base.vhd

Verilog

<project_dir>/<component_name>/example_design/lvds_transceiver/rx/

decode_8b10b_lut_base.v

Rx Elastic Buffer

The final piece of the receiver path is to use a Rx Elastic Buffer. The data path thus far, from
the DRU through to the 8B/10B Encoder, is synchronous to a 312.5 MHz clock source; a
clock enable sourced from the DRU indicates valid data. Using the 312.5 MHz clock and
associated clock enable, data is written into the elastic buffer. The clock enable will be
active, on average, to clock enable the data stream written into the buffer at a rate of 125
MHz.

Data is read out of the elastic buffer on a pure 125 MHz clock frequency; this is the clock
source used for the transmitter path and for all logic with the core netlist. This clock is
asynchronous to the resultant 125 MHz data rate received by the LVDS receiver; ethernet
clock sources are defined to be accurate to 100 parts per million.

To deal with the asynchronous nature of the data rates on its write and read ports, the
Receiver Elastic Buffer will attempt to maintain a constant occupancy by inserting or
removing Idle sequences as necessary during the Inter-Packet Gap between received
ethernet frames. This causes no data corruption to the ethernet frames themselves.

The following files describe the Rx Elastic buffer:

http://www.xilinx.com

208 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 10: SGMII Support Using Asynchronous Oversampling over Virtex-6 FPGA LVDS

VHDL

<project_dir>/<component_name>/example_design/lvds_transceiver/rx/

rx_elastic_buffer.vhd

Verilog

<project_dir>/<component_name>/example_design/lvds_transceiver/rx/

rx_elastic_buffer.v

IO Bank Clocking
Figure 10-4 also illustrates the inclusion of the IO Bank Clocking module which creates all
of the clock frequencies and clock phases that are required by the LVDS transceiver block.

The MMCM and associated logic in this module are based on clocking logic present within
Xilinx Application Note XAPP881, 1.25Gbps 4x Asynchronous Oversampling over Virtex-6
LVDS.

As the name of the block suggests, this logic can be shared across a single Virtex-6 FPGA IO
Bank. This IO Bank can be used for multiple instances of the core with LVDS I/O to create
several independent SGMII ports (as illustrated in Figure 10-4).

The HDL for this file contains the parameter TX_AND_RX_SHARE_CLOCK; this value is
set to true by default, implying that the Tx and Rx logic of the SGMII ports will share the
BUFIO clocks.

• To minimize jitter in this implementation, the BUFIO clocks used by the logic must
only be used across a single Virtex-6 FPGA I/O Bank.

Therefore, setting the parameter TX_AND_RX_SHARE_CLOCK to true necessitates that
the transmitter and receiver ports of the SGMII are LOC-ed into the same Virtex-6 FPGA
I/O bank.

Setting the parameter TX_AND_RX_SHARE_CLOCK to false will duplicate the clock
circuitry that is required by the transmitter, allowing the receiver and transmitter ports to
be separated and placed into different Virtex-6 FPGA I/O banks.

The main component of the I/O Bank clocking logic required by the LVDS receiver is an
MMCM module. This should be provided with a high quality 125 MHz clock reference.
The MMCM is configured to provide the frequency related clocks which are described
fully in Clocking Logic, page 188.

The remaining logic within this block consists of a logical state machine to dynamically
control the variable phase shift which is applied to certain MMCM clock outputs. This is
designed to deskew the clock domain crossing of the oversampled data from the ISERDES
elements, to the FPGA fabric flip-flops of the DRU and is described in the Clock Alignment
State Machinee subsection of Clocking Logic.

The following files describe the logic provided in the IO Bank Clocking block:

VHDL

<project_dir>/<component_name>/example_design/iobank_clocking/

iobank_clocking.vhd

bus_align_machine.vhd

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 209
UG155 March 1, 2011

Example Design Implementation

Verilog

<project_dir>/<component_name>/example_design/iobank_clocking/

iobank_clocking.v

bus_align_machine.v

SGMII Adaptation Module
The SGMII Adaptation Module is described in the following files:

VHDL

<project_dir>/<component_name>/example_design/sgmii_adapt/

sgmii_adapt.vhd

clk_gen.vhd

johnson_cntr.vhd

tx_rate_adapt.vhd

rx_rate_adapt.vhd

Verilog

<project_dir>/<component_name>/example_design/sgmii_adapt/

sgmii_adapt.v

clk_gen.v

johnson_cntr.v

tx_rate_adapt.v

rx_rate_adapt.v

The GMII of the core always operates at 125 MHz. The core makes no differentiation
between the three speeds of operation; it always effectively operates at 1 Gbps. However,
at 100 Mbps, every data byte run through the core should be repeated 10 times to achieve
the required bit rate; at 10 Mbps, each data byte run through the core should be repeated
100 times to achieve the required bit rate. Dealing with this repetition of bytes is the
function of the SGMII adaptation module and its component blocks.

The SGMII adaptation module and component blocks are described in detail in the
Additional Client-Side SGMII Logic Provided in the Example Design.

http://www.xilinx.com

210 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 10: SGMII Support Using Asynchronous Oversampling over Virtex-6 FPGA LVDS

Demonstration Test Bench
Figure 10-5 illustrates the demonstration test bench for the Ethernet 1000BASE-X
PCS/PMA or SGMII core in SGMII mode with the Asynchronous Oversampling over
Virtex-6 FPGA LVDS. The demonstration test bench is a simple VHDL or Verilog program
to exercise the example design and the core itself.

The top-level test bench entity instantiates the example design for the core, which is the
Device Under Test (DUT). A stimulus block (per SGMII port) is also instantiated and
clocks, resets and test bench semaphores are created. The following files describe the top-
level of the demonstration test bench.

X-Ref Target - Figure 10-5

Figure 10-5: Demonstration Test Bench for the Ethernet 1000BASE-X PCS/PMA or SGMII Core in SGMII
Using Asynchronous Oversampling with Virtex-6 FPGA LVDS

LVDS
Transceiver

Demonstration Test Bench

SGMII
Monitor

(Serial to Parallel
Conversion and

8B10B
Decoding)

SGMII
Stimulus

(8B10B Encoding
and Parallel to

Serial
Conversion)

GMII
Stimulus

GMII
Monitor

GMII

DUT

Configuration
Stimulus

per
SGMII
port

Control and Data Structures

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 211
UG155 March 1, 2011

Example Design Implementation

VHDL

<project_dir>/<component_name>/simulation/demo_tb.vhd

Verilog

<project_dir>/<component_name>/simulation/demo_tb.v

The stimulus block entity, instantiated from within the top-level test bench, creates the
Ethernet stimulus in the form of four Ethernet frames, which are injected into GMII and
SGMII serial interfaces of the DUT. The output from the DUT is also monitored for errors.
The following files describe the stimulus block of the demonstration test bench.

VHDL

<project_dir>/<component_name>/simulation/stimulus_tb.vhd

Verilog

<project_dir>/<component_name>/simulation/stimulus_tb.v

Together, the top-level test bench file and the stimulus block combine to provide the full
test bench functionality which is described in the sections that follow.

Test Bench Functionality

The demonstration test bench performs the following tasks:

• Input clock signals are generated.

• A reset is applied to the example design.

• Then, for each SGMII port instantiated in the example design:

• The core is configured through its MDIO interface by injecting an MDIO frame
into the example design. This disables Auto-Negotiation and takes the core out of
Isolate state.

• The following frames are injected into the GMII transmitter by the GMII stimulus
block at 1 Gbps.

- the first is a minimum length frame

- the second is a type frame

- the third is an errored frame

- the fourth is a padded frame

• The data received at the SGMII serial LVDS transceiver interface is 8B10B
decoded. The resulting frames are checked by the SGMII Monitor against the
stimulus frames injected into the GMII transmitter to ensure data integrity.

• The same four frames are generated by the SGMII Stimulus block. These are
8B10B encoded and injected into the SGMII serial LVDS transceiver interface.

• Data frames received at the GMII receiver are checked by the GMII Monitor
against the stimulus frames injected into the LVDS transceiver to ensure data
integrity.

http://www.xilinx.com

212 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 10: SGMII Support Using Asynchronous Oversampling over Virtex-6 FPGA LVDS

Customizing the Test Bench
Note: the changes described in the following subsections will be applied simultaneously to all
SGMII ports instantiated in the example design.

Changing Frame Data

You can change the contents of the four frames used by the demonstration test bench by
changing the data and valid fields for each frame defined in the stimulus block. New frames
can be added by defining a new frame of data. Modified frames are automatically updated
in both stimulus and monitor functions.

Changing Frame Error Status

Errors can be inserted into any of the predefined frames in any position by setting the error
field to ‘1’ in any column of that frame. Injected errors are automatically updated in both
stimulus and monitor functions.

Changing the Core Configuration

The configuration of the Ethernet 1000BASE-X PCS/PMA core used in the demonstration
test bench can be altered.

Caution! Certain configurations of the core cause the test bench to fail, or to cause processes
to run indefinitely. For example, the demonstration test bench will not Auto-Negotiate with the
design example. Determine the configurations that can safely be used with the test bench.

The core can be reconfigured by editing the injected MDIO frame in the demonstration test
bench top level. See Chapter 12, Configuration and Status for information about using the
MDIO interface.

Changing the Operational Speed

SGMII can be used to carry Ethernet traffic at 10 Mbps, 100 Mbps or 1 Gbps. By default, the
demonstration test bench is configured to operate at 1 Gbps. The speed of both the
example design and test bench can be set to the desired operational speed by editing the
following settings, recompiling the test bench, then running the simulation again.

1 Gbps Operation

set speed_is_10_100 to logic 0

100 Mbps Operation

set speed_is_10_100 to logic 1

set speed_is_100 to logic 1

10 Mbps Operation

set speed_is_10_100 to logic 1

set speed_is_100 to logic 0

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 213
UG155 March 1, 2011

Chapter 11

Using the Client-Side GMII Data Path

This chapter provides general guidelines for using the client-side GMII of the Ethernet
1000BASE-X PCS/PMA or SGMII core. In most applications, the client-side GMII is
expected to be used as an internal interface, connecting to either:

• Proprietary customer logic

This chapter will described the GMII-styled interface that is present on the netlist of
the core. This interface operates identically for both 1000BASE-X and SGMII
standards.

The chapter will then also focus on additional optional logic (which is provided by the
example design delivered with the core when SGMII mode is selected). This logic will
enhance the internal GMII-styled interface to support 10 Mb/s and 100 Mb/s ethernet
speeds in addition to the nominal 1Gb/s speed of SGMII.

• The Xilinx LogiCORE™ IP Tri-Mode Ethernet MAC

The 1000BASE-X PCS/PMA or SGMII core can be integrated in a single device with
the Tri-Mode Ethernet MAC core to extend the system functionality to include the
MAC sublayer. See Chapter 16, Interfacing to Other Cores.

In rare applications, the Client-Side GMII data path may be used as a true GMII, to connect
externally off chip across a PCB. This external GMII functionality is included in the HDL
example design delivered with the core by the CORE Generator™ tool for 1000BASE-X
designs to act as an illustration. The extra logic required to create a true external GMII is
detailed in Appendix E, Implementing External GMII.

Using the Core Netlist Client-side GMII for the 1000BASE-X
Standard

It is not within the scope of this document to define the Gigabit Media Independent
Interface (GMII)— see clause 35 of the IEEE 802.3-2008 specification for information about
the GMII. Timing diagrams and descriptions are provided only as an informational guide.

GMII Transmission
This section includes figures that illustrate GMII transmission. In these figures the clock is
not labeled. The source of this clock signal varies, depending on the options selected when
the core is generated. For more information on clocking, see Chapters 6, 7 and 8.

http://www.xilinx.com

214 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 11: Using the Client-Side GMII Data Path

Normal Frame Transmission

Normal outbound frame transfer timing is illustrated in Figure 11-1. This figure shows that
an Ethernet frame is proceeded by an 8-byte preamble field (inclusive of the Start of Frame
Delimiter (SFD)), and completed with a 4-byte Frame Check Sequence (FCS) field. This
frame is created by the MAC connected to the other end of the GMII. The PCS logic itself
does not recognize the different fields within a frame and will treat any value placed on
gmii_txd[7:0] within the gmii_tx_en assertion window as data.

Error Propagation

A corrupted frame transfer is illustrated in Figure 11-2. An error may be injected into the
frame by asserting gmii_tx_er at any point during the gmii_tx_en assertion window.
The core ensures that all errors are propagated through both transmit and receive paths so
that the error is eventually detected by the link partner.

X-Ref Target - Figure 11-1

Figure 11-1: GMII Normal Frame Transmission

gmii_txd[7:0]

gmii_tx_en

gmii_tx_er

preamble FCS

S
F

D

X-Ref Target - Figure 11-2

Figure 11-2: GMII Error Propagation Within a Frame

gmii_txd[7:0]

gmii_tx_en

gmii_tx_er

preamble FCS

S
F

D

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 215
UG155 March 1, 2011

Using the Core Netlist Client-side GMII for the 1000BASE-X Standard

GMII Reception
This section includes figures that illustrate GMII reception. In these figures the clock is not
labelled. The source of this clock signal will vary, depending on the options used when the
core is generated. For more information on clocking, see Chapters 6, 7 and 8.

Normal Frame Reception

The timing of normal inbound frame transfer is illustrated in Figure 11-3. This shows that
Ethernet frame reception is proceeded by a preamble field. The IEEE 802.3-2008
specification (see clause 35) allows for up to all of the seven preamble bytes that proceed
the Start of Frame Delimiter (SFD) to be lost in the network. The SFD will always be
present in well-formed frames.

Normal Frame Reception with Extension Field

In accordance with the IEEE 802.3-2008, clause 36, state machines for the 1000BASE-X PCS,
gmii_rx_er may be driven high following reception of the end frame in conjunction with
gmii_rxd[7:0] containing the hexadecimal value of 0x0F to signal carrier extension.
This is illustrated in Figure 11-4. See Appendix C, 1000BASE-X State Machines for more
information.

This is not an error condition and may occur even for full-duplex frames.

X-Ref Target - Figure 11-3

Figure 11-3: GMII Normal Frame Reception

gmii_rxd[7:0]

gmii_rx_dv

gmii_rx_er

preamble FCS

S
F

D

X-Ref Target - Figure 11-4

Figure 11-4: GMII Normal Frame Reception with Carrier Extension

gmii_rxd[7:0]

gmii_rx_dv

gmii_rx_er

preamble FCS

S
F

D 0x0F

http://www.xilinx.com

216 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 11: Using the Client-Side GMII Data Path

Frame Reception with Errors

The signal gmii_rx_er when asserted within the assertion window signals that a frame
was received with a detected error (Figure 11-5). In addition, a late error may also be
detected during the Carrier Extension interval. This is indicated by gmii_rxd[7:0]
containing the hexadecimal value 0x1F, also illustrated in Figure 11-5.

False Carrier

Figure 11-6 illustrates the GMII signaling for a False Carrier condition. False Carrier is
asserted by the core in response to certain error conditions, such as a frame with a
corrupted start code, or for random noise.

status_vector[15:0] signals

Bit[0]: Link Status

This signal indicates the status of the link. This information is duplicated in the optional
PCS Management Registers, if present (bit 1.2). However, this would always serve a useful
function as a Link Status LED.

When high, the link is valid: synchronization of the link has been obtained and Auto-
Negotiation (if present and enabled) has completed.

When low, a valid link has not been established. Either link synchronization has failed or
Auto-Negotiation (if present and enabled) has failed to complete.

X-Ref Target - Figure 11-5

Figure 11-5: GMII Frame Reception with Errors

gmii_rxd[7:0]

gmii_rx_dv

gmii_rx_er

preamble FCS

S
F

D 0x0F 0x0F

0x1F

error during frame error during extension

X-Ref Target - Figure 11-6

Figure 11-6: False Carrier Indication

gmii_rxd[7:0]

gmii_rx_dv

gmii_rx_er

False Carrier Indication

0x0E

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 217
UG155 March 1, 2011

Using the Core Netlist Client-side GMII for the 1000BASE-X Standard

Bit[1]: Link Synchronization

This signal indicates the state of the synchronization state machine (IEEE 802.3-2008 figure
36-9). This signal is similar to Bit[0] (Link Status), but is NOT qualified with Auto-
Negotiation.

When high, link synchronization has been obtained.

When low, synchronization has failed.

Bit[7]: PHY Link Status (SGMII mode only)

When operating in SGMII mode, this bit represents the link status of the external PHY
device attached to the other end of the SGMII link. However, this bit is only valid after
successful completion of Auto-Negotiation across the SGMII link. If SGMII Auto-
Negotiation is disabled, then the status of this bit should be ignored.

• When high, the PHY has obtained a link with its link partner;

• When low, the PHY has not linked with its link partner.

When operating in 1000BASE-X mode this bit will remain low and should be ignored

Bits[6:2]: Code Group Reception Indicators

These signals indicate the reception of particular types of group, as defined in the
following subsections. Figure 11-7 illustrates the timing of these signals, showing that they
are aligned with the code groups themselves, as they appear on the output
gmii_rxd[7:0] port.

Bit[2]: RUDI(/C/)

The core is receiving /C/ ordered sets (Auto-Negotiation Configuration sequences) as
defined in IEEE 802.3-2008 clause 36.2.4.10.

Bit[3]: RUDI(/I/)

The core is receiving /I/ ordered sets (Idles) as defined in IEEE 802.3-2008 clause 36.2.4.12.

X-Ref Target - Figure 11-7

Figure 11-7: status_vector[4:2] timing

gmii_rxd[7:0]
/I2/ /I2/ /I2/D0 /I2/D1/C1/D0 D1/C2/D0 D1/C1/D0 D1/C2/ K

status_vector[2]
“RUDI(/C/)”

status_vector[3]
“RUDI(/I/)”

status_vector[4]
“RUDI(INVALID)”

status_vector[5]
“RXDISPERR”

status_vector[6]
“RXNOTINTABLE”

http://www.xilinx.com

218 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 11: Using the Client-Side GMII Data Path

Bit[4]: RUDI(INVALID)

The core has received invalid data whilst receiving/C/ or /I/ ordered set as defined in
IEEE 802.3-2008 clause 36.2.5.1.6. This may be caused, for example, by bit errors occurring
in any clock cycle of the /C/ or /I/ ordered set: Figure 11-7 illustrates an error occurring in
the second clock cycle of an /I/ idle sequence.

Bit[5]: RXDISPERR

The core has received a running disparity error during the 8B10B decoding function.
Figure 11-7 illustrates a running disparity error occurring in the second clock cycle of an
/I/ idle sequence.

Bit[6]: RXNOTINTABLE

The core has received a code group which is not recognized from the 8B10B coding tables.
If this error is detected, the timing of the RXNOTINTABLE signal would be identical to
that of the RXDISPERR signal illustrated in Figure 11-7.

Bits[9:8]: Remote Fault Encoding

This signal indicates the remote fault encoding (IEEE 802.3-2008 table 37-3). This signal is
validated by bit 13 of status_vector and is only valid when Auto-Negotiation is enabled.

This signal has no significance when the core is in SGMII mode with PHY side
implementation and indicates "00". In all the remaining modes indicates the remote fault
encoding.

Bits [11:10]: SPEED

This signal indicates the speed negotiated and is only valid when Auto-Negotiation is
enabled. The signal encoding is as shown below

Bit[11] Bit[10]

 1 1 Reserved

 1 0 1000 Mbps

 0 1 100 Mbps

 0 0 10 Mbps

Bit[12]: Duplex Mode

This bit indicates the Duplex mode negotiated with the link partner

1 = Full Duplex

0 = Half Duplex

Bit[13] Remote Fault

When this bit is logic one, it indicates that a remote fault is detected and the type of remote
fault is indicated by status_vector bits[9:8].

Note: Note: This bit is only de-asserted when a MDIO read is made to status register (register1
Table 12-4). This signal has no significance in SGMII PHY mode.

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 219
UG155 March 1, 2011

Using the Core Netlist Client-side GMII for the SGMII Standard

Bits[15;14]: Reserved

These bits are reserved for future use.

Using the Core Netlist Client-side GMII for the SGMII Standard

Overview
When the core is generated for the SGMII standard, changes are made to the core that affect
the PCS Management Registers and the Auto-Negotiation function (see Component
Name, page 36). However, the data path through both transmitter and receiver sections of
the core remains unchanged.

GMII Transmission

1 Gigabit per Second Frame Transmission

The timing of normal outbound frame transfer is illustrated in Figure 11-8. At 1 Gbps
speed, the operation of the transmitter GMII signals remains identical to that described in
Using the Core Netlist Client-side GMII for the 1000BASE-X Standard.
X-Ref Target - Figure 11-8

Figure 11-8: GMII Frame Transmission at 1 Gbps

gmii_txd[7:0]

gmii_tx_en

gmii_tx_er

preamble FCS

S
F

D
D

O
D

1
userclk2

http://www.xilinx.com

220 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 11: Using the Client-Side GMII Data Path

100 Megabit per Second Frame Transmission

The operation of the core remains unchanged. It is the responsibility of the client logic (for
example, an Ethernet MAC) to enter data at the correct rate. When operating at a speed of
100 Mbps, every byte of the MAC frame (from preamble field to the Frame Check
Sequence field, inclusive) should each be repeated for 10 clock periods to achieve the
desired bit rate, as illustrated in Figure 11-9. It is also the responsibility of the client logic to
ensure that the interframe gap period is legal for the current speed of operation.

10 Megabit per Second Frame Transmission

The operation of the core remains unchanged. It is the responsibility of the client logic (for
example, an Ethernet MAC), to enter data at the correct rate. When operating at a speed of
10 Mbps, every byte of the MAC frame (from destination address to the frame check
sequence field, inclusive) should each be repeated for 100 clock periods to achieve the
desired bit rate. It is also the responsibility of the client logic to ensure that the interframe
gap period is legal for the current speed of operation.

GMII Reception

1 Gigabit per Second Frame Reception

The timing of normal inbound frame transfer is illustrated in Figure 11-10. At 1 Gbps
speed, the operation of the receiver GMII signals remains identical to that described in
Using the Core Netlist Client-side GMII for the 1000BASE-X Standard.

X-Ref Target - Figure 11-9

Figure 11-9: GMII Data Transmission at 100 Mbps

gmii_txd[7:0]

gmii_tx_en

gmii_tx_er

preamble SFD D0 D1

10 clock periods

userclk2

X-Ref Target - Figure 11-10

Figure 11-10: GMII Frame Reception at 1 Gbps

gmii_rxd[7:0]

gmii_rx_dv

gmii_rx_er

preamble FCS

S
F

D
D

0

D
1

userclk2

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 221
UG155 March 1, 2011

Using the Core Netlist Client-side GMII for the SGMII Standard

100 Megabit per Second Frame Reception

The operation of the core remains unchanged. When operating at a speed of 100 Mbps,
every byte of the MAC frame (from destination address to the frame check sequence field,
inclusive) is repeated for 10 clock periods to achieve the desired bit rate. See Figure 11-11.
It is the responsibility of the client logic, for example an Ethernet MAC, to sample this data
correctly.

10 Megabit per Second Frame Reception

The operation of the core remains unchanged. When operating at a speed of 10 Mbps,
every byte of the MAC frame (from destination address to the frame check sequence field,
inclusive) is repeated for 100 clock periods to achieve the desired bit rate. It is the
responsibility of the client logic (for example, an Ethernet MAC) to sample this data
correctly

X-Ref Target - Figure 11-11

Figure 11-11: GMII Data Reception at 100 Mbps

gmii_rxd[7:0]

gmii_rx_dv

gmii_rx_er

preamble SFD D0 D1

10 clock periods

userclk2

http://www.xilinx.com

222 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 11: Using the Client-Side GMII Data Path

Additional Client-Side SGMII Logic Provided in the Example
Design

When the core is generated in SGMII or Dynamic Switching mode, the block level of the
core contains the SGMII Adaptation Module (this is illustrated in Figure 11-12 for a core
using a device specific transceiver as the physical interface). This SGMII adaptation
module is described in the remainder of this section.

Because the GMII of the core always operates at 125 MHz, the core makes no
differentiation between the three SGMII speeds of operation, it always effectively operates
at 1 Gbps. However, as described previously in Using the Core Netlist Client-side GMII for
the 1000BASE-X Standard, at 100 Mbps, every data byte run through the core is repeated
ten times to achieve the required bit rate; at 10 Mbps, each data byte run through the core
is repeated 100 times to achieve the required bit rate. Dealing with this repetition of bytes
is the function of the SGMII adaptation module.

The provided SGMII adaptation module (Figure 11-13) creates a GMII-style interface that
drives/samples the GMII data and control signals at the following frequencies:

• 125 MHz when operating at a speed of 1 Gbps (with no repetition of data bytes)

• 12.5 MHz at a speed of 100 Mbps (each data byte is repeated and run through the core
10 times)

• 1.25 MHz at a speed of 10 Mbps (each data byte is repeated and run through the core
100 times)

X-Ref Target - Figure 11-12

Figure 11-12: Block Level Diagram of an SGMII Example Design

Ethernet

1000BASE-X

PCS/PMA

Core

GMII

IOBs

In

IOBs

Out

GMII-style
8-bit I/F

Serial GMII
(SGMII)

SGMII
Adaptation

Module

Clock
Management

Logic

Transceiver

Fabric
Rx

Elastic
Buffer

component_name_example_design

component_name_block

Device
Specific
Transceiver

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 223
UG155 March 1, 2011

Additional Client-Side SGMII Logic Provided in the Example Design

The result of the SGMII adaptation module is therefore to create a proprietary interface
which is based on GMII (true GMII only operates at a clock frequency of 125 MHz for an
ethernet line rate of 1.25 Gbps). This interface then allows a straightforward internal
connection to an Ethernet MAC core when operating in MAC mode or the GMII can be
brought out on pads to connect to an external PHY when the core operates in PHY mode.
For example, the SGMII adaptation module can be used to interface the Ethernet
1000BASE-X PCS/PMA or SGMII core, operating in SGMII configuration with MAC mode
of operation, to the Xilinx® Tri-Mode Ethernet MAC core directly (see Chapter 16,
Interfacing to Other Cores). The GMII interface of the SGMII adaptation module can
brought out to the pads and connected to external PHY module that converts GMII to
PMDsignal when the Ethernet 1000BASEX PCS/PMA or SGMII core, operating in SGMII
configuration and PHY mode of operation.

SGMII Adaptation Module Top Level
The SGMII adaptation module is described in several hierarchical sub-modules as
illustrated in Figure 11-13. These sub-modules are each described in separate HDL files
and are described in the following sections.
X-Ref Target - Figure 11-13

Figure 11-13: SGMII Adaptation Module

SGMII Adaptation Module

Tx Rate Adapt

Clock
 Generation

To GMII
Tx input of core

From GMII
Rx output of core

From Client MAC GMII/
Client PHY SGMII

To Client MAC GMII/
Client PHY GMII

sgmii_clk_en

userclk2
(125 MHz

reference clock)

sgmii_clk_en

sgmii_clk_r

clk125m

speed_is_10_100

speed_is_100

sgmii_clk_f

clk125m

sgmii_clk_en

gmii_txd_in[7:0] gmii_txd_out[7:0]

gmii_tx_en_in gmii_tx_en_out

gmii_tx_er_in gmii_tx_er_out

Rx Rate Adapt

clk125m

sgmii_clk_en

gmii_rxd_out[7:0] gmii_rxd_in[7:0]

gmii_rx_dv_out gmii_rx_dv_in

gmii_rx_er_out gmii_rx_er_in

Speed Control

http://www.xilinx.com

224 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 11: Using the Client-Side GMII Data Path

Transmitter Rate Adaptation Module
This module accepts transmitter data from the GMII-style interface from the attached
client MAC/External PHY, and samples the input data on the 125 MHz reference clock,
clk125m. This sampled data can then be connected directly to the input GMII of the
Ethernet
1000BASE-X PCS/PMA, or SGMII netlist. The 1 Gbps and 100 Mbps cases are illustrated in
Figure 11-14.

At all speeds, the client MAC/External PHY logic should drive the GMII transmitter data
synchronously to the rising edge of the 125 MHz reference clock while using
sgmii_clk_en (derived from the Clock Generation module) as a clock enable. The
frequency of this clock enable signal will ensure the correct data rate and correct data
sampling between the two devices.
X-Ref Target - Figure 11-14

Figure 11-14: Transmitter Rate Adaptation Module Data Sampling

sgmii_clk_en

clk125 m

'1'

Speed is 1 Gbps

D0 D1 D2

D0 D1 D2

gmii_txd_in[7:0]

gmii_txd_out[7:0]

sgmii_clk_en

Speed is 100 Mbps

gmii_txd_in[7:0]

gmii_txd_out[7:0]

D0

D0 D1

10 clk125 m
 cycles

clk125 m

D1 D2

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 225
UG155 March 1, 2011

Additional Client-Side SGMII Logic Provided in the Example Design

Receiver Rate Adaptation Module
This module accepts received data from the Ethernet 1000BASE-X PCS or SGMII core. This
data is sampled and sent out of the GMII receiver interface for the attached client
MAC/External PHY. The 1 Gbps and 100 Mbps cases are illustrated in Figure 11-15.

At 1 Gbps, the data is valid on every clock cycle of the 125 MHz reference clock (clk125m).
Data received from the core is clocked straight through the Receiver Rate Adaptation
module.

At 100 Mbps, the data is repeated for a 10 clock period duration of clk125m; at 10 Mbps,
the data is repeated for a 100 clock period duration of clk125m. The Receiver Rate
Adaptation Module samples this data using the sgmii_clk_en clock enable.

The Receiver Rate Adaptation module also performs a second function that accounts for
the latency inferred in Figure 11-15. The 8-bit Start of Frame Delimiter (SFD) code is
detected, and if required, it is realigned across the 8-bit data path of gmii_rxd_out[7:0]
before being presented to the attached client MAC. It is possible that this SFD could have
been skewed across two separate bytes by MACs operating on a 4-bit data path.

At all speeds, the client MAC/External PHY logic should sample the GMII receiver data
synchronously to the rising edge of the 125 MHz reference clock while using
sgmii_clk_en (derived from the Clock Generation module) as a clock enable. The
frequency of the sgmii_clk_en clock enable signal will ensure the correct data rate and
correct data sampling between the two devices.
X-Ref Target - Figure 11-15

Figure 11-15: Receiver Rate Adaptation Module Data Sampling

sgmii_clk_en

clk125 m

'1'

1 Gbps Speed

D0 D1 D2

D0 D1 D2

gmii_rxd_in[7:0]

gmii_rxd_out[7:0]

sgmii_clk_en

100 Mbps Speed

gmii_rxd_in[7:0]

gmii_txd_out[7:0] D0 D1

10 clk 125 m
 cycles

clk125 m

D0 D1 D2D0 D0 D0D0D0D0 D0 D0 D0 D1 D1 D1 D1 D1 D1 D1 D1 D1 D2 D2 D2

http://www.xilinx.com

226 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 11: Using the Client-Side GMII Data Path

Clock Generation
This module creates the sgmii_clk_en clock enable signal for use throughout the SGMII
adaptation module. Clock enabled frequencies are:

• 125 MHz at an operating speed of 1 Gbps

• 12.5 MHz at an operating speed of 100 Mbps

• 1.25 MHz at an operating speed of 10 Mbps

Figure 11-16 illustrates the output clock enable signal for the Clock Generation module at
1 Gbps and 100 Mbps speeds.

Figure 11-16 also illustrates the formation of the sgmii_clk_r and sgmii_clk_f
signals. These are used only in the example design delivered with the core, where they are
routed to a device IOB DDR output register. This provides SGMII clock forwarding at the
correct frequency; these signal can be ignored when connecting the core and SGMII
Adaptation module to internal logic.

X-Ref Target - Figure 11-16

Figure 11-16: Clock Generator Output Clocks and Clock Enable

sgmii_clk_r

clk125 m

sgmii_clk_f

sgmii_clk_en

sgmii_clk_r

sgmii_clk_f

sgmii_clk_en

5 clk125 m
 cycles

'0'

'1'

'1'

Speed is 1 Gbps

Speed is 100 Mbps

clk125 m

10 clk125 m
 cycles

sgmii_clk
(result of IOB
output DDR)

sgmii_clk
(result of IOB
output DDR)

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 227
UG155 March 1, 2011

Chapter 12

Configuration and Status

This chapter provides general guidelines for configuring and monitoring the Ethernet
1000BASE-X PCS/PMA or SGMII core, including a detailed description of the core
management registers. It also describes Configuration Vector and status signals, an
alternative to using the optional MDIO Management Interface.

MDIO Management Interface
When the optional MDIO Management Interface is selected, configuration and status of
the core is achieved by the Management Registers accessed through the serial
Management Data Input/Output Interface (MDIO).

MDIO Bus System
The MDIO interface for 1 Gbps operation (and slower speeds) is defined in IEEE 802.3-
2008, clause 22. Figure 12-1 illustrates an example MDIO bus system. This two-wire
interface consists of a clock (MDC) and a shared serial data line (MDIO). The maximum
permitted frequency of MDC is set at 2.5 MHz. An Ethernet MAC is shown as the MDIO
bus master (the Station Management (STA) entity). Two PHY devices are shown connected
to the same bus, both of which are MDIO slaves (MDIO Managed Device (MMD) entities).

http://www.xilinx.com

228 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 12: Configuration and Status

The MDIO bus system is a standardized interface for accessing the configuration and
status registers of Ethernet PHY devices. In the example illustrated, the Management Host
Bus I/F of the Ethernet MAC is able to access the configuration and status registers of two
PHY devices via the MDIO bus.

X-Ref Target - Figure 12-1

Figure 12-1: A Typical MDIO-Managed System

Configuration
Registers 0 to 31
(REGAD)

MDIO slave

UG194_5_01_011906

PHY1 (MMD)

Physical
Address
(PHYAD)
= 1

Configuration
Registers 0 to 31
(REGAD)

MDIO slave

PHY2 (MMD)

Physical
Address
(PHYAD)
= 2

MDIO
master

MAC (STA)

MDC
MDIO

Host
Bus I/F

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 229
UG155 March 1, 2011

MDIO Management Interface

MDIO Transactions
All transactions, read or write, are initiated by the MDIO master. All MDIO slave devices,
when addressed, must respond. MDIO transactions take the form of an MDIO frame,
containing fields for transaction type, address and data. This MDIO frame is transferred
across the MDIO wire synchronously to MDC. The abbreviations are used in this section
are explained in Table 12-1.

Write Transaction

Figure 12-2 shows a write transaction across the MDIO, defined as OP=”01.” The
addressed PHY device (with physical address PHYAD) takes the 16-bit word in the Data
field and writes it to the register at REGAD.

Table 12-1: Abbreviations and Terms

Abbreviation Term

PRE Preamble

ST Start of frame

OP Operation code

PHYAD Physical address

REGAD Register address

TA Turnaround

X-Ref Target - Figure 12-2

Figure 12-2: MDIO Write Transaction

Z1 1 1 0 0 1 P4 P3 P2 P1 P0 R4 R3 R2 R1 R0 1 0 D15
D14

D13
D12

D11
D10

D9
D8

D7
D6

D5
D4

D3
D2

D1
D0

1 ZZZ

mdc

mdio

IDLE IDLE32 bits
PRE

ST OP PHYAD REGAD TA 16-bit WRITE DATA

STA drives MDIO

http://www.xilinx.com

230 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 12: Configuration and Status

Read Transaction

Figure 12-3 shows a read transaction, defined as OP=”10.” The addressed PHY device
(with physical address PHYAD) takes control of the MDIO wire during the turnaround
cycle and then returns the 16-bit word from the register at REGAD.

MDIO Addressing
MDIO Addresses consists of two stages: Physical Address (PHYAD) and Register Address
(REGAD).

Physical Address (PHYAD)

As shown in Figure 12-1, two PHY devices are attached to the MDIO bus. Each of these has
a different physical address. To address the intended PHY, its physical address should be
known by the MDIO master (in this case an Ethernet MAC) and placed into the PHYAD
field of the MDIO frame (see).

The PHYAD field for an MDIO frame is a 5-bit binary value capable of addressing 32
unique addresses. However, every MDIO slave must respond to physical address 0. This
requirement dictates that the physical address for any particular PHY must not be set to 0
to avoid MDIO contention. Physical Addresses 1 through to 31 can be used to connect up
to 31 PHY devices onto a single MDIO bus.

Physical Address 0 can be used to write a single command that is obeyed by all attached
PHYs, such as a reset or power-down command.

Register Address (REGAD)

Having targeted a particular PHY using PHYAD, the individual configuration or status
register within that particular PHY must now be addressed. This is achieved by placing the
individual register address into the REGAD field of the MDIO frame (see).

The REGAD field for an MDIO frame is a 5-bit binary value capable of addressing 32
unique addresses. The first 16 of these (registers 0 to 15) are defined by the IEEE 802.3-2008.
The remaining 16 (registers 16 to 31) are reserved for PHY vendors own register
definitions.

For details of the register map of PHY layer devices and a more extensive description of the
operation of the MDIO Interface, see IEEE 802.3-2008.

X-Ref Target - Figure 12-3

Figure 12-3: MDIO Read Transaction

Z1 1 1 0 1 0 P4 P3 P2 P1 P0 R4 R3 R2 R1 R0 Z 0 D15
D14

D13
D12

D11
D10

D9
D8

D7
D6

D5
D4

D3
D2

D1
D0

1 ZZZ

mdc

mdio

IDLE IDLE32 bits
PRE

ST OP PHYAD REGAD TA 16-bit READ DATA

STA drives MDIO Addressed MMD drives MDIO

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 231
UG155 March 1, 2011

MDIO Management Interface

Connecting the MDIO to an Internally Integrated STA
The MDIO ports of the Ethernet 1000BASE-X PCS/PMA or SGMII core can be connected to
the MDIO ports of an internally integrated Station Management (STA) entity, such as the
MDIO port of the Tri-Mode Ethernet MAC core (see Chapter 16, Interfacing to Other
Cores)

Connecting the MDIO to an External STA
Figure 12-4 shows the MDIO ports of the Ethernet 1000BASE-X PCS/PMA or SGMII core
connected to the MDIO of an external STA entity. In this situation, mdio_in, mdio_out,
and mdio_tri must be connected to a Tri-State buffer to create a bidirectional wire, mdio.
This Tri-State buffer can either be external to the FPGA or internally integrated by using an
IOB IOBUF component with an appropriate SelectIO™ interface standard suitable for the
external PHY.
X-Ref Target - Figure 12-4

Figure 12-4: Creating an External MDIO Interface

IBUF

IOB LOGIC

IPAD
O I

O

I IO

T

IOPAD

IOB LOGIC

IOBUF

Ethernet 1000BASE-X PCS/PMA
or SGMII LogiCORE

mdc

mdio_tri

mdio_out

mdio_in

mdc

mdio

http://www.xilinx.com

232 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 12: Configuration and Status

Management Registers
The contents of the Management Registers can be accessed using the REGAD field of the
MDIO frame. Contents will vary depending on the CORE Generator™ software options,
and are defined in the following sections in this guide.

• 1000BASE-X Standard Using the Optional Auto-Negotiation

• 1000BASE-X Standard Without the Optional Auto-Negotiation

• SGMII Standard Using the Optional Auto-Negotiation

• SGMII Standard without the Optional Auto-Negotiation

• Both 1000BASE-X and SGMII Standards

1000BASE-X Standard Using the Optional Auto-Negotiation
More information on the 1000BASE-X PCS Registers can be found in clause 22 and clause
37 of the IEEE 802.3-2006 specification. Registers at undefined addresses are read-only and
return 0s.

Table 12-2: MDIO Registers for 1000BASE-X with Auto-Negotiation

Register Address Register Name

0 Control Register

1 Status Register

2,3 PHY Identifier

4 Auto-Negotiation Advertisement Register

5 Auto-Negotiation Link Partner Ability Base Register

6 Auto-Negotiation Expansion Register

7 Auto-Negotiation Next Page Transmit Register

8 Auto-Negotiation Next Page Receive Register

15 Extended Status Register

16 Vendor Specific: Auto-Negotiation Interrupt Control

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 233
UG155 March 1, 2011

Management Registers

Register 0: Control Register

MDIO Register 0: Control Register
X-Ref Target - Figure 12-5

Table 12-3: Control Register (Register 0)

Bit(s) Name Description Attributes
Default
Value

0.15 Reset
1 = Core Reset

0 = Normal Operation

Read/write

Self clearing
0

0.14 Loopback

1 = Enable Loopback Mode

0 = Disable Loopback Mode

When used with a device-specific
transceiver, the core is placed in
internal loopback mode.

With the TBI version, Bit 1 is
connected to ewrap. When set to
‘1,’ indicates to the external PMA
module to enter loopback mode.

See Loopback.

Read/write 0

0.13
Speed
Selection
(LSB)

Always returns a 0 for this bit.
Together with bit 0.6, speed
selection of 1000 Mbps is identified

Returns 0 0

0.12
Auto-
Negotiation
Enable

1 = Enable Auto-Negotiation
Process

0 = Disable Auto-Negotiation
Process

Read/write 1

R
E

S
E

T

LO
O

P
B

A
C

K

A
U

TO
-N

E
G

 E
N

A
B

LE

R
E

S
TA

R
T

 A
U

TO
-N

E
G

R
E

S
E

R
V

E
D

P
O

W
E

R
 D

O
W

N

S
P

E
E

D

S
P

E
E

D

15 14 13 12 11 10 7 6 5 0

Reg 0

IS
O

LAT
E

9 8

D
U

P
LE

X
 M

O
D

E

C
O

LLIS
IO

N
 T

E
S

T

4

 U
N

ID
IR

E
C

T
IO

N
A

L E
N

A
B

LE

http://www.xilinx.com

234 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 12: Configuration and Status

0.11 Power Down

1 = Power down

0 = Normal operation

With the PMA option, when set to
’1’ the device-specific transceiver
is placed in a low-power state. This
bit requires a reset (see bit 0.15) to
clear.

With the TBI version this register
bit has no effect.

Read/ write 0

0.10 Isolate
1 = Electrically Isolate PHY from
GMII

0 = Normal operation
Read/write 1

0.9 Restart Auto-
Negotiation

1 = Restart Auto-Negotiation
Process

0 = Normal Operation

Read/write

Self clearing
0

0.8 Duplex Mode Always returns a ‘1’ for this bit to
signal Full-Duplex Mode.

Returns 1 1

0.7 Collision Test Always returns a ‘0’ for this bit to
disable COL test.

Returns 0 0

0.6
Speed
Selection
(MSB)

Always returns a ‘1’ for this bit.
Together with bit 0.13, speed
selection of 1000 Mbps is
identified.

Returns 1 1

0.5
Unidirection
al Enable

Enable transmit regardless of
whether a valid link has been
established.

Read/ write 0

0.4:0 Reserved Always return 0s, writes ignored. Returns 0s 00000

Table 12-3: Control Register (Register 0) (Cont’d)

Bit(s) Name Description Attributes
Default
Value

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 235
UG155 March 1, 2011

Management Registers

Register 1: Status Register

MDIO Register 1: Status Register
X-Ref Target - Figure 12-6

Table 12-4: Status Register (Register 1)

Bit(s) Name Description Attributes
Default
Value

1.15 100BASE-T4
Always returns a ‘0’ as 100BASE-T4 is
not supported.

Returns 0 0

1.14
100BASE-X Full
Duplex

Always returns a ‘0’ as 100BASE-X full
duplex is not supported.

Returns 0 0

1.13
100BASE-X Half
Duplex

Always returns a ‘0’ as 100BASE-X half
duplex is not supported.

Returns 0 0

1.12
10 Mbps Full
Duplex

Always returns a ‘0’ as 10 Mbps full
duplex is not supported.

Returns 0 0

1.11
10 Mbps Half
Duplex

Always returns a ‘0’ as 10 Mbps half
duplex is not supported

Returns 0 0

1.10
100BASE-T2 Full
Duplex

Always returns a ‘0’ as 100BASE-T2 full
duplex is not supported.

Returns 0 0

1.9
100BASE-T2 Half
Duplex

Always returns a ‘0’ as 100BASE-T2
Half Duplex is not supported.

Returns 0 0

1.8 Extended Status
Always returns a ‘1’ to indicate the
presence of the Extended Register
(Register 15).

Returns 1 1

1.7
Unidirectional
Ability

Always returns a ‘1,’ writes ignored Returns 1 1

1.6
MF Preamble
Suppression

Always returns a ‘1’ to indicate that
Management Frame Preamble
Suppression is supported.

Returns 1 1

100B
A

S
E

-T
4

100B
A

S
E

-X
 F

U
LL D

U
P

LE
X

10M
b/s F

U
LL D

U
P

LE
X

100B
A

S
E

-T
2 H

A
LF

 D
U

P
LE

X

LIN
K

 S
TAT

U
S

10M
b/s H

A
LF

 D
U

P
LE

X

100B
A

S
E

-X
 H

A
LF

 D
U

P
LE

X

M
F

 P
R

E
A

M
B

LE
 S

U
P

P
R

E
S

S
IO

N

15 14 13 12 11 10 7 6 5 0

Reg 1

100B
A

S
E

-T
2 F

U
LL D

U
P

LE
X

9 8

E
X

T
E

N
D

E
D

 S
TAT

U
S

U
N

ID
IR

E
C

T
IO

N
A

L A
N

ILIT
Y

4

A
U

TO
-N

E
G

 C
O

M
P

LE
T

E

3 2 1

R
E

M
O

T
E

 FA
U

LT

A
U

TO
-N

E
G

 A
B

ILIT
Y

JA
B

B
E

R
 D

E
T

E
C

T

E
X

T
E

N
D

E
D

 C
A

PA
B

ILIT
Y

http://www.xilinx.com

236 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 12: Configuration and Status

Link Status

When high, the link is valid and has remained valid since this register was last read;
synchronization of the link has been obtained and Auto-Negotiation (if enabled) has
completed.

When low, either:

• a valid link has not been established: link synchronization has failed or Auto-
Negotiation (if enabled) has failed to complete.

• OR, link synchronization was lost at some point since this register was previously
read. However, the current link status may be good. Therefore read this register a
2nd time to get confirmation of the current link status.

Regardless of whether Auto-Negotiation is enabled or disabled, there can be some delay to
the deassertion of Link Status following the loss of synchronization of a previously
successful link. This is due to the Auto-Negotiation state machine which requires that
synchronization is lost for an entire link timer duration before changing state. For more
information, see the 802.3 specification (the an_sync_status variable).

1.5
Auto- Negotiation
Complete

1 = Auto-Negotiation process
completed

0 = Auto-Negotiation process not
completed

Read only 0

1.4 Remote Fault
1 = Remote fault condition detected

0 = No remote fault condition detected

Read only

Self-
clearing
on read

0

1.3
Auto- Negotiation
Ability

Always returns a ‘1’ for this bit to
indicate that the PHY is capable of
Auto-Negotiation.

Returns 1 1

1.2 Link Status

1 = Link is up

0 = Link is down (or has been down)

Latches '0' if Link Status goes down.
Clears to current Link Status on read.

See the following Link Status section
for further details.

Read only

Self
clearing
on read

0

1.1 Jabber Detect Always returns a ‘0’ for this bit since
Jabber Detect is not supported.

Returns 0 0

1.0 Extended Capability Always returns a ‘0’ for this bit since no
extended register set is supported.

Returns 0 0

Table 12-4: Status Register (Register 1) (Cont’d)

Bit(s) Name Description Attributes
Default
Value

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 237
UG155 March 1, 2011

Management Registers

Registers 2 and 3: PHY Identifiers

Register 4: Auto-Negotiation Advertisement

Registers 2 and 3: PHY Identifiers
X-Ref Target - Figure 12-7

Table 12-5: PHY Identifier (Registers 2 and 3)

Bit(s) Name Description Attributes Default Value

2.15:0
Organizationally
Unique Identifier

Always return 0s returns 0s 0000000000000000

3.15:10
Organizationally
Unique Identifier

Always return 0s returns 0s 000000

3.9:4
Manufacturer model
number

Always return 0s returns 0s 000000

3.3:0 Revision Number Always return 0s returns 0s 0000

O
R

G
A

N
IZ

E
U

N
IQ

U
E

 ID

15 0

Reg 2

15 0

Reg 3

O
R

G
A

N
IZ

E
U

N
IQ

U
E

 ID

10 9 4 3
M

A
U

FA
C

T
U

R
E

R
M

O
D

E
L N

O

R
E

V
IS

IO
N

 N
O

MDIO Register 4: Auto-Negotiation Advertisement
X-Ref Target - Figure 12-8

N
E

X
T

 PA
G

E

R
E

S
E

R
V

E
D

R
E

S
E

R
V

E
D

R
E

M
O

T
E

 FA
U

LT

H
A

LF
 D

U
P

LE
X

15 14 13 12 11 7 6 5 0

Reg 4

R
E

S
E

R
V

E
D

9 8

PA
U

S
E

4

F
U

LL D
U

P
LE

X

http://www.xilinx.com

238 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 12: Configuration and Status

Register 5: Auto-Negotiation Link Partner Base

Table 12-6: Auto-Negotiation Advertisement Register (Register 4)

Bit(s) Name Description Attributes
Default
Value

4.15
Next
Page

Core currently does not support Next
Page. Can be enabled, if requested.
Writes ignored.

read/write 0

4.14 Reserved Always returns ‘0,’ writes ignored returns 0 0

4.13:12
Remote
Fault

00 = No Error

01 = Offline

10 = Link Failure

11 = Auto-Negotiation Error

read/write

self clearing to 00
after auto-
negotiation

00

4.11:9 Reserved Always return 0s, writes ignored returns 0 0

4.8:7 Pause

00 = No PAUSE

01 = Symmetric PAUSE

10 = Asymmetric PAUSE towards link
partner

11 = Both Symmetric PAUSE and
Asymmetric PAUSE towards link
partner

read/write 11

4.6 Half
Duplex

Always returns a ‘0’ for this bit since Half
Duplex Mode is not supported

returns 0 0

4.5 Full
Duplex

1 = Full Duplex Mode is advertised

0 = Full Duplex Mode is not advertised
read/write 1

4.4:0 Reserved Always return 0s , writes ignored returns 0s 00000

MDIO Register 5: Auto-Negotiation Link Partner Base
X-Ref Target - Figure 12-9

N
E

X
T

 PA
G

E

A
C

K
N

O
W

LE
D

G
E

R
E

S
E

R
V

E
D

R
E

M
O

T
E

 FA
U

LT

H
A

LF
 D

U
P

LE
X

15 14 13 12 11 7 6 5 0

Reg 5

R
E

S
E

R
V

E
D

9 8

PA
U

S
E

4

F
U

LL D
U

P
LE

X

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 239
UG155 March 1, 2011

Management Registers

Register 6: Auto-Negotiation Expansion

Table 12-7: Auto-Negotiation Link Partner Ability Base Register (Register 5)

Bit(s) Name Description Attributes
Default
Value

5.15 Next Page
1 = Next Page functionality is supported

0 = Next Page functionality is not
supported

read only 0

5.14 Acknowledge
Used by Auto-Negotiation function to
indicate reception of a link partner’s base
or next page

read only 0

5.13:12 Remote Fault

00 = No Error

01 = Offline

10 = Link Failure

11 = Auto-Negotiation Error

read only 00

5.11:9 Reserved Always return 0s returns 0s 000

5.8:7 Pause

00 = No PAUSE

01 = Symmetric PAUSE

10 = Asymmetric PAUSE towards link
partner

11 = Both Symmetric PAUSE and
Asymmetric PAUSE supported

read only 00

5.6 Half Duplex
1 = Half Duplex Mode is supported

0 = Half Duplex Mode is not supported
read only 0

5.5 Full Duplex
1 = Full Duplex Mode is supported

0 = Full Duplex Mode is not supported
read only 0

5.4:0 Reserved Always return 0s returns 0s 00000

MDIO Register 6: Auto-Negotiation Expansion
X-Ref Target - Figure 12-10

N
E

X
T

 PA
G

E
 A

B
LE

PA
G

E
 R

E
C

E
IV

E
D

R
E

S
E

R
V

E
D

15 0

Reg 6

R
E

S
E

R
V

E
D

3 2 1

http://www.xilinx.com

240 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 12: Configuration and Status

Table 12-8: Auto-Negotiation Expansion Register (Register 6)

Bit(s) Name Description Attributes Default Value

6.15:3 Reserved Always returns 0s returns 0s 0000000000000

6.2
Next Page
Able

This bit is ignored as the core
currently does not support next
page. This feature can be
enabled on request.

returns 1 1

6.1
Page
Received

1 = A new page has been
received

0 = A new page has not been
received

read only

self clearing on
read

0

6.0 Reserved Always returns 0s returns 0s 0000000

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 241
UG155 March 1, 2011

Management Registers

Register 7: Next Page Transmit

MDIO Register 7: Next Page Transmit
X-Ref Target - Figure 12-11

Table 12-9: Auto-Negotiation Next Page Transmit (Register 7)

Bit(s) Name Description Attributes
Default
Value (1)

7.15 Next Page
1 = Additional Next Page(s) will
follow

0 = Last page

read/

write
0

7.14 Reserved Always returns ‘0’ returns 0 0

7.13 Message Page
1 = Message Page

0 = Unformatted Page

read/

write
1

7.12 Acknowledge 2
1 = Comply with message

0 = Cannot comply with message

read/

write
0

7.11 Toggle Value toggles between subsequent
Next Pages

read only 0

7.10:0
Message /
Unformatted
Code Field

Message Code Field or Unformatted
Page Encoding as dictated by 7.13

read/

write

0000000000
1

(Null
Message

Code)

Notes:
1. This register returns the default values as the core currently does not support next page. This feature

can be enabled on request.

N
E

X
T

 PA
G

E

R
E

S
E

R
V

E
D

M
E

S
S

A
G

E
 PA

G
E

15 14 13 12 11 0

Reg 7

TO
G

G
LE

M
E

S
S

A
G

E
 C

O
D

E

A
C

K
N

O
W

LE
D

G
E

 2

10

http://www.xilinx.com

242 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 12: Configuration and Status

Register 8: Next Page Receive

MDIO Register 8: Next Page Receive
X-Ref Target - Figure 12-12

Table 12-10: Auto-Negotiation Next Page Receive (Register 8)

Bit(s) Name Description Attributes Default Value

8.15 Next Page
1 = Additional Next Page(s) will
follow

0 = Last page
read only 0

8.14 Acknowledge
Used by Auto-Negotiation
function to indicate reception of a
link partner’s base or next page

read only 0

8.13 Message Page
1 = Message Page

0 = Unformatted Page
read only 0

8.12 Acknowledge 2
1 = Comply with message

0 = Cannot comply with message
read only 0

8.11 Toggle
Value toggles between subsequent
Next Pages

read only 0

8.10:0
Message /
Unformatted
Code Field

Message Code Field or
Unformatted Page Encoding as
dictated by 8.13

read only 00000000000

N
E

X
T

 PA
G

E

A
C

K
N

O
W

LE
D

G
E

M
E

S
S

A
G

E
 PA

G
E

15 14 13 12 11 0

Reg 8

TO
G

G
LE

M
E

S
S

A
G

E
 C

O
D

E

A
C

K
N

O
W

LE
D

G
E

 2

10

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 243
UG155 March 1, 2011

Management Registers

Register 15: Extended Status

MDIO Register 15: Extended Status Register
X-Ref Target - Figure 12-13

Table 12-11: Extended Status Register (Register 15)

Bit(s) Name Description Attributes Default Value

15.15
1000BASE-X
Full Duplex

Always returns a ‘1’ for this bit
since 1000BASE-X Full Duplex is
supported

returns 1 1

15.14
1000BASE-X
Half Duplex

Always returns a ‘0’ for this bit
since 1000BASE-X Half Duplex is
not supported

returns 0 0

15.13
1000BASE-T
Full Duplex

Always returns a ‘0’ for this bit
since 1000BASE-T Full Duplex is
not supported

returns 0 0

15.12
1000BASE-T
Half Duplex

Always returns a ‘0’ for this bit
since 1000BASE-T Half Duplex is
not supported

returns 0 0

15:11:0 Reserved Always return 0s returns 0s 000000000000

1000B
A

S
E

-X
 F

U
LL D

U
P

LE
X

1000B
A

S
E

-X
 H

A
LF

 D
U

P
LE

X

1000B
A

S
E

-T
 F

U
LL D

U
P

LE
X

15 14 13 12 11 0

Reg 15

R
E

S
E

R
V

E
D

1000B
A

S
E

-T
 H

A
LF

 D
U

P
LE

X

http://www.xilinx.com

244 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 12: Configuration and Status

Register 16: Vendor-Specific Auto-Negotiation Interrupt Control

1000BASE-X Standard Without the Optional Auto-Negotiation
It is not the intention of this document to fully describe the 1000BASE-X PCS Registers. See
clauses 22 and 37 of the IEEE 802.3-2008 specification for further information.

Registers at undefined addresses are read-only and return 0s.

MDIO Register 16: Vendor Specific Auto-Negotiation Interrupt Control
X-Ref Target - Figure 12-14

Table 12-12: Vendor Specific Register: Auto-Negotiation Interrupt Control Register
(Register 16)

Bit(s) Name Description Attributes Default Value

16.15:2 Reserved Always return 0s returns 0s 00000000000000

16.1
Interrupt
Status

1 = Interrupt is asserted

0 = Interrupt is not asserted

If the interrupt is enabled, this bit
is asserted on the completion of an
Auto-Negotiation cycle; it is only
cleared by writing ‘0’ to this bit.

If the Interrupt is disabled, the bit
is set to ‘0.’

NOTE: the an_interrupt port of
the core is wired to this bit.

read/

write
0

16.0
Interrupt
Enable

1 = Interrupt enabled

0 = Interrupt disabled

read/

write
1

15 0

Reg 16

R
E

S
E

R
V

E
D

12
IN

T
E

R
R

U
P

T
 S

TAT
U

S

IN
T

E
R

R
U

P
T

 E
N

A
B

LE

Table 12-13: MDIO Registers for 1000BASE-X without Auto-Negotiation

Register Address Register Name

0 Control Register

1 Status Register

2,3 PHY Identifier

15 Extended Status Register

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 245
UG155 March 1, 2011

Management Registers

Register 0: Control Register
X-Ref Target - Figure 12-15

MDIO Register 0: Control Register

Table 12-14: Control Register (Register 0)

Bit(s) Name Description Attributes
Default
Value

0.15 Reset
1 = PCS/PMA reset

0 = Normal Operation

read/write

self clearing
0

0.14 Loopback

1 = Enable Loopback Mode

0 = Disable Loopback Mode

When used with a device-specific
transceiver, the core is placed in
internal loopback mode.

With the TBI version, Bit 1 is connected
to ewrap. When set to ‘1’ indicates to
the external PMA module to enter
loopback mode.

See Loopback.

read/write 0

0.13
Speed
Selection
(LSB)

Always returns a 0 for this bit. Together
with bit 0.6, speed selection of 1000
Mbps is identified.

returns 0 0

0.12
Auto-
Negotiation
Enable

Ignore this bit because Auto-
Negotiation is not included.

read/ write 1

0.11 Power Down

1 = Power down

0 = Normal operation

With the PMA option, when set to ’1’
the device-specific transceiver is placed
in a low- power state. This bit requires
a reset (see bit 0.15) to clear.

With the TBI version this register bit
has no effect.

read/ write 0

0.10 Isolate
1 = Electrically Isolate PHY from GMII

0 = Normal operation
read/write 1

R
E

S
E

T

LO
O

P
B

A
C

K

A
U

TO
-N

E
G

 E
N

A
B

LE

R
E

S
TA

R
T

 A
U

TO
-N

E
G

R
E

S
E

R
V

E
D

P
O

W
E

R
 D

O
W

N

S
P

E
E

D

S
P

E
E

D

15 14 13 12 11 10 7 6 5 0

Reg 0

IS
O

LAT
E

9 8

D
U

P
LE

X
 M

O
D

E

C
O

LLIS
IO

N
 T

E
S

T

4

 U
N

ID
IR

E
C

T
IO

N
A

L E
N

A
B

LE

http://www.xilinx.com

246 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 12: Configuration and Status

Register 1: Status Register
X-Ref Target - Figure 12-16

0.9
Restart Auto-
Negotiation

Ignore this bit because Auto-
Negotiation is not included.

read/ write 0

0.8
Duplex
Mode

Always returns a ‘1’ for this bit to signal
Full-Duplex Mode.

returns 1 1

0.7 Collision Test
Always returns a ‘0’ for this bit to
disable COL test.

returns 0 0

0.6
Speed
Selection
(MSB)

Always returns a ‘1’ for this bit.
Together with bit 0.13, speed selection
of 1000 Mbps is identified

returns 1 1

0.5
Unidirection
al Enable

Ignore this bit because Auto-
Negotiation is not included.

read/ write 0

0.4:0 Reserved Always return 0s , writes ignored. returns 0s 00000

Table 12-14: Control Register (Register 0) (Cont’d)

Bit(s) Name Description Attributes
Default
Value

MDIO Register 1: Status Register

Table 12-15: Status Register (Register 1)

Bit(s) Name Description Attributes
Default
Value

1.15 100BASE-T4
Always returns a ‘0’ for this bit since
100BASE-T4 is not supported

returns 0 0

1.14
100BASE-X Full
Duplex

Always returns a ‘0’ for this bit since
100BASE-X Full Duplex is not
supported

returns 0 0

1.13
100BASE-X Half
Duplex

Always returns a ‘0’ for this bit since
100BASE-X Half Duplex is not
supported

returns 0 0

100B
A

S
E

-T
4

100B
A

S
E

-X
 F

U
LL D

U
P

LE
X

10M
b/s F

U
LL D

U
P

LE
X

100B
A

S
E

-T
2 H

A
LF

 D
U

P
LE

X

LIN
K

 S
TAT

U
S

10M
b/s H

A
LF

 D
U

P
LE

X

100B
A

S
E

-X
 H

A
LF

 D
U

P
LE

X

M
F

 P
R

E
A

M
B

LE
 S

U
P

P
R

E
S

S
IO

N

15 14 13 12 11 10 7 6 5 0

Reg 1

100B
A

S
E

-T
2 F

U
LL D

U
P

LE
X

9 8

E
X

T
E

N
D

E
D

 S
TAT

U
S

U
N

ID
IR

E
C

T
IO

N
A

L A
N

ILIT
Y

4

A
U

TO
-N

E
G

 C
O

M
P

LE
T

E

3 2 1

R
E

M
O

T
E

 FA
U

LT

A
U

TO
-N

E
G

 A
B

ILIT
Y

JA
B

B
E

R
 D

E
T

E
C

T

E
X

T
E

N
D

E
D

 C
A

PA
B

ILIT
Y

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 247
UG155 March 1, 2011

Management Registers

1.12 10 Mbps Full Duplex
Always returns a ‘0’ for this bit since 10
Mbps Full Duplex is not supported

returns 0 0

1.11
10 Mbps Half
Duplex

Always returns a ‘0’ for this bit since 10
Mbps Half Duplex is not supported

returns 0 0

1.10
100BASE-T2 Full
Duplex

Always returns a ‘0’ for this bit since
100BASE-T2 Full Duplex is not
supported

returns 0 0

1.9
100BASE-T2 Half
Duplex

Always returns a ‘0’ for this bit since
100BASE-T2 Half Duplex is not
supported

returns 0 0

1.8 Extended Status
Always returns a ‘1’ for this bit to
indicate the presence of the Extended
Register (Register 15)

returns 1 1

1.7
Unidirectional
Ability

Always returns 1, writes ignored returns 1 1

1.6
MF Preamble
Suppression

Always returns a ‘1’ for this bit to
indicate that Management Frame
Preamble Suppression is supported

returns 1 1

1.5
Auto- Negotiation
Complete

Ignore this bit because Auto-
Negotiation is not included.

returns 1 1

1.4 Remote Fault
Always returns a ‘0’ for this bit because
Auto-Negotiation is not included.

returns 0 0

1.3
Auto- Negotiation
Ability

Ignore this bit because Auto-
Negotiation is not included.

returns 0 0

1.2 Link Status

1 = Link is up

0 = Link is down

Latches '0' if Link Status goes down.
Clears to current Link Status on read.

See the following Link Status section for
further details.

read only

self
clearing
on read

0

1.1 Jabber Detect
Always returns a ‘0’ for this bit since
Jabber Detect is not supported

returns 0 0

1.0 Extended Capability
Always returns a ‘0’ for this bit since no
extended register set is supported

returns 0 0

Table 12-15: Status Register (Register 1) (Cont’d)

Bit(s) Name Description Attributes
Default
Value

http://www.xilinx.com

248 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 12: Configuration and Status

Link Status

When high, the link is valid and has remained valid since this register was last read;
synchronization of the link has been obtained.

When low, either:

• a valid link has not been established; link synchronization has failed.

• OR, link synchronization was lost at some point since this register was previously
read. However, the current link status may be good. Therefore read this register a
2nd time to get confirmation of the current link status.

Registers 2 and 3: Phy Identifier

MDIO Registers 2 and 3: PHY Identifier

Table 12-16: PHY Identifier (Registers 2 and 3)

Bit(s) Name Description Attributes Default Value

2.15:0
Organizationally Unique
Identifier

Always return
0s

returns 0s 0000000000000000

3.15:10
Organizationally Unique
Identifier

Always return
0s

returns 0s 000000

3.9:4
Manufacturer model
number

Always return
0s

returns 0s 000000

3.3:0 Revision Number
Always return
0s

returns 0s 0000

O
R

G
A

N
IZ

E
U

N
IQ

U
E

 ID

15 0

Reg 2

15 0

Reg 3

O
R

G
A

N
IZ

E
U

N
IQ

U
E

 ID

10 9 4 3

M
A

U
FA

C
T

U
R

E
R

M
O

D
E

L N
O

R
E

V
IS

IO
N

 N
O

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 249
UG155 March 1, 2011

Management Registers

Register 15: Extended Status

MDIO Register 15: Extended Status

Table 12-17: Extended Status (Register 15)

Bit(s) Name Description Attributes
Default
Value

15.15
1000BASE-X Full
Duplex

Always returns a ‘1’ since
1000BASE-X Full Duplex is
supported

returns 1 1

15.14
1000BASE-X Half
Duplex

Always returns a ‘0’ since
1000BASE-X Half Duplex is not
supported

returns 0 0

15.13
1000BASE-T Full
Duplex

Always returns a ‘0’ since
1000BASE-T Full Duplex is not
supported

returns 0 0

15.12
1000BASE-T Half
Duplex

Always returns a ‘0’ since
1000BASE-T Half Duplex is not
supported

returns 0 0

15:11:0 Reserved Always return 0s returns 0s
000000000

000

1000B
A

S
E

-X
 F

U
LL D

U
P

LE
X

1000B
A

S
E

-X
 H

A
LF

 D
U

P
LE

X

1000B
A

S
E

-T
 F

U
LL D

U
P

LE
X

15 14 13 12 11 0

Reg 15

R
E

S
E

R
V

E
D

1000B
A

S
E

-T
 H

A
LF

 D
U

P
LE

X

http://www.xilinx.com

250 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 12: Configuration and Status

SGMII Standard Using the Optional Auto-Negotiation
The registers provided for SGMII operation in this core are adaptations of those defined in
clauses 22 and 37 of the IEEE 802.3-2008 specification. In an SGMII implementation, two
different types of links exist. They are the SGMII link between the MAC and PHY (SGMII
link) and the link across the Ethernet Medium itself (Medium). See Figure 13-2.

Information regarding the state of both of these links is contained within the following
registers. Where applicable, the abbreviations SGMII link and Medium are used in the
register descriptions. Registers at undefined addresses are read-only and return 0s.

Register 0: SGMII Control

Table 12-18: MDIO Registers for SGMII with Auto-Negotiation

Register Address Register Name

0 SGMII Control Register

1 SGMII Status Register

2,3 PHY Identifier

4 SGMII Auto-Negotiation Advertisement Register

5 SGMII Auto-Negotiation Link Partner Ability Base Register

6 SGMII Auto-Negotiation Expansion Register

7 SGMII Auto-Negotiation Next Page Transmit Register

8 SGMII Auto-Negotiation Next Page Receive Register

15 SGMII Extended Status Register

16 SGMII Vendor Specific: Auto-Negotiation Interrupt Control

MDIO Register 0: SGMII Control

R
E

S
E

T

LO
O

P
B

A
C

K

A
U

TO
-N

E
G

 E
N

A
B

LE

R
E

S
TA

R
T

 A
U

TO
-N

E
G

R
E

S
E

R
V

E
D

P
O

W
E

R
 D

O
W

N

S
P

E
E

D

S
P

E
E

D

15 14 13 12 11 10 7 6 5 0

Reg 0

IS
O

LAT
E

9 8

D
U

P
LE

X
 M

O
D

E

C
O

LLIS
IO

N
 T

E
S

T

4

 U
N

ID
IR

E
C

T
IO

N
A

L E
N

A
B

LE

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 251
UG155 March 1, 2011

Management Registers

Table 12-19: SGMII Control (Register 0)

Bit(s) Name Description Attributes
Default
Value

0.15 Reset
1 = Core Reset

0 = Normal Operation

read/write

self clearing
0

0.14 Loopback

1 = Enable Loopback Mode

0 = Disable Loopback Mode

When used with a device-specific
transceiver, the core is placed in
internal loopback mode.

With the TBI version, Bit 1 is
connected to ewrap. When set to
‘1’ indicates to the external PMA
module to enter loopback mode.

See Loopback.

read/write 0

0.13
Speed
Selection
(LSB)

Always returns a ‘0’ for this bit.
Together with bit 0.6, speed
selection of 1000 Mbps is identified

returns 0 0

0.12
Auto-
Negotiation
Enable

1 = Enable SGMII Auto-
Negotiation Process

0 = Disable SGMII Auto-
Negotiation Process

read/write 1

0.11 Power Down

1 = Power down

0 = Normal operation

With the PMA option, when set to
’1’ the device-specific transceiver
is placed in a low-power state. This
bit requires a reset (see bit 0.15) to
clear.

With the TBI version this register
bit has no effect.

read/ write 0

0.10 Isolate
1 = Electrically Isolate SGMII logic
from GMII

0 = Normal operation
read/write 1

0.9
Restart Auto-
Negotiation

1 = Restart Auto-Negotiation
Process across SGMII link

0 = Normal Operation

read/write

self clearing
0

0.8 Duplex Mode
Always returns a ‘1’ for this bit to
signal Full-Duplex Mode returns 1 1

0.7 Collision Test
Always returns a ‘0’ for this bit to
disable COL test returns 0 0

0.6
Speed
Selection
(MSB)

Always returns a ‘1’ for this bit.
Together with bit 0.13, speed
selection of 1000 Mbps is identified

returns 1 1

http://www.xilinx.com

252 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 12: Configuration and Status

Register 1: SGMII Status

0.5
Unidirection
al Enable

Enable transmit regardless of
whether a valid link has been
established

read/ write 0

0.4:0 Reserved Always return 0s , writes ignored returns 0s 00000

Table 12-19: SGMII Control (Register 0) (Cont’d)

Bit(s) Name Description Attributes
Default
Value

MDIO Register 1: SGMII Status

Table 12-20: SGMII Status (Register 1)

Bit(s) Name Description Attributes
Default
Value

1.15 100BASE-T4
Always returns a ‘0’ for this bit because
100BASE-T4 is not supported

returns 0 0

1.14
100BASE-X Full
Duplex

Always returns a ‘0’ for this bit because
100BASE-X Full Duplex is not
supported

returns 0 0

1.13
100BASE-X Half
Duplex

Always returns a ‘0’ for this bit because
100BASE-X Half Duplex is not
supported

returns 0 0

1.12
10 Mbps Full
Duplex

Always returns a ‘0’ for this bit because
10 Mbps Full Duplex is not supported returns 0 0

1.11
10 Mbps Half
Duplex

Always returns a ‘0’ for this bit because
10 Mbps Half Duplex is not supported returns 0 0

1.10 100BASE-T2 Full
Duplex

Always returns a ‘0’ for this bit because
100BASE-T2 Full Duplex is not
supported

returns 0 0

100B
A

S
E

-T
4

100B
A

S
E

-X
 F

U
LL D

U
P

LE
X

10M
b/s F

U
LL D

U
P

LE
X

100B
A

S
E

-T
2 H

A
LF

 D
U

P
LE

X

LIN
K

 S
TAT

U
S

10M
b/s H

A
LF

 D
U

P
LE

X

100B
A

S
E

-X
 H

A
LF

 D
U

P
LE

X

M
F

 P
R

E
A

M
B

LE
 S

U
P

P
R

E
S

S
IO

N

15 14 13 12 11 10 7 6 5 0

Reg 1
100B

A
S

E
-T

2 F
U

LL D
U

P
LE

X

9 8
E

X
T

E
N

D
E

D
 S

TAT
U

S

U
N

ID
IR

E
C

T
IO

N
A

L A
N

ILIT
Y

4

A
U

TO
-N

E
G

 C
O

M
P

LE
T

E

3 2 1

R
E

M
O

T
E

 FA
U

LT

A
U

TO
-N

E
G

 A
B

ILIT
Y

JA
B

B
E

R
 D

E
T

E
C

T

E
X

T
E

N
D

E
D

 C
A

PA
B

ILIT
Y

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 253
UG155 March 1, 2011

Management Registers

1.9
100BASE-T2 Half
Duplex

Always returns a ‘0’ for this bit because
100BASE-T2 Half Duplex is not
supported

returns 0 0

1.8 Extended Status
Always returns a ‘1’ for this bit to
indicate the presence of the Extended
Register (Register 15)

returns 1 1

1.7
Unidirectional
Ability Always returns ‘1,’ writes ignored returns 1 1

1.6 MF Preamble
Suppression

Always returns a ‘1’ for this bit to
indicate that Management Frame
Preamble Suppression is supported

returns 1 1

1.5
Auto- Negotiation
Complete

1 = Auto-Negotiation process
completed across SGMII link

0 = Auto-Negotiation process not
completed across SGMII link

read only 0

1.4 Remote Fault

1 = A fault on the Medium has been
detected

0 = No fault of the Medium has been
detected

read only

self
clearing
on read

0

1.3
Auto- Negotiation
Ability

Always returns a ‘1’ for this bit to
indicate that the SGMII core is capable
of Auto-Negotiation

returns 1 1

1.2 SGMII Link Status

1 = SGMII Link is up

0 = SGMII Link is down

Latches '0' if SGMII Link Status goes
down. Clears to current SGMII Link
Status on read.

See the following Link Status section
for further details.

read only

self
clearing
on read

0

1.1 Jabber Detect
Always returns a ‘0’ for this bit since
Jabber Detect is not supported

returns 0 0

1.0 Extended Capability
Always returns a ‘0’ for this bit because
no extended register set is supported

returns 0 0

Table 12-20: SGMII Status (Register 1) (Cont’d)

Bit(s) Name Description Attributes
Default
Value

http://www.xilinx.com

254 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 12: Configuration and Status

Link Status

When high, the link is valid and has remained valid since this register was last read:
synchronization of the link has been obtained and Auto-Negotiation (if enabled) has
completed.

When low, either:

• a valid link has not been established; link synchronization has failed or Auto-
Negotiation (if enabled) has failed to complete.

• OR, link synchronization was lost at some point since this register was previously
read. However, the current link status may be good. Therefore read this register a
2nd time to get confirmation of the current link status.

Regardless of whether Auto-Negotiation is enabled or disabled, there can be some delay to
the deassertion of Link Status following the loss of synchronization of a previously
successful link. This is due to the Auto-Negotiation state machine which requires that
synchronization is lost for an entire link timer duration before changing state. For more
information, see the 802.3 specification (the an_sync_status variable).

Registers 2 and 3: PHY Identifier

MDIO Registers 2 and 3: PHY Identifier

Table 12-21: PHY Identifier (Registers 2 and 3)

Bit(s) Name Description Attributes Default Value

2.15:0
Organizationally Unique
Identifier

Always return
0s returns 0s 0000000000000000

3.15:10
Organizationally Unique
Identifier

Always return
0s returns 0s 000000

3.9:4
Manufacturer model
number

Always return
0s returns 0s 000000

3.3:0 Revision Number
Always return
0s returns 0s 0000

O
R

G
A

N
IZ

E
U

N
IQ

U
E

 ID

15 0

Reg 2

15 0

Reg 3

O
R

G
A

N
IZ

E
U

N
IQ

U
E

 ID

10 9 4 3

M
A

U
FA

C
T

U
R

E
R

M
O

D
E

L N
O

R
E

V
IS

IO
N

 N
O

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 255
UG155 March 1, 2011

Management Registers

Register 4: SGMII Auto-Negotiation Advertisement

MAC Mode of Operation

PHY Mode of Operation

MDIO Register 4: SGMII Auto-Negotiation Advertisement

Table 12-22: SGMII Auto-Negotiation Advertisement (Register 4)

Bit(s) Name Description Attributes Default Value

4.15:0 All bits
SGMII defined value sent from
the MAC to the PHY read only 0000000000000001

MDIO Register 4: SGMII Auto-Negotiation Advertisement

Table 12-23: SGMII Auto-Negotiation Advertisement in PHY Mode (Register 4)

Bit(s) Name Description Attributes
Default
Value

4.15
PHY Link
Status

This refers to the link status of the PHY
with its link partner across the
Medium.

1 = Link Up

0 = Link Down

read/write 0

4.14 Acknowledge
Used by Auto-Negotiation function to
indicate reception of a link partner’s
base or next page

read/write 0

4.13 Reserved Always returns ‘0,’ writes ignored returns 0 0

4.12 Duplex Mode
1= Full Duplex

0 = Half Duplex
read/write 0

LO
G

IC
 0's

15 0

Reg 4

1

LO
G

IC
 1

P
H

Y
 LIN

K
 S

TAT
U

S

A
C

K
N

O
W

LE
D

G
E

R
E

S
E

R
V

E
D

R
E

S
E

R
V

E
D

15 14 13 12 11 0

Reg 5

D
U

P
LE

X
 M

O
D

E

9 110

S
P

E
E

D

R
E

S
E

R
V

E
D

http://www.xilinx.com

256 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 12: Configuration and Status

Register 5: SGMII Auto-Negotiation Link Partner Ability

The Auto-Negotiation Ability Base Register (Register 5) contains information related to the
status of the link between the PHY and its physical link partner across the Medium.

4.11:10 Speed

11 = Reserved

10 = 1 Gbps

01 = 100 Mbps

00 = 10 Mbps

read/write 00

4.9:1 Reserved Always return 0s returns 0s 000000000

4:0 Reserved Always returns ‘1’ returns 1 1

Table 12-23: SGMII Auto-Negotiation Advertisement in PHY Mode (Register 4)

Bit(s) Name Description Attributes
Default
Value

MDIO Register 5: SGMII Auto-Negotiation Link Partner Ability

Table 12-24: SGMII Auto-Negotiation Link Partner Ability Base (Register 5)

Bit(s) Name Description Attributes
Default
Value

5.15
PHY Link
Status

This refers to the link status of the PHY
with its link partner across the Medium.

1 = Link Up

0 = Link Down

read only 1

5.14 Acknowledge
Used by Auto-Negotiation function to
indicate reception of a link partner’s
base or next page

read only 0

5.13 Reserved Always returns ‘0,’ writes ignored returns 0 0

5.12 Duplex Mode
1= Full Duplex

0 = Half Duplex
read only 0

5.11:10 Speed

11 = Reserved

10 = 1 Gbps

01 = 100 Mbps

00 = 10 Mbps

read only 00

5.9:1 Reserved Always return 0s returns 0s 000000000

5:0 Reserved Always returns ‘1’ returns 1 1

P
H

Y
 LIN

K
 S

TAT
U

S

A
C

K
N

O
W

LE
D

G
E

R
E

S
E

R
V

E
D

R
E

S
E

R
V

E
D

15 14 13 12 11 0

Reg 5
D

U
P

LE
X

 M
O

D
E

9 110

S
P

E
E

D

R
E

S
E

R
V

E
D

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 257
UG155 March 1, 2011

Management Registers

Register 6: SGMII Auto-Negotiation Expansion

MDIO Register 6: SGMII Auto-Negotiation Expansion

Table 12-25: SGMII Auto-Negotiation Expansion (Register 6)

Bit(s) Name Description Attributes Default Value

6.15:3 Reserved Always return 0s returns 0s 0000000000000

6.2 Next Page
Able

This bit is ignored as the core
currently does not support next
page. This feature can be
enabled on request.

returns 1 1

6.1
Page
Received

1 = A new page has been
received

0 = A new page has not been
received

read only

self clearing on
read

0

6.0 Reserved Always return 0s returns 0s 0000000

N
E

X
T

 PA
G

E
 A

B
LE

PA
G

E
 R

E
C

E
IV

E
D

R
E

S
E

R
V

E
D

15 0

Reg 6

R
E

S
E

R
V

E
D

3 2 1

http://www.xilinx.com

258 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 12: Configuration and Status

Register 7: SGMII Auto-Negotiation Next Page Transmit
X-Ref Target - Figure 12-17

MDIO Register 7: SGMII Auto-Negotiation Next Page Transmit

Table 12-26: SGMII Auto-Negotiation Next Page Transmit (Register 7)

Bit(s) Name Description Attributes Default Value(1)

7.15 Next Page
1 = Additional Next Page(s) will
follow

0 = Last page

read/

write
0

7.14 Reserved Always returns ‘0’ returns 0 0

7.13 Message Page
1 = Message Page

0 = Unformatted Page

read/

write
1

7.12
Acknowledge
2

1 = Comply with message

0 = Cannot comply with message

read/

write
0

7.11 Toggle
Value toggles between
subsequent Next Pages

read only 0

7.10:0
Message /
Unformatted
Code Field

Message Code Field or
Unformatted Page Encoding as
dictated by 7.13

read/

write

00000000001

(Null Message
Code)

Notes:
1. This register returns the default values because the core does not support next page. The feature can be

enabled, if requested.

N
E

X
T

 PA
G

E

R
E

S
E

R
V

E
D

M
E

S
S

A
G

E
 PA

G
E

15 14 13 12 11 0

Reg 7

TO
G

G
LE

M
E

S
S

A
G

E
 C

O
D

E

A
C

K
N

O
W

LE
D

G
E

 2

10

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 259
UG155 March 1, 2011

Management Registers

Register 8: SGMII Next Page Receive

MDIO Register 8: SGMII Next Page Receive

Table 12-27: SGMII Auto-Negotiation Next Page Receive (Register 8)

Bit(s) Name Description Attributes Default Value

8.15 Next Page
1 = Additional Next Page(s) will
follow

0 = Last page
read only 0

8.14 Acknowledge
Used by Auto-Negotiation
function to indicate reception of a
link partner’s base or next page

read only 0

8.13 Message Page
1 = Message Page

0 = Unformatted Page
read only 0

8.12 Acknowledge 2
1 = Comply with message

0 = Cannot comply with message
read only 0

8.11 Toggle
Value toggles between subsequent
Next Pages read only 0

8.10:0
Message /
Unformatted
Code Field

Message Code Field or
Unformatted Page Encoding as
dictated by 8.13

read only 00000000000

N
E

X
T

 PA
G

E

A
C

K
N

O
W

LE
D

G
E

M
E

S
S

A
G

E
 PA

G
E

15 14 13 12 11 0

Reg 8

TO
G

G
LE

M
E

S
S

A
G

E
 C

O
D

E

A
C

K
N

O
W

LE
D

G
E

 2

10

http://www.xilinx.com

260 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 12: Configuration and Status

Register 15: SGMII Extended Status

MDIO Register 15: SGMII Extended Status

Table 12-28: SGMII Extended Status Register (Register 15)

Bit(s) Name Description Attributes Default Value

15.15 1000BASE-X
Full Duplex

Always returns a ‘1’ for this bit
since 1000BASE-X Full Duplex is
supported

returns 1 1

15.14
1000BASE-X
Half Duplex

Always returns a ‘0’ for this bit
since 1000BASE-X Half Duplex is
not supported

returns 0 0

15.13
1000BASE-T
Full Duplex

Always returns a ‘0’ for this bit
since 1000BASE-T Full Duplex is
not supported

returns 0 0

15.12 1000BASE-T
Half Duplex

Always returns a ‘0’ for this bit
since 1000BASE-T Half Duplex is
not supported

returns 0 0

15:11:0 Reserved Always return 0s returns 0s 000000000000

1000B
A

S
E

-X
 F

U
LL D

U
P

LE
X

1000B
A

S
E

-X
 H

A
LF

 D
U

P
LE

X

1000B
A

S
E

-T
 F

U
LL D

U
P

LE
X

15 14 13 12 11 0

Reg 15

R
E

S
E

R
V

E
D

1000B
A

S
E

-T
 H

A
LF

 D
U

P
LE

X

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 261
UG155 March 1, 2011

Management Registers

Register 16: SGMII Auto-Negotiation Interrupt Control

MDIO Register 16: SGMII Auto-Negotiation Interrupt Control

Table 12-29: SGMII Auto-Negotiation Interrupt Control (Register 16)

Bit(s) Name Description Attributes Default Value

16.15:2 Reserved Always return 0s returns 0s 00000000000000

16.1
Interrupt

Status

1 = Interrupt is asserted

0 = Interrupt is not asserted

If the interrupt is enabled, this bit
is asserted on completion of an
Auto-Negotiation cycle across the
SGMII link; it is only cleared by
writing ‘0’ to this bit.

If the Interrupt is disabled, the bit
is set to ‘0.’

NOTE: The an_interrupt port of
the core is wired to this bit.

read/

write
0

16.0 Interrupt
Enable

1 = Interrupt enabled

0 = Interrupt disabled

read/

write
1

15 0

Reg 16

R
E

S
E

R
V

E
D

12
IN

T
E

R
R

U
P

T
 S

TAT
U

S

IN
T

E
R

R
U

P
T

 E
N

A
B

LE

http://www.xilinx.com

262 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 12: Configuration and Status

SGMII Standard without the Optional Auto-Negotiation
The Registers provided for SGMII operation in this core are adaptations of those defined in
clauses 22 and 37 of the IEEE 802.3-2008 specification. In an SGMII implementation, two
different types of links exist. They are the SGMII link between the MAC and PHY (SGMII
link) and the link across the Ethernet Medium itself (Medium). See Figure 13-2.
Information about the state of the SGMII link is available in registers that follow.

The state of the link across the Ethernet Medium itself is not directly available when SGMII
Auto-Negotiation is not present. For this reason, the status of the link and the results of the
PHYs Auto-Negotiation (for example, Speed and Duplex mode) must be obtained directly
from the management interface of connected PHY module. Registers at undefined
addresses are read-only and return 0s.

Register 0: SGMII Control

Table 12-30: MDIO Registers for SGMII with Auto-Negotiation

Register Address Register Name

0 SGMII Control Register

1 SGMII Status Register

2,3 PHY Identifier

4 SGMII Auto-Negotiation Advertisement Register

15 SGMII Extended Status Register

MDIO Register 0: SGMII Control

R
E

S
E

T

LO
O

P
B

A
C

K

A
U

TO
-N

E
G

 E
N

A
B

LE

R
E

S
TA

R
T

 A
U

TO
-N

E
G

R
E

S
E

R
V

E
D

P
O

W
E

R
 D

O
W

N

S
P

E
E

D

S
P

E
E

D

15 14 13 12 11 10 7 6 5 0

Reg 0

IS
O

LAT
E

9 8

D
U

P
LE

X
 M

O
D

E

C
O

LLIS
IO

N
 T

E
S

T

4

 U
N

ID
IR

E
C

T
IO

N
A

L E
N

A
B

LE

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 263
UG155 March 1, 2011

Management Registers

Table 12-31: SGMII Control (Register 0)

Bit(s) Name Description Attributes
Default
Value

0.15 Reset
1 = Core Reset

0 = Normal Operation

read/write

self clearing
0

0.14 Loopback

1 = Enable Loopback Mode

0 = Disable Loopback Mode

When used with a device-specific
transceiver, the core is placed in
internal loopback mode.

With the TBI version, Bit 1 is
connected to ewrap. When set to
‘1’ indicates to the external PMA
module to enter loopback mode.

See Loopback.

read/write 0

0.13
Speed
Selection
(LSB)

Always returns a ‘0’ for this bit.
Together with bit 0.6, speed
selection of 1000 Mbps is identified

returns 0 0

0.12
Auto-
Negotiation
Enable

1 = Enable SGMII Auto-
Negotiation Process

0 = Disable SGMII Auto-
Negotiation Process

read/write 1

0.11 Power Down

1 = Power down

0 = Normal operation

With the PMA option, when set to
’1’ the device-specific transceiver
is placed in a low-power state. This
bit requires a reset (see bit 0.15) to
clear.

With the TBI version this register
bit has no effect.

read/ write 0

0.10 Isolate
1 = Electrically Isolate SGMII logic
from GMII

0 = Normal operation
read/write 1

0.9
Restart Auto-
Negotiation

1 = Restart Auto-Negotiation
Process across SGMII link

0 = Normal Operation

read/write

self clearing
0

0.8 Duplex Mode
Always returns a ‘1’ for this bit to
signal Full-Duplex Mode returns 1 1

0.7 Collision Test
Always returns a ‘0’ for this bit to
disable COL test returns 0 0

0.6
Speed
Selection
(MSB)

Always returns a ‘1’ for this bit.
Together with bit 0.13, speed
selection of 1000 Mbps is identified

returns 1 1

http://www.xilinx.com

264 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 12: Configuration and Status

Register 1: SGMII Status

0.5
Unidirection
al Enable

Enable transmit regardless of
whether a valid link has been
established

read/ write 0

0.4:0 Reserved Always return 0s , writes ignored returns 0s 00000

Table 12-31: SGMII Control (Register 0) (Cont’d)

Bit(s) Name Description Attributes
Default
Value

MDIO Register 1: SGMII Status

Table 12-32: SGMII Status (Register 1)

Bit(s) Name Description Attributes
Default
Value

1.15 100BASE-T4
Always returns a ‘0’ for this bit because
100BASE-T4 is not supported

returns 0 0

1.14
100BASE-X Full
Duplex

Always returns a ‘0’ for this bit because
100BASE-X Full Duplex is not
supported

returns 0 0

1.13
100BASE-X Half
Duplex

Always returns a ‘0’ for this bit because
100BASE-X Half Duplex is not
supported

returns 0 0

1.12
10 Mbps Full
Duplex

Always returns a ‘0’ for this bit because
10 Mbps Full Duplex is not supported returns 0 0

1.11
10 Mbps Half
Duplex

Always returns a ‘0’ for this bit because
10 Mbps Half Duplex is not supported returns 0 0

1.10 100BASE-T2 Full
Duplex

Always returns a ‘0’ for this bit because
100BASE-T2 Full Duplex is not
supported

returns 0 0

100B
A

S
E

-T
4

100B
A

S
E

-X
 F

U
LL D

U
P

LE
X

10M
b/s F

U
LL D

U
P

LE
X

100B
A

S
E

-T
2 H

A
LF

 D
U

P
LE

X

LIN
K

 S
TAT

U
S

10M
b/s H

A
LF

 D
U

P
LE

X

100B
A

S
E

-X
 H

A
LF

 D
U

P
LE

X

M
F

 P
R

E
A

M
B

LE
 S

U
P

P
R

E
S

S
IO

N

15 14 13 12 11 10 7 6 5 0

Reg 1
100B

A
S

E
-T

2 F
U

LL D
U

P
LE

X

9 8
E

X
T

E
N

D
E

D
 S

TAT
U

S

U
N

ID
IR

E
C

T
IO

N
A

L A
N

ILIT
Y

4

A
U

TO
-N

E
G

 C
O

M
P

LE
T

E

3 2 1

R
E

M
O

T
E

 FA
U

LT

A
U

TO
-N

E
G

 A
B

ILIT
Y

JA
B

B
E

R
 D

E
T

E
C

T

E
X

T
E

N
D

E
D

 C
A

PA
B

ILIT
Y

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 265
UG155 March 1, 2011

Management Registers

Link Status

When high, the link is valid and has remained valid since this register was last read:
synchronization of the link has been obtained.

When low, either:

• a valid link has not been established; link synchronization has failed.

• OR, link synchronization was lost at some point since this register was previously
read. However, the current link status may be good. Therefore read this register a
second time to get confirmation of the current link status.

1.9
100BASE-T2 Half
Duplex

Always returns a ‘0’ for this bit because
100BASE-T2 Half Duplex is not
supported

returns 0 0

1.8 Extended Status
Always returns a ‘1’ for this bit to
indicate the presence of the Extended
Register (Register 15)

returns 1 1

1.7
Unidirectional
Ability Always returns ‘1,’ writes ignored returns 1 1

1.6 MF Preamble
Suppression

Always returns a ‘1’ for this bit to
indicate that Management Frame
Preamble Suppression is supported

returns 1 1

1.5
Auto- Negotiation
Complete

Ignore this bit because Auto-
Negotiation is not included.

returns 1 0

1.4 Remote Fault
Ignore this bit because Auto-
Negotiation is not included

returns 0 0

1.3 Auto- Negotiation
Ability

Ignore this bit because Auto-
Negotiation is not included

returns 0 0

1.2 SGMII Link Status

1 = SGMII Link is up

0 = SGMII Link is down

Latches '0' if SGMII Link Status goes
down. Clears to current SGMII Link
Status on read.

See the following Link Status section
for further details.

read only

self
clearing
on read

0

1.1 Jabber Detect
Always returns a ‘0’ for this bit since
Jabber Detect is not supported

returns 0 0

1.0 Extended Capability
Always returns a ‘0’ for this bit because
no extended register set is supported

returns 0 0

Table 12-32: SGMII Status (Register 1) (Cont’d)

Bit(s) Name Description Attributes
Default
Value

http://www.xilinx.com

266 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 12: Configuration and Status

Registers 2 and 3: PHY Identifier

Register 4: SGMII Auto-Negotiation Advertisement

MDIO Registers 2 and 3: PHY Identifier

Table 12-33: PHY Identifier (Registers 2 and 3)

Bit(s) Name Description Attributes Default Value

2.15:0
Organizationally Unique
Identifier

Always return 0s returns 0s 0000000000000000

3.15:10
Organizationally Unique
Identifier

Always return 0s returns 0s 000000

3.9:4
Manufacturer model
number

Always return 0s returns 0s 000000

3.3:0 Revision Number Always return 0s returns 0s 0000

O
R

G
A

N
IZ

E
U

N
IQ

U
E

 ID

15 0

Reg 2

15 0

Reg 3

O
R

G
A

N
IZ

E
U

N
IQ

U
E

 ID

10 9 4 3

M
A

U
FA

C
T

U
R

E
R

M
O

D
E

L N
O

R
E

V
IS

IO
N

 N
O

MDIO Register 4: SGMII Auto-Negotiation Advertisement

Table 12-34: SGMII Auto-Negotiation Advertisement (Register 4)

Bit(s) Name Description Attributes Default Value

4.15:0 All bits
Ignore this register because
Auto-Negotiation is not
included

read only 0000000000000001

LO
G

IC
 0's

15 0

Reg 4

1

LO
G

IC
 1

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 267
UG155 March 1, 2011

Management Registers

Register 15: SGMII Extended Status

MDIO Register 15: SGMII Extended Status

Table 12-35: SGMII Extended Status Register (Register 15)

Bit(s) Name Description Attributes Default Value

15.15
1000BASE-X
Full Duplex

Always returns a ‘1’ for this bit
since 1000BASE-X Full Duplex is
supported

returns 1 1

15.14
1000BASE-X
Half Duplex

Always returns a ‘0’ for this bit
since 1000BASE-X Half Duplex is
not supported

returns 0 0

15.13
1000BASE-T
Full Duplex

Always returns a ‘0’ for this bit
since 1000BASE-T Full Duplex is
not supported

returns 0 0

15.12
1000BASE-T
Half Duplex

Always returns a ‘0’ for this bit
since 1000BASE-T Half Duplex is
not supported

returns 0 0

15:11:0 Reserved Always return 0s returns 0s 000000000000

1000B
A

S
E

-X
 F

U
LL D

U
P

LE
X

1000B
A

S
E

-X
 H

A
LF

 D
U

P
LE

X

1000B
A

S
E

-T
 F

U
LL D

U
P

LE
X

15 14 13 12 11 0

Reg 15

R
E

S
E

R
V

E
D

1000B
A

S
E

-T
 H

A
LF

 D
U

P
LE

X

http://www.xilinx.com

268 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 12: Configuration and Status

Both 1000BASE-X and SGMII Standards
Table 12-36 describes register 17, the vendor-specific Standard Selection Register. This
register is only present when the core is generated with the capability to dynamically
switch between 1000BASE-X and SGMII standards. The component name is used as the
base name of the output files generated for the core. See Component Name

When this Register is configured to perform the 1000BASE-X standard, Registers 0 to 16
should be interpreted as per 1000BASE-X Standard Using the Optional Auto-Negotiation
or 1000BASE-X Standard Without the Optional Auto-Negotiation.

When this Register is configured to perform the SGMII standard, Registers 0 to 16 should
be interpreted as per SGMII Standard Using the Optional Auto-Negotiation or 1000BASE-
X Standard Without the Optional Auto-Negotiation. This register may be written to at any
time. See Chapter 14, “Dynamic Switching of 1000BASE-X and SGMII Standards,” for
more information.

Register 17: Vendor-Specific Standard Selection Register

Figure 12-17: Dynamic Switching (Register 17)

Table 12-36: Vendor-specific Register: Standard Selection Register (Register 17)

Bit(s) Name Description Attributes Default Value

17.15:1 Reserved Always return 0s Returns 0s 000000000000000

16.0 Standard

0 = Core will perform the
1000BASE-X standard. Registers 0
to 16 will behave as per
1000BASE-X Standard Using the
Optional Auto-Negotiation

1= Core will perform the SGMII
standard. Registers 0 to 16 will
behave as per SGMII Standard
Using the Optional Auto-
Negotiation.

read/write
Determined by the
basex_or_sgmii
port

15 0

Reg 17

R
E

S
E

R
V

E
D

1

B
A

S
E

X
 O

R
 S

G
M

II

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 269
UG155 March 1, 2011

Optional Configuration Vector

Optional Configuration Vector
If MDIO Management Interface is omitted, relevant configuration signals are brought out
of the core. These signals are bundled into the CONFIGURATION_VECTOR signal as defined
in Table 12-37.

These signals may be changed by the user application at any time. The Clock Domain
heading denotes the clock domain the configuration signal is registered in before use by
the core. It is not necessary to drive the signal from this clock domain.

Table 12-37: Optional Configuration and Status Vectors

Signal Direction
Clock

Domain
Description

configuration_vector
[3:0] Input See note (1)

Bit[0]: Reserved (currently unused)

Bit[1]: Loopback Control

• When used with a device-specific
transceiver, the core is placed in
internal loopback mode.

• With the TBI version, Bit 1 is
connected to ewrap. When set to ‘1,’
this indicates to the external PMA
module to enter loopback mode. See
Loopback.

Bit[2]: Power Down

• When a device-specific transceiver
is used, a setting of ‘1’ places the
device-specific transceiver in a low-
power state. A reset must be applied
to clear.

• With the TBI version, this bit is
unused.

Bit[3]: Isolate

• When set to ‘1,’ the GMII should be
electrically isolated.

• When set to ‘0,’ normal operation is
enabled.

Notes:
1. Signals are synchronous to the internal 125 MHz reference clock of the core; this is userclk2 when

used with a device-specific transceiver; gtx_clk when used with TBI.

http://www.xilinx.com

270 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 12: Configuration and Status

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 271
UG155 March 1, 2011

Chapter 13

Auto-Negotiation

This chapter provides general guidelines for using the Auto-Negotiation function of the
Ethernet 1000BASE-X PCS/PMA or SGMII core. Auto-Negotiation is controlled and
monitored through the PCS Management Registers and is only available when the optional
MDIO Management Interface is present. For more information, see Chapter 12,
Configuration and Status.

Overview of Operation
For either standard, when considering Auto-Negotiation between two connected devices,
it must be remembered that:

• Auto-Negotiation must be either enabled in both devices, or:

• Auto-Negotiation must be disabled in both devices.

1000BASE-X Standard
X-Ref Target - Figure 13-1

Figure 13-1: 1000BASE-X Auto-Negotiation Overview

Ethernet 1000BASE-X
PCS/PMA or SGMII

Core

FPGA Device

Ethernet
Media
Access

Controller

PowerPC

MDIO

CoreConnect

an_interrupt

Auto-Neg Adv
(Reg 4)

Link Partner Ability
Base (Reg5)

Link Partner

Auto-Neg Adv
(Reg 4)

Link Partner Ability
Base (Reg5)

Optical
Fibre

http://www.xilinx.com

272 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 13: Auto-Negotiation

IEEE 802.3-2008 clause 37 describes the 1000BASE-X Auto-Negotiation function that
allows a device to advertise the modes of operation that it supports to a device at the
remote end of a link segment (the link partner) and to detect corresponding operational
modes that the link partner advertises. Figure 13-1 illustrates the operation of 1000BASE-X
Auto-Negotiation.

The following describes typical operation when Auto-Negotiation is enabled.

1. Auto-Negotiation starts automatically when any of the following conditions are met.

• Power-up/reset

• Upon loss of synchronization

• The link partner initiates Auto-Negotiation

An Auto-Negotiation Restart is requested (See MDIO Register 0: Control Register.)

2. During Auto-Negotiation, the contents of the Auto-Negotiation Advertisement
Register are transferred to the link partner.

This register is writable through the MDIO, therefore enabling software control of the
systems advertised abilities. See MDIO Register 4: Auto-Negotiation Advertisement
for more information.

Information provided in this register includes:

• Fault Condition signaling

• Duplex Mode

• Flow Control capabilities for the attached MAC.

3. The advertised abilities of the Link Partner are simultaneously transferred into the
Auto-Negotiation Link Partner Ability Base Register.

This register contains the same information as in the Auto-Negotiation Advertisement
Register. See MDIO Register 5: Auto-Negotiation Link Partner Base for more
information.

4. Under normal conditions, this completes the Auto-Negotiation information exchange.

It is now the responsibility of system management (for example, software running on
an embedded PowerPC® or MicroBlaze™ processor) to complete the cycle. The results
of the Auto-Negotiation should be read from Auto-Negotiation Link Partner Ability
Base Register. Other networking components, such as an attached Ethernet MAC,
should be configured accordingly.

There are two methods that a host processor uses to learn of the completion of an
Auto-Negotiation cycle:

• Polling the Auto-Negotiation completion bit 1.5 in the Status Register (Register 1).

• Using the Auto-Negotiation interrupt port of the core (see Using the Auto-
Negotiation Interrupt).

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 273
UG155 March 1, 2011

Overview of Operation

SGMII Standard

Using the SGMII MAC Mode Configuration to Interface to an External
BASE-T PHY with SGMII Interface

Figure 13-2 illustrates the operation of SGMII Auto-Negotiation as described in Overview
of Operation. Additional information about SGMII Standard Auto-Negotiation is
provided in the following sections.
X-Ref Target - Figure 13-2

The SGMII capable PHY has two distinctive sides to Auto-Negotiation.

• The PHY performs Auto-Negotiation with its link partner using the relevant Auto-
Negotiation standard for the chosen medium (BASE-T Auto-Negotiation is illustrated
in Figure 13-2, using a twisted copper pair as its medium). This resolves the
operational speed and duplex mode with the link partner.

• The PHY then passes the results of the Auto-Negotiation process with the link partner
to the Ethernet 1000BASE-X PCS/PMA or SGMII core (in SGMII mode), by leveraging
the 1000BASE-X Auto-Negotiation specification described in 1000BASE-X Auto-
Negotiation Overview, page 255. This transfers the results of the Link Partner Auto-
Negotiation across the SGMII and is the only Auto-Negotiation observed by the core.
This SGMII Auto-Negotiation function, summarized previously, leverages the
1000BASEX PCS/PMA Auto-Negotiation function but contains two differences.

• The duration of the Link Timer of the SGMII Auto-Negotiation is shrunk from 10 ms
to 1.6 ms so that the entire Auto-Negotiation cycle is much faster. See Setting the
Configurable Link Timer, page 258.

• The information exchanged is different and now contains speed resolution in addition
to duplex mode. See MDIO Register 5: SGMII Auto-Negotiation Link Partner Ability,
page 241.

• There are no other differences and dealing with the results of Auto-Negotiation can be
handled as described previously in 1000BASE-X Auto-Negotiation Overview

The Ethernet 1000 BASE-X PCS/PMA or SGMII core (in SGMII configuration and PHY
mode) then passes the results of the Auto-Negotiation process to the Ethernet 1000BASE-

Figure 13-2: SGMII Auto-Negotiation

Ethernet 1000BASE-X
PCS/PMA or SGMII
Core (PHY Mode)

Ethernet 1000BASE-X
PCS/PMA or SGMII
Core (MAC Mode)

FPGA Device

Ethernet
Media
Access

Controller

PowerPC

MDIO

CoreConnect

an_interrupt

Auto-Neg Adv
(Reg 4)

Link Partner Ability
Base (Reg5)

BASE-T PHY

Auto-Neg Adv
(Reg 4)

Link Partner Ability
Base (Reg5)

SGMII
link

Auto-Neg Adv
(Reg 4)

Link Partner Ability
Base (Reg5)

Medium
(Twisted
Copper

Pair)

Link Partner

Auto-Neg Adv
(Reg 4)

Link Partner Ability
Base (Reg5)

FPGA Device

http://www.xilinx.com

274 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 13: Auto-Negotiation

X PCS/PMA or SGMII core (in SGMII configuration and MAC mode), by leveraging the
1000BASE-X Auto-Negotiation specification described in Overview of Operation. This
transfers the results of the Link Partner Auto-Negotiation across the SGMII and is the only
Auto-Negotiation observed by the core.

This SGMII Auto-Negotiation function, summarized previously, leverages the 1000BASE-
X PCS/PMA Auto-Negotiation function but contains two differences.

• The duration of the Link Timer of the SGMII Auto-Negotiation is shrunk from 10 ms
to 1.6 ms so that the entire Auto-Negotiation cycle is much faster. See Setting the
Configurable Link Timer.

• The information exchanged is different and now contains speed resolution in addition
to duplex mode. See MDIO Register 5: Auto-Negotiation Link Partner Baseon 238.

There are no other differences and dealing with the results of Auto-Negotiation can be
handled as described previously in Overview of Operation.

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 275
UG155 March 1, 2011

Setting the Configurable Link Timer

Setting the Configurable Link Timer
The optional Auto-Negotiation function has a Link Timer (link_timer[8:0]) port. This
port sets the period of the Auto-Negotiation Link Timer. This port should be permanently
tied to a logical binary value, and a binary value should be placed on this port. The
duration of the timer is approximately equal to the binary value multiplied by 32.768
microseconds (4096 clock periods of the 125 MHz clock provided to the core). See Auto-
Negotiation Signal Pinout.

Note: See Chapter 14, Dynamic Switching of 1000BASE-X and SGMII Standards for details of
programming the Auto-Negotiation Link Timer when performing dynamic switching between
1000BASE-X and SGMI Standards.

The accuracy of this Link Timer is within the following range.

+0 to -32.768 microseconds

1000BASE-X Standard
The Link-Timer is defined as having a duration somewhere between 10 and 20
milliseconds. The example design delivered with the core sets the binary value as follows:

100111101 = 317 decimal

This corresponds to a duration of between 10.354 and 10.387 milliseconds.

SGMII Standard
The Link-Timer is defined as having a duration of 1.6 milliseconds. The example design
delivered with the core sets the binary value to

000110010 = 50 decimal

This corresponds to a duration of between 1.606 and 1.638 milliseconds.

Simulating Auto-Negotiation
Auto-Negotiation requires a minimum of three link timer periods for completion. If
simulating the Auto-Negotiation procedure, setting the link_timer[8:0] port to a low
value will greatly reduce the simulation time required to complete Auto-Negotiation.

Using the Auto-Negotiation Interrupt
The Auto-Negotiation function has an an_interrupt port. This is designed to be used
with common microprocessor bus architectures (for example, the CoreConnect bus
interfacing to a MicroBlaze processor or the Virtex®-5 FXT FPGA embedded IBM
PowerPC processor). For more information, see Auto-Negotiation Signal Pinout.

The operation of this port is enabled or disabled and cleared via the MDIO Register 16, the
Vendor-specific Auto-Negotiation Interrupt Control Register.

• When disabled, this port is permanently tied to logic 0.

http://www.xilinx.com

276 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 13: Auto-Negotiation

• When enabled, this port will be set to logic 1 following the completion of an Auto-
Negotiation cycle. It will remain high until it is cleared by writing 0 to bit 16.1
(Interrupt Status bit) of the Register 16: Vendor-Specific Auto-Negotiation Interrupt
Control.

Use of Clock Correction Sequences in Device Specific
Transceivers

1000BASE-X Standard
The Device Specific Transceivers are configured by the appropriate Transceiver Wizard to
perform clock correction. The output of the Transceiver Wizard is provided as part of the
example design. Two different clock correction sequences may be employed:

1. The mandatory clock correction sequence is the /I2/ ordered set; this is a two byte
code-group sequence formed from /K28.5/ and /D16.2/ characters. The /I2/
ordered-set is present in the inter-frame-gap. These sequences can therefore be
removed or inserted by the transceiver’s receiver elastic buffer without causing frame
corruption.

2. The default Transceiver Wizard configuration for the Device Specific Transceivers
varies across device families. Some of the Transceiver Wizards enable the
CLK_COR_SEQ_2_USE attribute. When this is the case, the transceiver is also
configured to perform clock correction on the /K28.5/D21.5/ sequence; this is the first
two code-groups from the /C1/ ordered set (the /C1/ ordered-set is 4 code-groups in
length). Since there are no /I2/ ordered-sets present during much of the Auto-
Negotiation cycle, this provides a method of allowing clock correction to be performed
during Auto-Negotiation. Since this form of clock correction will insert or remove two-
code groups into or from a four-code group sequence, this will cause ordered-set
fragments to be seen by the cores auto-negotiation state machine. It is therefore
important that the transceivers RXCLKCORCNT[2:0] port is correctly wired up to the
core netlist; this will indicate a clock correction event (and type) to the core. Using this
signal, the cores state machine can interpret the clock-correction fragments and the
Auto-Negotiation function can complete cleanly.

When the Device Specific Transceivers CLK_COR_SEQ_2_USE attribute is not
enabled, no clock correction can be performed during much of the Auto-Negotiation
cycle. When this is the case, it is possible that the transceivers receiver elastic buffer
could underflow or overflow as asynchronous clock tolerances accumulate. This will
result in an elastic buffer error. It is therefore important that the transceivers
RXBUFSTATUS[2:0]port is correctly wired up to the core netlist; this will indicate a
buffer error event to the core. Using this signal, the cores state machine can interpret
the buffer error and the Auto-Negotiation function can complete cleanly.

Conclusion

The Device Specific Transceivers can be configured to optionally perform clock correction
during the Auto-Negotiation cycle, and their default configuration varies from family to
family. Regardless, if correctly connected, as per the example design, the cores state
machine can determine the transceivers elastic buffer behavior and Auto-Negotiation will
complete cleanly.

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 277
UG155 March 1, 2011

Chapter 14

Dynamic Switching of 1000BASE-X and
SGMII Standards

This chapter provides general guidelines for using the core to perform dynamic standards
switching between 1000BASE-X and SGMII. The core only provides this capability if
generated with the appropriate option, as described in Chapter 3, Generating and
Customizing the Core.

Typical Application
Figure 14-1 illustrates a typical application for the Ethernet 1000BASE-X PCS/PMA or
SGMII core with the ability to dynamically switch between 1000BASE-X and SGMII
standards.

The FPGA is shown connected to an external, off-the-shelf PHY with the ability to perform
both BASE-X and BASE-T standards.

• The core must operate in 1000BASE-X mode to use the optical fibre.

• The core must operate in SGMII mode to provide BASE-T functionality and use the
twisted copper pair.

The GMII of the Ethernet 1000BASE-X PCS/PMA or SGMII core is shown connected to an
embedded Ethernet Media Access Controller (MAC), for example the Tri-Mode Ethernet
MAC core from Xilinx.
X-Ref Target - Figure 14-1

Figure 14-1: Typical Application for Dynamic Switching

Ethernet 1000BASE-X

PCS/PMA or SGMII

LogiCORE

Transceiver

User Logic

(Ethernet

Media

Access

Controller)

Internal

GMII Interface

TXP/TXN

RXP/RXN

Twisted

Copper

Pair

1000BASE-X

or

SGMII

1000BASE-X

10 BASE-T

100BASE-T

1000BASE-T

Optical

Fibre

Xilinx FPGA

Transceiver

http://www.xilinx.com

278 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 14: Dynamic Switching of 1000BASE-X and SGMII Standards

Operation of the Core

Selecting the Power-On / Reset Standard

The external port of the core, basex_or_sgmii (see Dynamic Switching Signal Pinout), will
select the default standard of the core as follows:

• Tie to logic ‘0’ in the core instantiation. The core powers-up and comes out of a reset
cycle operating in the 1000BASE-X standard.

• Tie to logic ‘1’ in the core instantiation. The core powers-up and comes out of a reset
cycle operating in the SGMII standard.

The basex_or_sgmii port of the core can be dynamically driven. In this configuration,
it is possible to drive a logical value onto the port, followed by a core reset cycle to switch
the core to the desired standard. However, it is expected that the standard will be switched
through the MDIO Management Registers.

Switching the Standard Using MDIO
The 1000BASE-X or SGMII standard of the core can be switched at any time by writing to
the Register 17: Vendor-Specific Standard Selection Register. Following completion of this
write, the MDIO Management Registers will immediately switch.

Core set to 1000BASE-X standard. Management Registers 0 through 16 should be
interpreted according to 1000BASE-X Standard Using the Optional Auto-Negotiation.
Core set to SGMII standard. Management Registers 0 through 16 should be interpreted
according to SGMII Standard Using the Optional Auto-Negotiation.

Auto-Negotiation State Machine
• Core set to the 1000BASE-X standard. The Auto-Negotiation state machine operates as

described in 1000BASE-X Standard.

• Core set to perform the SGMII standard. The Auto-Negotiation state machine
operates as described in SGMII Standard.

• Standard is switched during an Auto-Negotiation sequence. The Auto-Negotiation
state machine will not immediately switch standards, but attempt to continue to
completion at the original standard.

• Switching the standard using MDIO. This does not cause Auto-Negotiation to
automatically restart. Xilinx recommends that after switching to a new standard using
a MDIO write, immediately perform the following:

• If you have switched to the 1000BASE-X standard, reprogram the Auto-
Negotiation Advertisement Register (Register 4) to the desired settings.

• For either standard, restart the Auto-Negotiation sequence by writing to bit 0.9 of
the MDIO Control Register (Register 0).

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 279
UG155 March 1, 2011

Operation of the Core

Setting the Auto-Negotiation Link Timer
As described in Chapter 13, Auto-Negotiation, the duration of the Auto-Negotiation Link
Timer differs with the 1000BASE-X and the SGMII standards. To provide configurable link
timer durations for both standards, the following ports are available. These ports replace
the link_timer_value[8:0] port that is used when the core is generated for a single
standard.

• link_timer_basex[8:0] The value placed on this port is sampled at the
beginning of the Auto-Negotiation cycle by the Link Timer when the core is set to
perform the 1000BASE-X standard.

• link_timer_sgmii[8:0] The value placed on this port is sampled at the
beginning of the Auto-Negotiation cycle by the Link Timer when the core is set to
perform the SGMII standard.

Both ports follow the same rules that are described in Setting the Configurable Link
Timer.

http://www.xilinx.com

280 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 14: Dynamic Switching of 1000BASE-X and SGMII Standards

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 281
UG155 March 1, 2011

Chapter 15

Constraining the Core

This chapter defines the constraint requirements of the Ethernet 1000BASE-X PCS/PMA or
SGMII core. An example UCF is provided with the HDL example design for the core to
implement the constraints defined in this chapter.

Required Constraints

Device, Package, and Speedgrade Selection
The Ethernet 1000BASE-X PCS/PMA or SGMII core can be implemented in Virtex®-4,
Virtex-5, Virtex-6, Virtex-7, Kintex®-7, Spartan®-6, Spartan-3, Spartan-3E,
Spartan-3A/3AN and Spartan-3 DSP devices. When selecting a device, be aware of the
following considerations:

• Device must be large enough to accommodate the core.

• Device must contain a sufficient number of IOBs.

• –4 speed grade for Spartan-3, Spartan-3E, Spartan-3A/3AN/3A DSP devices

• –10 speed grade for Virtex-4 devices

-1 speed grade for Virtex-5, Virtex-6, Virtex-7 and Kintex-7 devices (except SGMII Support
Using Asynchronous Oversampling over Virtex-6 FPGA LVDS in which case a -2 speed
grade or faster is required).

• -2 speed grade for Spartan-6 devices

• The transceiver is only supported in Virtex-4 FX, Virtex-5 LXT, Virtex-5 SXT, and
Virtex-5 FXT and TXT FPGAs, Spartan-6 LXT, Virtex-6, Virtex-7 and Kintex-7 devices.

I/O Location Constraints
No specific I/O location constraints required.

However, when employing BUFIO and BUFR regional clock routing (Virtex-5, Virtex-6,
Virtex-7, Kintex-7 and Spartan-6 devices), please ensure that a BUFIO capable clock input
pin is selected for input clock sources, and that all related input synchronous data signals
are placed in the respective BUFIO region. The device User Guide should be consulted.

Placement Constraints
No specific placement constraints required except for one exception; see Layout and
Placement when designing SGMII Support Using Asynchronous Oversampling over
Virtex-6 FPGA LVDS.

http://www.xilinx.com

282 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 15: Constraining the Core

Virtex-4 FPGA MGT Transceivers for 1000BASE-X Constraints
The constraints defined in this section are implemented in the UCF for the example
designs delivered with the core. Sections from the UCF are copied into the following
descriptions to serve as examples and should be studied in conjunction with the HDL
source code for the example design. See also Virtex-4 FX Devices.

Clock Period Constraints

The clock txoutclk is provided by the MGT for use in the FPGA fabric. It is connected to
global clock routing to produce the usrclk2 signal. This is the main 125 MHz clock used
by all core logic and must be constrained.

DCLK is a clock with a frequency between 25 and 50 MHz, which must be provided to the
Dynamic Reconfiguration Port and to the calibration block of the MGT. In the example
design, this is constrained to 50 MHz.

The following UCF syntax shows these constraints being applied.

#***
PCS/PMA Clock period Constraints: please do not relax *
#***

NET "userclk2" TNM_NET = "userclk2";
TIMESPEC "TS_userclk2" = PERIOD "userclk2" 8 ns HIGH 50 %;

NET "dclk" TNM_NET = "dclk";
TIMESPEC "TS_dclk" = PERIOD "dclk" 20 ns HIGH 50 %;

Setting MGT Transceiver Attributes

The Virtex-4 FPGA MGT device has many attributes. These attributes are set directly from
HDL source code for the transceiver wrapper file delivered with the example design.
These are in the file transceiver.vhd (for VHDL design entry) or transceiver.v (for
Verilog design entry). See Chapter 4, CORE Generator Deliverables for a detailed
description of the example design files provided with the core.

This HDL transceiver wrapper file was initially created using Architecture Wizard. See the
Virtex-4 RocketIO Multi-Gigabit Transceiver User Guide (UG076) for a description of available
attributes.

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 283
UG155 March 1, 2011

Required Constraints

MGT Placement Constraints

The following UCF syntax illustrates the MGT placement constraints for the example
design. Because Virtex-4 FPGA MGTs are always available in pairs, two MGTs are always
instantiated in the example design, even if one is inactive.

#***
Example Rocket I/O placement *
#***
Lock down the REFCLK pins:
NET brefclk_p LOC = F26;
NET brefclk_n LOC = G26;

Lock down the GT11 pair and GT11 clock module
INST "core_wrapper/RocketIO/GT11_1000X_A" LOC = GT11_X0Y5;
INST "core_wrapper/RocketIO/GT11_1000X_B" LOC = GT11_X0Y4;
INST "GT11CLK_MGT_INST" LOC = GT11CLK_X0Y3;

Lock down the RocketIO pins:
NET "rxp0" LOC = J26;
NET "rxn0" LOC = K26;
NET "txp0" LOC = M26;
NET "txn0" LOC = N26;
NET "rxp1" LOC = U26;
NET "rxn1" LOC = V26;
NET "txp1" LOC = P26;
NET "txn1" LOC = R26;

Virtex-4 FPGA RocketIO MGT Transceivers for SGMII or Dynamic
Standards Switching Constraints

All the constraints described in the section Virtex-4 FPGA MGT Transceivers for
1000BASE-X Constraints. In addition, if the FPGA Fabric Rx Elastic Buffer is selected, an
extra clock period constraint of 16 ns is required for rxrecclk1.

With the MGT Rx Elastic Buffer bypassed, rxrecclk1 is provided by the MGT to the
FPGA fabric for the recovered receiver data signals leaving the transceiver. This data is
then written into the replacement Rx Elastic Buffer implemented in the FPGA fabric. See
Virtex-4 Devices for SGMII or Dynamic Standards Switching.

The following UCF syntax shows the necessary constraint being applied to GT11 A.

#***
PCS/PMA Clock period Constraints for the GT11 A *
recovered clock: please do not relax *
#***

NET "core_wrapper/RocketIO/rxrecclk10" TNM_NET = "rxrecclk10";
TIMESPEC "ts_rxrecclk10" = PERIOD "rxrecclk10" 16 ns;

Virtex-5 FPGA RocketIO GTP Transceivers for 1000BASE-X Constraints
The constraints defined in this section are implemented in the UCF for the example
designs delivered with the core. Sections from the UCF are copied into the following
descriptions to serve as examples, and should be studied with the HDL source code for the
example design. See also Virtex-5 LXT and SXT Devices.

http://www.xilinx.com

284 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 15: Constraining the Core

Clock Period Constraints

The clkin clock is provided to the GTP transceiver. It is a high-quality reference clock
with a frequency of 125 MHz and should be constrained.

The refclkout clock is provided by the GTP for use in the FPGA fabric, which is then
connected to global clock routing to produce the usrclk2 signal. This is the main 125
MHz clock used by all core logic and must be constrained.

The following UCF syntax shows these constraints being applied.

#***
PCS/PMA Clock period Constraints: please do not relax *
#***

NET "*clkin" TNM_NET = "clkin";
TIMESPEC "TS_clkin" = PERIOD "clkin" 8 ns HIGH 50 %;

NET "*refclkout" TNM_NET = "refclkout";
TIMESPEC "TS_refclkout" = PERIOD "refclkout" 8 ns HIGH 50 %;

Setting GTP Transceiver Attributes

The Virtex-5 FPGA RocketIO™ GTP transceiver has many attributes that are set directly
from HDL source code for the transceiver wrapper file delivered with the example design.
These can be found in the RocketIO_wrapper_gtp_tile.vhd file (for VHDL design
entry) or the RocketIO_wrapper_gtp_tile.v file (for Verilog design entry); these files
were generated using the GTP Transceiver Wizard - to change the attributes, re-run the
Wizard. See Virtex-5 FPGA RocketIO GTP Transceiver Wizard.

Virtex-5 FPGA RocketIO GTP Transceivers for SGMII or Dynamic
Standards Switching Constraints

If the core is generated to use the GTP Rx Elastic Buffer, all of the constraints apply, as
defined in Virtex-5 FPGA RocketIO GTP Transceivers for 1000BASE-X Constraints.
However, if the FPGA Fabric Rx Elastic Buffer is selected, an extra clock period constraint
of 8 ns is required for rxrecclk: with the GTP Rx Elastic Buffer bypassed, rxrecclk is
provided by the GTP transceiver to the FPGA fabric for the recovered receiver data signals
leaving the transceiver. This data is then written into the replacement Rx Elastic Buffer
implemented in the FPGA fabric. See Virtex-5 LXT or SXT Devices for SGMII or Dynamic
Standards Switching for more information about this logic.

The following UCF syntax shows the necessary constraint being applied to the rxrecclk
signal sourced from GTP 0.

#***
PCS/PMA Clock period Constraints for the GTP 0 *
recovered clock: please do not relax *
#***

NET "core_wrapper/RocketIO/rxrecclk0" TNM_NET = "rxrecclk0";
TIMESPEC "ts_rxrecclk0" = PERIOD "rxrecclk0" 8 ns;

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 285
UG155 March 1, 2011

Required Constraints

Setting GTP Transceiver Attributes

Additionally, if the FPGA Fabric Rx Elastic Buffer is selected, then the attributes of the
Virtex-5 FPGA RocketIO GTP transceiver which are set directly from HDL source code do
differ from the standard case. These can be found in the
RocketIO_wrapper_gtp_tile.vhd file (for VHDL design entry) or the
RocketIO_wrapper_gtp_tile.v file (for Verilog design entry); these files were
generated using the GTP RocketIO Wizard - to change the attributes, re-run the Wizard.
See Virtex-5 FPGA RocketIO GTP Transceiver Wizard.

Virtex-5 FPGA RocketIO GTX Transceivers for 1000BASE-X Constraints
The constraints defined in this section are implemented in the UCF for the example
designs delivered with the core. Sections from the UCF are copied into the following
descriptions to serve as examples, and should be studied with the HDL source code for the
example design. See also Virtex-5 FXT and TXT Devices.

Clock Period Constraints

The clkin clock is provided to the GTX transceiver. It is a high-quality reference clock
with a frequency of 125 MHz and should be constrained.

The refclkout clock is provided by the GTX for use in the FPGA fabric–this is the main
125 MHz clock reference source for the FPGA fabric and should be constrained. This is
then connected to a DCM. The ports CLK0 (125 MHz) and CLKDV (62.5 MHz) of this DCM
are then placed onto global clock routing to produce the usrclk2 and usrclk clock
signals respectively. The Xilinx tools will trace the refclkout constraint through the
DCM and automatically generate clock period constraints for the DCM output clocks. So
constraints usrclk2 and usrclk do not need to be manually applied.

The following UCF syntax shows these constraints being applied.

#***
PCS/PMA Clock period Constraints: please do not relax *
#***

NET "*clkin" TNM_NET = "clkin";
TIMESPEC "TS_clkin" = PERIOD "clkin" 8 ns HIGH 50 %;

NET "*refclkout" TNM_NET = "refclkout";
TIMESPEC "TS_refclkout" = PERIOD "refclkout" 8 ns HIGH 50 %;

Setting GTX Transceiver Attributes

The Virtex-5 FPGA RocketIO GTX transceiver has many attributes that are set directly
from HDL source code for the transceiver wrapper file delivered with the example design.
These can be found in the RocketIO_wrapper_gtx_tile.vhd file (for VHDL design
entry) or the RocketIO_wrapper_gtx_tile.v file (for Verilog design entry): these files
were generated using the GTX Transceiver Wizard - to change the attributes, re-run the
Wizard. See .

http://www.xilinx.com

286 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 15: Constraining the Core

Virtex-5 FPGA RocketIO GTX Transceivers for SGMII or Dynamic
Standards Switching Constraints

If the core is generated to use the GTX Rx Elastic Buffer, then all of the constraints
documented in Virtex-5 FPGA RocketIO GTX Transceivers for 1000BASE-X Constraints,
apply.

However, if the FPGA Fabric Rx Elastic Buffer is selected, then an extra clock period
constraint of 16 ns is required for rxrecclk: with the GTX Rx Elastic Buffer bypassed,
rxrecclk is provided by the GTX transceiver to the FPGA fabric for the recovered
receiver data signals leaving the transceiver. This data is then written into the replacement
Rx Elastic Buffer implemented in the FPGA fabric. See Virtex-5 FXT and TXT Devices for
SGMII or Dynamic Standards Switching for more information about this logic.

The following UCF syntax shows the necessary constraint being applied to the rxrecclk
signal sourced from GTX 0.

#***
PCS/PMA Clock period Constraints for the GTP/X 0 *
recovered clock: please do not relax *
#***

NET "core_wrapper/RocketIO/rxrecclk0" TNM_NET = "rxrecclk0";
TIMESPEC "ts_rxrecclk0" = PERIOD "rxrecclk0" 16 ns;

Setting GTX Transceiver Attributes

Additionally, if the FPGA Fabric Rx Elastic Buffer is selected, then the attributes of the
Virtex-5 FPGA RocketIO GTX transceiver which are set directly from HDL source code do
differ from the standard case. These can be found in the
RocketIO_wrapper_gtx_tile.vhd file (for VHDL design entry) or the
RocketIO_wrapper_gtx_tile.v file (for Verilog design entry); these files were
generated using the GTX RocketIO Wizard - to change the attributes, re-run the Wizard.
See Virtex-5 FPGA RocketIO GTX Wizard.

Virtex-6 FPGA GTX Transceivers for 1000BASE-X Constraints
The constraints defined in this section are implemented in the UCF for the example
designs delivered with the core. Sections from the UCF are copied into the following
descriptions to serve as examples, and should be studied with the HDL source code for the
example design. See also Virtex-6 Devices.

Clock Period Constraints

The mgtrefclk clock is provided to the GTX transceiver. It is a high-quality reference
clock with a frequency of 125 MHz and should be constrained.

The txoutclk clock is provided by the GTX for use in the FPGA fabric, which is then
connected to global clock routing to produce the usrclk2 signal. This is the main 125
MHz clock used by all core logic and must be constrained.

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 287
UG155 March 1, 2011

Required Constraints

The following UCF syntax shows these constraints being applied.

#***
PCS/PMA Clock period Constraints: please do not relax *
#***

NET "mgtrefclk" TNM_NET = "mgtrefclk";
TIMESPEC "ts_mgtrefclk" = PERIOD "mgtrefclk" 8 ns HIGH 50 %;

NET "*txoutclk" TNM_NET = "txoutclk";
TIMESPEC "TS_txoutclk" = PERIOD "txoutclk" 8 ns HIGH 50 %;

Setting Virtex-6 FPGA GTX Transceiver Attributes

The Virtex-6 FPGA GTX transceiver has many attributes that are set directly from HDL
source code for the transceiver wrapper file delivered with the example design. These can
be found in the gtx_wrapper_gtx.vhd file (for VHDL design entry) or the
gtx_wrapper_gtx.v file (for Verilog design entry); these files were generated using the
Virtex-6 FPGA GTX Transceiver Wizard - to change the attributes, re-run the Wizard. See
Virtex-6 FPGA GTX Transceiver Wizard.

Virtex-6 FPGA GTX Transceivers for SGMII or Dynamic Standards
Switching Constraints

If the core is generated to use the Virtex-6 FPGA GTX Rx Elastic Buffer, all of the constraints
apply, as defined in Virtex-6 FPGA GTX Transceivers for 1000BASE-X Constraints.
However, if the FPGA Fabric Rx Elastic Buffer is selected, an extra clock period constraint
of 8 ns is required for rxrecclk: with the GTX Rx Elastic Buffer unused, RXRECCLK is
provided by the GTX transceiver to the FPGA fabric for the recovered receiver data signals
leaving the transceiver. This data is then written into the replacement Rx Elastic Buffer
implemented in the FPGA fabric. See Virtex-6 Devices for SGMII or Dynamic Standards
Switching for more information about this logic.

The following UCF syntax shows the necessary constraint being applied to the RXRECCLK
signal sourced from the GTX.

#***
PCS/PMA Clock period Constraints for the GTP 0 *
recovered clock: please do not relax *
#***

NET "core_wrapper/gtx/RXRECCLK" TNM_NET = "rxrecclk";
TIMESPEC "ts_rxrecclk" = PERIOD "rxrecclk" 8 ns;

Setting Virtex-6 FPGA GTX Transceiver Attributes

Additionally, if the FPGA Fabric Rx Elastic Buffer is selected, then the attributes of the
Virtex-6 FPGA GTX transceiver, which are set directly from HDL source code, do differ
from the standard case. These can be found in the gtx_wrapper_gtx.vhd file (for VHDL
design entry) or the gtx_wrapper_gtx.v file (for Verilog design entry): these files were
generated using the Virtex-6 FPGA GTX Wizard - to change the attributes, re-run the
Wizard. See Virtex-6 FPGA GTX Transceiver Wizard.

http://www.xilinx.com

288 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 15: Constraining the Core

Spartan-6 FPGA GTP Transceivers for 1000BASE-X Constraints
The constraints defined in this section are implemented in the UCF for the example
designs delivered with the core. Sections from the UCF are copied into the following
descriptions to serve as examples, and should be studied with the HDL source code for the
example design. See also Spartan-6 LXT Devices.

Clock Period Constraints

The clkin clock is provided to the GTP transceiver. It is a high-quality reference clock
with a frequency of 125 MHz and should be constrained.

The refclkout clock is provided by the GTP for use in the FPGA fabric, which is then
connected to global clock routing to produce the usrclk2 signal. This is the main 125
MHz clock used by all core logic and must be constrained.

The following UCF syntax shows these constraints being applied.

#***
PCS/PMA Clock period Constraints: please do not relax *
#***

NET "*clkin" TNM_NET = "clkin";
TIMESPEC "TS_clkin" = PERIOD "clkin" 8 ns HIGH 50 %;

NET "*gtpclkout" TNM_NET = "gtpclkout";
TIMESPEC "TS_gtpclkout" = PERIOD "gtpclkout" 8 ns HIGH 50 %;

Setting Spartan-6 FPGA GTP Transceiver Attributes

The Spartan-6 FPGA GTP transceiver has many attributes that are set directly from HDL
source code for the transceiver wrapper file delivered with the example design. These can
be found in the gtp_wrapper_tile.vhd file (for VHDL design entry) or the
gtp_wrapper_tile.v file (for Verilog design entry): these files were generated using the
Spartan-6 FPGA GTP Transceiver Wizard. To change the attributes, re-run the Wizard. See
Spartan-6 FPGA GTP Transceiver Wizard.

Spartan-6 FPGA GTP Transceivers for SGMII or Dynamic Standards
Switching Constraints

If the core is generated to use the GTP Rx Elastic Buffer, all of the constraints apply, as
defined in Spartan-6 FPGA GTP Transceivers for 1000BASE-X Constraints. However, if the
FPGA Fabric Rx Elastic Buffer is selected, an extra clock period constraint of 8 ns is
required for rxrecclk: with the GTP Rx Elastic Buffer bypassed, rxrecclk is provided
by the GTP transceiver to the FPGA fabric for the recovered receiver data signals leaving
the transceiver. This data is then written into the replacement Rx Elastic Buffer
implemented in the FPGA fabric. See Spartan-6 LXT Devices for SGMII or Dynamic
Standards Switching for more information about this logic.

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 289
UG155 March 1, 2011

Required Constraints

The following UCF syntax shows the necessary constraint being applied to the rxrecclk
signal sourced from GTP 0.

#***
PCS/PMA Clock period Constraints for the GTP 0 *
recovered clock: please do not relax *
#***

NET "core_wrapper/gtp/rxrecclk0" TNM_NET = "rxrecclk0";
TIMESPEC "ts_rxrecclk0" = PERIOD "rxrecclk0" 8 ns;

Setting Spartan-6 FPGA GTP Transceiver Attributes

Additionally, if the FPGA Fabric Rx Elastic Buffer is selected, then the attributes of the
Virtex-5 FPGA GTP transceiver which are set directly from HDL source code do differ from
the standard case. These can be found in the gtp_wrapper_tile.vhd file (for VHDL
design entry) or the gtp_wrapper_tile.v file (for Verilog design entry): these files were
generated using the Spartan-6 FPGA GTP Wizard. To change the attributes, re-run the
Wizard. See Spartan-6 FPGA Transceiver GTP Wizard.

7 Series FPGA GTX Transceivers for 1000BASE-X Constraints
The constraints defined in this section are implemented in the UCF for the example
designs delivered with the core. Sections from the UCF are copied into the following
descriptions to serve as examples, and should be studied with the HDL source code for the
example design. See also Virtex-7 Devices and Kintex-7 Devices.

Clock Period Constraints

The gtrefclk clock is provided to the GTX transceiver. It is a high-quality reference clock
with a frequency of 125 MHz and should be constrained.

The txoutclk clock is provided by the GTX which this is then routed to a MMCM via a
BUFG (global clock routing). From the MMCM, the CLKOUT0 port (62.5 MHz) is placed
onto global clock routing and is input back into the GTXE2 transceiver on the user interface
clock ports rxusrclk, rxusrclk2, txusrclk and txusrclk2. The CLKOUT1 port (125 MHz) of
MMCM is placed onto global clock routing and can be used as the 125 MHz clock source
for all core logic.

#***
PCS/PMA Clock period Constraints: please do not relax *
#***

NET "gtrefclk" TNM_NET = "gtrefclk";
TIMESPEC "ts_gtrefclk" = PERIOD "gtrefclk" 8 ns HIGH 50 %;

NET "txoutclk" TNM_NET = "txoutclk";
TIMESPEC "TS_txoutclk" = PERIOD "txoutclk" 16 ns HIGH 50 %;

http://www.xilinx.com

290 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 15: Constraining the Core

7 Series FPGA GTX Transceiver Attributes

The 7 Series FPGA GTX transceiver has many attributes that are set directly from HDL
source code for the transceiver wrapper file delivered with the example design. These can
be found in the gtwizard_gt.vhd file (for VHDL design entry) or the gtwizard_gt.vhd.v file
(for Verilog design entry); these files were generated using the 7 Series FPGA Transceiver
Wizard - to change the attributes, re-run the Wizard. See Virtex-7 and Kintex-7 FPGA GTX
Transceiver Wizard Files.

7 Series FPGA GTX Transceivers for SGMII or Dynamic Standards
Switching Constraints

If the core is generated to use the 7 Series FPGA Transceiver Rx Elastic Buffer, all of the
constraints apply, as defined in Virtex-7 and Kintex-7 FPGA GTX Transceiver Wizard Files.

Constraints.

However, if the FPGA Fabric Rx Elastic Buffer is selected, an extra clock period constraint
of 8 ns is required for rxrecclk: with the GTX Rx Elastic Buffer unused, RXRECCLK is
provided by the GTX transceiver to the FPGA fabric for the recovered receiver data signals
leaving the transceiver. This data is then written into the replacement Rx Elastic Buffer
implemented in the FPGA fabric. See Virtex-7 Devices for SGMII or Dynamic Standards
Switching and Kintex-7 Devices for SGMII or Dynamic Standards Switching for more
information about this logic.

The following UCF syntax shows the necessary constraint being applied to the
RXRECCLK signal sourced from the GTX.

#***
Fabric Rx Elastic Buffer Timing Constraints: *
#***

NET "core_wrapper/transceiver_inst/RXRECCLK" TNM_NET = "rxrecclk";
TIMESPEC "ts_rxrecclk" = PERIOD "rxrecclk" 8 ns;

7 Series FPGA GTX Transceiver Attributes

Additionally, if the FPGA Fabric Rx Elastic Buffer is selected, then the attributes of the 7
Series FPGA transceiver, which are set directly from HDL source code, do differ from the
standard case. These can be found in the gtwizard_gt.vhd file (for VHDL design entry) or
the gtwizard_gt.v file (for Verilog design entry): these files were generated using the 7
Series FPGA Transceiver Wizard - to change the attributes, re-run the Wizard. See Virtex-7
and Kintex-7 FPGA GTX Transceiver Wizard Files.

SGMII Using Asynchronous Oversampling over Virtex-6 LVDS Constraints

The constraints defined in this section are implemented in the UCF for the example
designs delivered with the core. The constraints should be studied in conjunction with the
HDL source code for the example design. See also Chapter 10, SGMII Support Using
Asynchronous Oversampling over Virtex-6 FPGA LVDS.

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 291
UG155 March 1, 2011

Required Constraints

Clock Period Constraints

The IO Bank Clocking module uses an MMCM to create various frequency and phase
related clock sources. The input clock to this MMCM must be constrained appropriately
and the tools will automatically provide clock period constraints for all MMCM clock
outputs. The following UCF syntax shows this constraint being applied.

NET "*refclk125_p" TNM_NET = "refclk";
TIMESPEC "ts_refclk" = PERIOD "refclk" 8000 ps HIGH 50 %;

Clock Domain Crossing Constraints

The UCF provides constraints targeting specific paths using FROM-TO constraints. See the
UCF comments for guidance. All of these constraints additionally contain the text “DO
NOT EDIT” in their related comments.

Placement and Layout Constraints

See Layout and Placement.

Ten-Bit Interface Constraints
The constraints defined in this section are implemented in the UCF for the example
designs delivered with the core. Sections from this UCF have been copied into the
descriptions in this section to serve as examples, and should be studied with the HDL
source code for the example design. See also The Ten-Bit Interface.

Clock Period Constraints

The clocks provided to pma_rx_clk0 and pma_rx_clk1 must be constrained for a clock
frequency of 62.5 MHz. The clock provided to gtx_clk must be constrained for a clock
frequency of 125 MHz. The following UCF syntax shows the constraints being applied to
the example design.

##
TBI Clock period Constraints: please do not relax
##
NET "pma_rx_clk0" TNM_NET = "pma_rx_clk0";
TIMESPEC "ts_pma_rx_clk0" = PERIOD "pma_rx_clk0" 16000 ps HIGH 50 %;

NET "pma_rx_clk1" TNM_NET = "pma_rx_clk1";
TIMESPEC "ts_pma_rx_clk1" = PERIOD "pma_rx_clk1" 16000 ps HIGH 50 %;
NET "gtx_clk_bufg" TNM_NET = "clk_tx";
TIMESPEC "ts_tx_clk" = PERIOD "clk_tx" 8000 ps HIGH 50 %;

Period constraints should be applied to cover signals in to and out of the block memory
based 8B/10B encoder and decoder.

Constrain between flip-flops and the Block Memory for the 8B10B
encoder and decoder
INST "gig_eth_pcs_pma_core/BU2/U0/PCS_OUTPUT/DECODER/LOOK_UP_TABLE"
TNM = "codec8b10b";
INST "gig_eth_pcs_pma_core/BU2/U0/PCS_OUTPUT/ENCODER/LOOK_UP_TABLE"
TNM = "codec8b10b";
TIMESPEC "ts_ffs_to_codec8b10b" = FROM FFS TO "codec8b10b" 8000 ps;
TIMESPEC "ts_codec8b10b_to_ffs" = FROM "codec8b10b" TO FFS 8000 ps;

http://www.xilinx.com

292 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 15: Constraining the Core

Ten-Bit Interface IOB Constraints

The following constraints target the flip-flops that are inferred in the top level HDL file for
the example design. Constraints are set to ensure that these are placed in IOBs.

INST "tx_code_group_reg*" IOB = true;
INST "ewrap_reg" IOB = true;
INST "en_cdet_reg" IOB = true;
INST "rx_code_group0_reg*" IOB = true;
INST "rx_code_group1_reg*" IOB = true;

Note: For Virtex-4, Virtex-5, Virtex-6, Virtex-7, Kintex-7 and Spartan-6 devices, the example design
will directly instantiate IOB DDR components and the previous constraints are not included.

Virtex-7 devices support TBI at 3.3V or lower only in certain parts and packages: please see
the Virtex-7 Device Documentation. Virtex-6 devices support TBI at 2.5V only and the
device default SelectIO™ technology standard of LVCMOS25 is used. Please see the Virtex-
6 FPGA Data Sheet: DC and Switching Characteristics for more information. In Virtex-5,
Virtex-4, Spartan-6 and Spartan-3 devices support is 3.3V by default and the UCF will
contain the following syntax. Use this syntax together with the device IO Banking rules.

INST "tx_code_group<?>" IOSTANDARD = LVTTL;
INST "pma_tx_clk" IOSTANDARD = LVTTL;

INST "rx_code_group<?>" IOSTANDARD = LVTTL;
INST "pma_rx_clk0" IOSTANDARD = LVTTL;

INST "loc_ref" IOSTANDARD = LVTTL;
INST "ewrap" IOSTANDARD = LVTTL;
INST "en_cdet" IOSTANDARD = LVTTL;

In addition, the example design provides pad locking on the TBI for several families. This
is included as a guideline only, and there are no specific I/O location constraints for this
core.

TBI Input Setup/Hold Timing

Input TBI Timing Specification

Figure 15-1 and Table 15-1 illustrate the setup and hold time window for the input TBI
signals. These specify the worst-case data valid window presented to the FPGA device

X-Ref Target - Figure 15-1

Figure 15-1: Input TBI timing

tSETUP

tHOLD

rx_code_group[9:0]

PMA_RX_CLK0

tSETUP

tHOLD

PMA_RX_CLK1

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 293
UG155 March 1, 2011

Required Constraints

pins. There is only a 2 ns data valid window of guaranteed data presented across the TBI
input bus. This must be correctly sampled by the FPGA devices.

Spartan-3, Spartan-3E, and Spartan-3A Devices

Figure 7-3 illustrates the TBI input logic provided by the example design for the Spartan-3
class family. DCMs are used on the pma_rx_clk0 and pma_rx_clk1 clock paths as
illustrated. Phase-shifting is then applied to the DCMs to align the resultant clocks so that
they correctly sample the 2 ns TBI data valid window at the input DDR flip-flops.

The fixed phase shift is applied to the DCMs using the following UCF syntax.

INST "core_wrapper/tbi_rx_clk0_dcm" CLKOUT_PHASE_SHIFT = FIXED;
INST "core_wrapper/tbi_rx_clk0_dcm" PHASE_SHIFT = -10;
INST "core_wrapper/tbi_rx_clk0_dcm" DESKEW_ADJUST = 0;

INST "core_wrapper/tbi_rx_clk1_dcm" CLKOUT_PHASE_SHIFT = FIXED;
INST "core_wrapper/tbi_rx_clk1_dcm" PHASE_SHIFT = -10;
INST "core_wrapper/tbi_rx_clk1_dcm" DESKEW_ADJUST = 0;

The values of PHASE_SHIFT are preconfigured in the example designs to meet the setup
and hold constraints for the example TBI pinout in the particular device. The setup/hold
timing which is achieved after place-and-route is reported in the data sheet section of the
TRCE report (created by the implement script).

For customers fixing their own pinout, the setup and hold figures reported in the TRCE
report can be used to initially setup the approximate DCM phase shift values. Appendix F,
Calculating the DCM Fixed Phase Shift or IODelay Tap Setting, describes a more accurate
method for fixing the phase shift by using hardware measurement of a unique PCB
design.

Virtex-4 Devices

Figure 7-5 illustrates the TBI input logic provided by the example design for the Virtex-4
family. A DCM is used on the pma_rx_clk0 clock path as illustrated. Phase-shifting is
then applied to the DCM to align the resultant clock so it will correctly sample the 2 ns TBI
data valid window at the input DDR flip-flops.

The fixed phase shift is applied to the DCM using the following UCF syntax.

INST "core_wrapper/tbi_rx_clk0_dcm" CLKOUT_PHASE_SHIFT = FIXED;
INST "core_wrapper/tbi_rx_clk0_dcm" PHASE_SHIFT = -35;
INST "core_wrapper/tbi_rx_clk0_dcm" DESKEW_ADJUST = 0;

The value of PHASE_SHIFT is preconfigured in the example designs to meet the setup and
hold constraints for the example TBI pinout in the particular device. The setup/hold
timing which is achieved after place-and-route is reported in the data sheet section of the
TRCE report (created by the implement script).

For customers fixing their own pinout, the setup and hold figures reported in the TRCE
report can be used to initially setup the approximate DCM phase shift values. Appendix F,

Table 15-1: Input TBI Timing

Symbol Min Max Units

tSETUP 2.00 - ns

tHOLD 0.00 - ns

http://www.xilinx.com

294 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 15: Constraining the Core

Calculating the DCM Fixed Phase Shift or IODelay Tap Setting describes a more accurate
method for fixing the phase shift by using hardware measurement of a unique PCB design.

In addition, for Virtex-4 designs, the following UCF syntax is included:

#---
To check (analyze) TBI Rx Input Setup/Hold Timing -
#---
NET "rx_code_group<?>" OFFSET = IN 2 ns VALID 2 ns BEFORE "pma_rx_clk0"
RISING;
NET "rx_code_group<?>" OFFSET = IN 2 ns VALID 2 ns BEFORE "pma_rx_clk0"
FALLING;

This syntax causes the Xilinx implementation tools to analyze the input setup and hold
constraints for the input TBI bus. If these constraints are not met then the tools will report
timing errors. However, the tools will NOT attempt to automatically correct the timing in
the case of failure. These must be corrected manually by changing the DCM
PHASE_SHIFT value in the UCF.

Virtex-5 Devices

Figure 7-7 illustrates the TBI input logic provided by the example design for the Virtex-5
family. IODELAY elements are instantiated on the TBI data input path as illustrated. Fixed
tap delays are applied to these IODELAY elements to delay the rx_code_group[9:0]
bus so that data is correctly sampled at the IOB IDDR registers, thereby meeting TBI input
setup and hold timing constraints.

The number of tap delays are applied using the following UCF syntax.

#---
To Adjust TBI Rx Input Setup/Hold Timing
#---
INST "core_wrapper/tbi_rx_data_bus[9].delay_tbi_rx_data" IDELAY_VALUE
= "20";
INST "core_wrapper/tbi_rx_data_bus[8].delay_tbi_rx_data" IDELAY_VALUE
= "20";
INST "core_wrapper/tbi_rx_data_bus[7].delay_tbi_rx_data" IDELAY_VALUE
= "20";
INST "core_wrapper/tbi_rx_data_bus[6].delay_tbi_rx_data" IDELAY_VALUE
= "20";
INST "core_wrapper/tbi_rx_data_bus[5].delay_tbi_rx_data" IDELAY_VALUE
= "20";
INST "core_wrapper/tbi_rx_data_bus[4].delay_tbi_rx_data" IDELAY_VALUE
= "20";
INST "core_wrapper/tbi_rx_data_bus[3].delay_tbi_rx_data" IDELAY_VALUE
= "20";
INST "core_wrapper/tbi_rx_data_bus[2].delay_tbi_rx_data" IDELAY_VALUE
= "20";
INST "core_wrapper/tbi_rx_data_bus[1].delay_tbi_rx_data" IDELAY_VALUE
= "20";
INST "core_wrapper/tbi_rx_data_bus[0].delay_tbi_rx_data" IDELAY_VALUE
= "20";

The number of tap delays are preconfigured in the example designs to meet the setup and
hold constraints for the example TBI pinout in the particular device. The setup/hold
timing which is achieved after place-and-route is reported in the data sheet section of the
TRCE report (created by the implement script). See Understanding Timing Reports for
Setup/Hold Timing.

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 295
UG155 March 1, 2011

Required Constraints

In addition, for Virtex-5 FPGA designs, the following UCF syntax is included:

#---
To check (analyze) TBI Rx Input Setup/Hold Timing -
#---
NET "rx_code_group<?>" OFFSET = IN 2 ns VALID 2 ns BEFORE "pma_rx_clk0"
RISING;
NET "rx_code_group<?>" OFFSET = IN 2 ns VALID 2 ns BEFORE "pma_rx_clk0"
FALLING;

This syntax will cause the Xilinx implementation tools to analyze the input setup and hold
constraints for the input TBI bus. If these constraints are not met then the tools will report
timing errors. However, the tools will NOT attempt to automatically correct the timing in
the case of failure. These must be corrected manually by changing the number of tap
delays for the IODELAY elements in the UCF.

Virtex-7, Kintex-7, and Virtex-6 Devices

Figure 7-9 illustrates the TBI input logic provided by the example design for the Virtex-7,
Kintex-7 and Virtex-6 family. IODELAY elements are instantiated on the TBI data input
path as illustrated. Fixed tap delays are applied to these IODELAY elements to delay the
rx_code_group[9:0] bus so that data is correctly sampled at the IOB IDDR registers,
thereby meeting TBI input setup and hold timing constraints.

The number of tap delays are applied using the following UCF syntax.

#---
To Adjust TBI Rx Input Setup/Hold Timing
#---
INST "core_wrapper/tbi_rx_data_bus[9].delay_tbi_rx_data" IDELAY_VALUE
= "5";
INST "core_wrapper/tbi_rx_data_bus[8].delay_tbi_rx_data" IDELAY_VALUE
= "5";
INST "core_wrapper/tbi_rx_data_bus[7].delay_tbi_rx_data" IDELAY_VALUE
= "5";
INST "core_wrapper/tbi_rx_data_bus[6].delay_tbi_rx_data" IDELAY_VALUE
= "5";
INST "core_wrapper/tbi_rx_data_bus[5].delay_tbi_rx_data" IDELAY_VALUE
= "5";
INST "core_wrapper/tbi_rx_data_bus[4].delay_tbi_rx_data" IDELAY_VALUE
= "5";
INST "core_wrapper/tbi_rx_data_bus[3].delay_tbi_rx_data" IDELAY_VALUE
= "5";
INST "core_wrapper/tbi_rx_data_bus[2].delay_tbi_rx_data" IDELAY_VALUE
= "5";
INST "core_wrapper/tbi_rx_data_bus[1].delay_tbi_rx_data" IDELAY_VALUE
= "5";
INST "core_wrapper/tbi_rx_data_bus[0].delay_tbi_rx_data" IDELAY_VALUE
= "5";

The number of tap delays are preconfigured in the example designs to meet the setup and
hold constraints for the example TBI pinout in the particular device. The setup/hold
timing, which is achieved after place-and-route, is reported in the data sheet section of the
TRCE report (created by the implement script). See Understanding Timing Reports for
Setup/Hold Timing.

http://www.xilinx.com

296 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 15: Constraining the Core

In addition, the following UCF syntax is included:

#---
To check (analyze) TBI Rx Input Setup/Hold Timing -
#---
NET "rx_code_group<?>" OFFSET = IN 2 ns VALID 2 ns BEFORE "pma_rx_clk0"
RISING;
NET "rx_code_group<?>" OFFSET = IN 2 ns VALID 2 ns BEFORE "pma_rx_clk0"
FALLING;

This syntax will cause the Xilinx implementation tools to analyze the input setup and hold
constraints for the input TBI bus. If these constraints are not met then the tools will report
timing errors. However, the tools will NOT attempt to automatically correct the timing in
the case of failure. These must be corrected manually by changing the number of tap
delays for the IODELAY elements in the UCF.

Spartan-6 Devices

Figure 7-11 illustrates the TBI input logic provided by the example design for the Spartan-
6 family. IODELAY2 elements are instantiated on the TBI data input path as illustrated.
Fixed tap delays are applied to these IODELAY2 elements to delay the
rx_code_group[9:0] bus so that data is correctly sampled at the IOB IDDR registers,
thereby meeting TBI input setup and hold timing constraints.

The number of tap delays are applied using the following UCF syntax.

#---
To Adjust TBI Rx Input Setup/Hold Timing
#---
INST "core_wrapper/tbi_rx_data_bus[9].delay_tbi_rx_data" IDELAY_VALUE
= "20";
INST "core_wrapper/tbi_rx_data_bus[8].delay_tbi_rx_data" IDELAY_VALUE
= "20";
INST "core_wrapper/tbi_rx_data_bus[7].delay_tbi_rx_data" IDELAY_VALUE
= "20";
INST "core_wrapper/tbi_rx_data_bus[6].delay_tbi_rx_data" IDELAY_VALUE
= "20";
INST "core_wrapper/tbi_rx_data_bus[5].delay_tbi_rx_data" IDELAY_VALUE
= "20";
INST "core_wrapper/tbi_rx_data_bus[4].delay_tbi_rx_data" IDELAY_VALUE
= "20";
INST "core_wrapper/tbi_rx_data_bus[3].delay_tbi_rx_data" IDELAY_VALUE
= "20";
INST "core_wrapper/tbi_rx_data_bus[2].delay_tbi_rx_data" IDELAY_VALUE
= "20";
INST "core_wrapper/tbi_rx_data_bus[1].delay_tbi_rx_data" IDELAY_VALUE
= "20";
INST "core_wrapper/tbi_rx_data_bus[0].delay_tbi_rx_data" IDELAY_VALUE
= "20";

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 297
UG155 March 1, 2011

Required Constraints

The number of tap delays are preconfigured in the example designs to meet the setup and
hold constraints for the example TBI pinout in the particular device. The setup/hold
timing, which is achieved after place-and-route, is reported in the data sheet section of the
TRCE report (created by the implement script). See Understanding Timing Reports for
Setup/Hold Timing.

In addition, for Spartan-6 FPGA designs, the following UCF syntax is included:

#---
To check (analyze) TBI Rx Input Setup/Hold Timing -
#---
NET "rx_code_group<?>" OFFSET = IN 2 ns VALID 2 ns BEFORE "pma_rx_clk0"
RISING;
NET "rx_code_group<?>" OFFSET = IN 2 ns VALID 2 ns BEFORE "pma_rx_clk0"
FALLING;

This syntax will cause the Xilinx implementation tools to analyze the input setup and hold
constraints for the input TBI bus. If these constraints are not met then the tools will report
timing errors. However, the tools will NOT attempt to automatically correct the timing in
the case of failure. These must be corrected manually by changing the number of tap
delays for the IODELAY elements in the UCF.

Constraints When Implementing an External GMII
The constraints defined in this section are implemented in the UCF for the example
designs delivered with the core. Sections from this UCF have been copied into the
following examples, and should be studied in conjunction with the HDL source code for
the example design. See also Appendix E, Implementing External GMII.

Clock Period Constraints

When implementing an external GMII, the Transmitter Elastic Buffer delivered with the
example design (or similar logic) must be used. The input transmitter GMII signals are
then synchronous to their own clock domain (gmii_tx_clk is used in the example
design). This clock must be constrained for a clock frequency of 125 MHz. The following
UCF syntax shows the necessary constraints being applied to the example design.

##
GMII Clock period Constraints: please do not relax
##
NET "gmii_tx_clk_bufg" TNM_NET = "gmii_tx_clk";
TIMESPEC "ts_gmii_tx_clk" = PERIOD "gmii_tx_clk" 8000 ps HIGH 50 %;

GMII IOB Constraints

The following constraints target the flip-flops that are inferred in the top level HDL file for
the example design. Constraints are set to ensure that these are placed in IOBs.

##
GMII Transmitter Constraints: place flip-flops in IOB
##
INST "gmii_txd*" IOB = true;
INST "gmii_tx_en" IOB = true;
INST "gmii_tx_er" IOB = true;

http://www.xilinx.com

298 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 15: Constraining the Core

##
GMII Receiver Constraints: place flip-flops in IOB
##
INST "gmii_rxd_obuf*" IOB = true;
INST "gmii_rx_dv_obuf" IOB = true;
INST "gmii_rx_er_obuf" IOB = true;

Virtex-7 devices support GMII at 3.3V or lower only in certain parts and packages: please
see the Virtex-7 Device Documentation. Virtex-6 devices support GMII at 2.5V only and the
device default SelectIO technology standard of LVCMOS25 is used. Please see the Virtex-6
FPGA Data Sheet: DC and Switching Characteristics for more information. In Virtex-5, Virtex-
4, Spartan-6 and Spartan-3 devices, GMII by default is supported at 3.3V and the UCF will
contain the following syntax. Use this syntax together with the device IO Banking rules.

INST "gmii_txd<?>" IOSTANDARD = LVTTL;
INST "gmii_tx_en" IOSTANDARD = LVTTL;
INST "gmii_tx_er" IOSTANDARD = LVTTL;

INST "gmii_rxd<?>" IOSTANDARD = LVTTL;
INST "gmii_rx_dv" IOSTANDARD = LVTTL;
INST "gmii_rx_er" IOSTANDARD = LVTTL;

INST "gmii_tx_clk" IOSTANDARD = LVTTL;
INST "gmii_rx_clk" IOSTANDARD = LVTTL;

In addition, the example design provides pad locking on the GMII for several families.
This is a provided as a guideline only; there are no specific I/O location constraints for this
core.

GMII Input Setup/Hold Timing

Input GMII timing specification

Figure 15-2 and Table 15-2 illustrate the setup and hold time window for the input GMII
signals. These are the worst-case data valid window presented to the FPGA device pins.

X-Ref Target - Figure 15-2

Figure 15-2: Input GMII timing

tSETUP

tHOLD

GMII_TXD[7:0],
GMII_TX_EN,
GMII_TX_ER

GMII_TX_CLK

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 299
UG155 March 1, 2011

Required Constraints

Observe that there is, in total, a 2 ns data valid window of guaranteed data which is
presented across the GMII input bus. This must be correctly sampled by the FPGA devices.

Spartan-3, Spartan-3E, and Spartan-3A Devices

Figure E-1 illustrates the GMII input logic which is provided by the example design for the
Spartan-3 class family. A DCM must be used on the gmii_tx_clk clock path as
illustrated. Phase-shifting is then applied to the DCM to align the resultant clock so that it
will correctly sample the 2ns GMII data valid window at the input flip-flops.

The fixed phase shift is applied to the DCM using the following UCF syntax.

INST "gmii_tx_dcm" CLKOUT_PHASE_SHIFT = FIXED;
INST "gmii_tx_dcm" PHASE_SHIFT = -20;
INST "gmii_tx_dcm" DESKEW_ADJUST = 0;

The value of PHASE_SHIFT is preconfigured in the example designs to meet the setup and
hold constraints for the example GMII pinout in the particular device. The setup/hold
timing which is achieved after place-and-route is reported in the data sheet section of the
TRCE report (created by the implement script).

For customers fixing their own pinout, the setup and hold figures reported in the TRCE
report can be used to initially setup the approximate DCM phase shift. Appendix F,
Calculating the DCM Fixed Phase Shift or IODelay Tap Setting, describes a more accurate
method for fixing the phase shift by using hardware measurement of a unique PCB
design.

Virtex-4 Devices

Figure E-1 illustrates the GMII input logic provided by the example design for the Virtex-
4 family. A DCM must be used on the gmii_tx_clk clock path as illustrated. Phase-
shifting is then applied to the DCM to align the resultant clock so that it will correctly
sample the 2 ns GMII data valid window at the input flip-flops.

The fixed phase shift is applied to the DCM using the following UCF syntax.

INST "gmii_tx_dcm" CLKOUT_PHASE_SHIFT = FIXED;
INST "gmii_tx_dcm" PHASE_SHIFT = -20;
INST "gmii_tx_dcm" DESKEW_ADJUST = 0;

The value of PHASE_SHIFT is preconfigured in the example designs to meet the setup and
hold constraints for the example GMII pinout in the particular device. The setup/hold
timing which is achieved after place-and-route is reported in the data sheet section of the
TRCE report (created by the implement script).

For customers fixing their own pinout, the setup and hold figures reported in the TRCE
report can be used to initially setup the approximate DCM phase shift. Appendix F,
Calculating the DCM Fixed Phase Shift or IODelay Tap Setting, describes a more accurate
method for fixing the phase shift by using hardware measurement of a unique PCB design.

Table 15-2: Input GMII Timing

Symbol Min Max Units

tSETUP 2.00 - ns

tHOLD 0.00 - ns

http://www.xilinx.com

300 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 15: Constraining the Core

In addition, for Virtex-4 FPGA designs, the following UCF syntax is included:

#---
To check (analyze) GMII Tx Input Setup/Hold Timing -
#---
INST "gmii_txd*" TNM = IN_GMII;
INST "gmii_tx_en" TNM = IN_GMII;
INST "gmii_tx_er" TNM = IN_GMII;

TIMEGRP "IN_GMII" OFFSET = IN 2 ns VALID 2 ns BEFORE "gmii_tx_clk";

This syntax will cause the Xilinx implementation tools to analyze the input setup and hold
constraints for the input GMII bus. If these constraints are not met then the tools will report
timing errors. However, the tools will NOT attempt to automatically correct the timing in
the case of failure. These must be corrected manually by changing the DCM
PHASE_SHIFT value in the UCF.

Virtex-5 Devices

Figure E-2 illustrates the GMII input logic provided by the example design for the Virtex-
5 family. IODELAY elements are instantiated on the GMII data input path as illustrated.
Fixed tap delays are applied to these IODELAY elements to delay the GMII input data
signals so that data is correctly sampled at the IOB IDDR registers, thereby meeting GMII
input setup and hold timing constraints.

The number of tap delays are applied using the following UCF syntax.

#---
To Adjust GMII Tx Input Setup/Hold Timing -
#---
INST "delay_gmii_tx_en" IDELAY_VALUE = "20";
INST "delay_gmii_tx_er" IDELAY_VALUE = "20";

INST "gmii_data_bus[7].delay_gmii_txd" IDELAY_VALUE = "20";
INST "gmii_data_bus[6].delay_gmii_txd" IDELAY_VALUE = "20";
INST "gmii_data_bus[5].delay_gmii_txd" IDELAY_VALUE = "20";
INST "gmii_data_bus[4].delay_gmii_txd" IDELAY_VALUE = "20";
INST "gmii_data_bus[3].delay_gmii_txd" IDELAY_VALUE = "20";
INST "gmii_data_bus[2].delay_gmii_txd" IDELAY_VALUE = "20";
INST "gmii_data_bus[1].delay_gmii_txd" IDELAY_VALUE = "20";
INST "gmii_data_bus[0].delay_gmii_txd" IDELAY_VALUE = "20";

The number of tap delays are preconfigured in the example designs to meet the setup and
hold constraints for the example GMII pinout in the particular device. The setup/hold
timing which is achieved after place-and-route is reported in the data sheet section of the
TRCE report (created by the implement script). See Understanding Timing Reports for
Setup/Hold Timing.

In addition, for Virtex-5 FPGA designs, the following UCF syntax is included:

#---
To check (analyze) GMII Tx Input Setup/Hold Timing -
#---
INST "gmii_txd*" TNM = IN_GMII;
INST "gmii_tx_en" TNM = IN_GMII;
INST "gmii_tx_er" TNM = IN_GMII;

TIMEGRP "IN_GMII" OFFSET = IN 2 ns VALID 2 ns BEFORE "gmii_tx_clk";

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 301
UG155 March 1, 2011

Required Constraints

This syntax will cause the Xilinx implementation tools to analyze the input setup and hold
constraints for the input GMII bus. If these constraints are not met then the tools will report
timing errors. However, the tools will NOT attempt to automatically correct the timing in
the case of failure. These must be corrected manually by changing the number of tap
delays for the IODELAY elements in the UCF.

Virtex-7, Kintex-7 and Virtex-6 Devices

Figure E-2 illustrates the GMII input logic provided by the example design for the Virtex-
7, Kintex-7 and Virtex-6 family. IODELAY elements are instantiated on the GMII data input
path as illustrated. Fixed tap delays are applied to these IODELAY elements to delay the
GMII input data signals so that data is correctly sampled at the IOB IDDR registers,
thereby meeting GMII input setup and hold timing constraints.

The number of tap delays are applied using the following UCF syntax.

#---
To Adjust GMII Tx Input Setup/Hold Timing -
#---
INST "delay_gmii_tx_en" IDELAY_VALUE = "5";
INST "delay_gmii_tx_er" IDELAY_VALUE = "5";

INST "gmii_data_bus[7].delay_gmii_txd" IDELAY_VALUE = "5";
INST "gmii_data_bus[6].delay_gmii_txd" IDELAY_VALUE = "5";
INST "gmii_data_bus[5].delay_gmii_txd" IDELAY_VALUE = "5";
INST "gmii_data_bus[4].delay_gmii_txd" IDELAY_VALUE = "5";
INST "gmii_data_bus[3].delay_gmii_txd" IDELAY_VALUE = "5";
INST "gmii_data_bus[2].delay_gmii_txd" IDELAY_VALUE = "5";
INST "gmii_data_bus[1].delay_gmii_txd" IDELAY_VALUE = "5";
INST "gmii_data_bus[0].delay_gmii_txd" IDELAY_VALUE = "5";

The number of tap delays are preconfigured in the example designs to meet the setup and
hold constraints for the example GMII pinout in the particular device. The setup/hold
timing, which is achieved after place-and-route, is reported in the data sheet section of the
TRCE report (created by the implement script). See Understanding Timing Reports for
Setup/Hold Timing.

In addition, the following UCF syntax is included:

#---
To check (analyze) GMII Tx Input Setup/Hold Timing -
#---
INST "gmii_txd*" TNM = IN_GMII;
INST "gmii_tx_en" TNM = IN_GMII;
INST "gmii_tx_er" TNM = IN_GMII;

TIMEGRP "IN_GMII" OFFSET = IN 2 ns VALID 2 ns BEFORE "gmii_tx_clk";

This syntax will cause the Xilinx implementation tools to analyze the input setup and hold
constraints for the input GMII bus. If these constraints are not met then the tools will report
timing errors. However, the tools will NOT attempt to automatically correct the timing in
the case of failure. These must be corrected manually by changing the number of tap
delays for the IODELAY elements in the UCF.

http://www.xilinx.com

302 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 15: Constraining the Core

Spartan-6 Devices

Figure E-3 illustrates the GMII input logic provided by the example design for the Spartan-
6 family. IODELAY2 elements are instantiated on the GMII data input path as illustrated.
Fixed tap delays are applied to these IODELAY2 elements to delay the GMII input data
signals so that data is correctly sampled at the IOB IDDR registers, thereby meeting GMII
input setup and hold timing constraints.

The number of tap delays are applied using the following UCF syntax.

#---
To Adjust GMII Tx Input Setup/Hold Timing -
#---
INST "delay_gmii_tx_en" IDELAY_VALUE = "10";
INST "delay_gmii_tx_er" IDELAY_VALUE = "10";

INST "gmii_data_bus[7].delay_gmii_txd" IDELAY_VALUE = "10";
INST "gmii_data_bus[6].delay_gmii_txd" IDELAY_VALUE = "10";
INST "gmii_data_bus[5].delay_gmii_txd" IDELAY_VALUE = "10";
INST "gmii_data_bus[4].delay_gmii_txd" IDELAY_VALUE = "10";
INST "gmii_data_bus[3].delay_gmii_txd" IDELAY_VALUE = "10";
INST "gmii_data_bus[2].delay_gmii_txd" IDELAY_VALUE = "10";
INST "gmii_data_bus[1].delay_gmii_txd" IDELAY_VALUE = "10";
INST "gmii_data_bus[0].delay_gmii_txd" IDELAY_VALUE = "10";

The number of tap delays are preconfigured in the example designs to meet the setup and
hold constraints for the example GMII pinout in the particular device. The setup/hold
timing which is achieved after place-and-route is reported in the data sheet section of the
TRCE report (created by the implement script). See Understanding Timing Reports for
Setup/Hold Timing.

In addition, for Spartan-6 FPGA designs, the following UCF syntax is included:

#---
To check (analyze) GMII Tx Input Setup/Hold Timing -
#---
INST "gmii_txd*" TNM = IN_GMII;
INST "gmii_tx_en" TNM = IN_GMII;
INST "gmii_tx_er" TNM = IN_GMII;

TIMEGRP "IN_GMII" OFFSET = IN 2 ns VALID 2 ns BEFORE "gmii_tx_clk";

This syntax will cause the Xilinx implementation tools to analyze the input setup and hold
constraints for the input GMII bus. If these constraints are not met then the tools will report
timing errors. However, the tools will NOT attempt to automatically correct the timing in
the case of failure. These must be corrected manually by changing the number of tap
delays for the IODELAY elements in the UCF.

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 303
UG155 March 1, 2011

Required Constraints

Understanding Timing Reports for Setup/Hold Timing
Setup and Hold results for the TBI or GMII input busses for the following devices are
defined in the Data Sheet Report section of the Timing Report. The results are self-
explanatory and show an obvious correlation and relationship to Figure 15-1 and
Figure 15-2.

The following example shows the GMII report from a Spartan-3A DSP device. The
implementation requires 1.531 ns of setup (this is less than the 2 ns required, to allow for
slack). The implementation requires -0.125 ns of hold (this is less than the 0 ns required, to
allow for slack).

Data Sheet report:

All values displayed in nanoseconds (ns)

Setup/Hold to clock gmii_tx_clk
------------+------------+------------+------------------+--------+
 | Setup to | Hold to | | Clock |
Source | clk (edge) | clk (edge) |Internal Clock(s) | Phase |
------------+------------+------------+------------------+--------+
gmii_tx_en | 1.531(R)| -0.141(R)|gmii_tx_clk_bufg | 0.000|
gmii_tx_er | 1.531(R)| -0.141(R)|gmii_tx_clk_bufg | 0.000|
gmii_txd<0> | 1.531(R)| -0.141(R)|gmii_tx_clk_bufg | 0.000|
gmii_txd<1> | 1.525(R)| -0.135(R)|gmii_tx_clk_bufg | 0.000|
gmii_txd<2> | 1.531(R)| -0.141(R)|gmii_tx_clk_bufg | 0.000|
gmii_txd<3> | 1.525(R)| -0.135(R)|gmii_tx_clk_bufg | 0.000|
gmii_txd<4> | 1.515(R)| -0.125(R)|gmii_tx_clk_bufg | 0.000|
gmii_txd<5> | 1.515(R)| -0.125(R)|gmii_tx_clk_bufg | 0.000|
gmii_txd<6> | 1.520(R)| -0.130(R)|gmii_tx_clk_bufg | 0.000|
gmii_txd<7> | 1.520(R)| -0.130(R)|gmii_tx_clk_bufg | 0.000|
------------+------------+------------+------------------+--------+

http://www.xilinx.com

304 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 15: Constraining the Core

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 305
UG155 March 1, 2011

Chapter 16

Interfacing to Other Cores

The 1000BASE-X PCS/PMA or SGMII core can be integrated in a single device with the Tri-
Mode Ethernet MAC core to extend the system functionality to include the MAC sublayer.
The Tri-Mode Ethernet MAC core provides support for operation at 10 Mbps, 100 Mbps,
and 1 Gbps.

A description of the latest available IP update containing the Tri-Mode Ethernet MAC core
and instructions can be found in the Tri-Mode Ethernet MAC product Web page:

www.xilinx.com/systemio/temac/index.htm

Caution! The Tri-Mode Ethernet MAC should always be configured for full-duplex operation
when used with the 1000BASE-X PCS/PMA or SGMII core. This constraint is due to the
increased latency introduced by the 1000BASE-X PCS/PMA or SGMII core. With half-duplex
operation, the MAC response to collisions will be late, violating the CDMA protocol.

The Tri-Mode Ethernet MAC (TEMAC core v4.5 and older) supports Virtex-6, Virtex-5,
Virtex-4, Spartan-6, Spartan-3, Spartan-3E, and Spartan-3A/3AN/3A DSP. The Tri-Mode
Ethernet MAC core version 5.1 (TEMAC core v5.1, AXI) supports Virtex-7, Kintex-7,Virtex-
6, and Spartan-6 devices

Please see the following sections as applicable:

• Integration of the Tri-Mode Ethernet MAC for 1000BASE-X Operation

• Integration of the Tri-Mode Ethernet MAC for 1000BASE-X Operation

http://www.xilinx.com/systemio/temac/index.htm
http://www.xilinx.com

306 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 16: Interfacing to Other Cores

Integration of the Tri-Mode Ethernet MAC for 1000BASE-X
Operation

In this section, it is assumed that the Tri-Mode Ethernet MAC core is generated with only
1 Gbps ethernet speed and full-duplex only support. This will provide the most optimal
solution.

Integration of the Tri-Mode Ethernet MAC to Provide 1000BASE-X PCS
with TBI

TEMAC Core v4.5 and older

Figure 16-1 illustrates the connections and clock management logic required to interface
the Ethernet 1000BASE-X PCS/PMA or SGMII core (when used in 1000BASE-X mode with
the parallel TBI) to the Tri-Mode Ethernet MAC core (TEMAC core v4.5 and older).

Features of this configuration include:

• Direct internal connections are made between the GMII interfaces between the two
cores.

• If both cores have been generated with the optional management interface, the MDIO
port can be connected to that of the Tri-Mode Ethernet MAC core, allowing the MAC
to access the embedded configuration and status registers of the Ethernet 1000BASE-X
PCS/PMA or SGMII core.

• Due to the embedded Receiver Elastic Buffer in the Ethernet 1000BASE-X PCS/PMA,
the entire GMII is synchronous to a single clock domain. Therefore, gtx_clk is used
as the 125 MHz reference clock for both cores, and the transmitter and receiver logic of
the Tri-Mode Ethernet MAC core operates in the same clock domain.

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 307
UG155 March 1, 2011

Integration of the Tri-Mode Ethernet MAC for 1000BASE-X Operation

X-Ref Target - Figure 16-1

Tri-Mode Ethernet MAC core (TEMAC Core v5.1, AXI)

Figure 16-2 illustrates the connections and clock management logic required to interface
the Ethernet 1000BASE-X PCS/PMA or SGMII core (when used in 1000BASE-X mode with
the parallel TBI) to the Tri-Mode Ethernet MAC core (TEMAC core v5.1, AXI).

Features of this configuration include:

• Direct internal connections are made between the GMII interfaces between the two cores.

• If both cores have been generated with the optional management interface, the MDIO
port can be connected to that of the Tri-Mode Ethernet MAC core, allowing the MAC to

Figure 16-1: Tri-Mode Ethernet MAC Extended to Include 1000BASE-X PCS with TBI

Tri-Mode Ethernet
MAC

 LogiCORE

rxgmiimiiclk

phyemacrxd[7:0]

phyemacrxdv

phyemacrxer

emacphytxd[7:0]

emacphytxen

emacphytxer

txgmiimiiclk

emacphymclkout

phyemacmdin

emacphymdout

emacphymdtri

Ethernet 1000BASE-X
PCS/PMA or SGMII

LogiCORE

gmii_rxd[7:0]

gmii_rx_dv

gmii_rx_er

gmii_txd[7:0]

gmii_tx_en

gmii_tx_er

mdc

mdio_in

mdio_out

mdio_trino
connection

gtx_clk

TBI

IPAD

IBUFG

IOB LOGIC

gtx_clk
gtx_clk_bufg (125 MHz)

BUFG

component_name_block
(Block Level from example design)

http://www.xilinx.com

308 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 16: Interfacing to Other Cores

access the embedded onfiguration and status registers of the Ethernet 1000BASE-X
PCS/PMA or SGMII core.

• Due to the embedded Receiver Elastic Buffer in the Ethernet 1000BASE-X PCS/PMA, the
entire GMII is synchronous to a single clock domain. Therefore, gtx_clk is used as the 125
MHz reference clock for both cores, and the transmitter and receiver logic of the Tri-Mode
Ethernet MAC core operates in the same clock domain.

X-Ref Target - Figure 16-2

Figure 16-2: AXI Tri-Mode Ethernet MAC Extended to Include 1000BASE-X PCS with TBI

Ethernet
1000BASE-X

PCS/PMA
or SGMII

LogiCORE

gmii_rxd[7:0]

gmii_rx_dv

gmii_rx_er

gmii_txd[7:0]

gmii_tx_en

gmii_tx_er

mdc

mdio_in

mdio_out

mdio_trino
connection

userclk2

gtx_clk

component_name_block
(Block Level from example design)

IPAD

IBUFG

IOB LOGIC

gtx_clk
BUFG

TBI
gmii_txd7:0]

gtx_clk

Statistics Vectors
Interface

 TEMAC LogiCore

Statistics
Vector Decode

AXI4-Lite
to IPIF

component_name_block
(Block Level from Tri-Mode Ethernet MAC LogiCORE)

gmii_tx_en

gmii_tx_er

gmii_rxd7:0]

gmii_rx_dv

gmii_rx_er

MAC
AXI4-Stream

I/F

mdc

mdio_tri

mdio_in

mdio_out

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 309
UG155 March 1, 2011

Integration of the Tri-Mode Ethernet MAC for 1000BASE-X Operation

Integration of the Tri-Mode Ethernet MAC to Provide 1000BASE-X Using
Transceivers

TEMAC Core v4.5 and older

Virtex-4 Devices

Figure 16-3 illustrates the connections and clock management logic required to interface
the Ethernet 1000BASE-X PCS/PMA or SGMII core (when used in 1000BASE-X mode) to
the Tri-Mode Ethernet MAC core (TEMACcore v4.5 and older).
X-Ref Target - Figure 16-3

Figure 16-3: Legacy Tri-Mode Ethernet MAC Extended to Include 1000BASE-X PCS
and PMA Using a Virtex-4 FPGA RocketIO™ MGT Transceiver

Tri-ModeEthernet

MAC

 LogiCORE

rxgmiimiiclk

phyemacrxd[7:0]

phyemacrxdv

phyemacrxer

emacphytxd7[7:0]

emacphytxen

emacphytxer

txgmiimiiclk

emacphymclkout

phyemacmdin

emacphymdout

emacphymdtri

Ethernet 1000BASE-X

PCS/PMA or SGMII

LogiCORE

gmii_rxd[7:0]

gmii_rx_dv

gmii_rx_er

gmii_txd[7:0]

gmii_tx_en

gmii_tx_er

mdc

mdio_in

mdio_out

mdio_tri

Virtex-4

GT11

RocketIO

no

connection

userclk

userclk2

RocketIO I/F

IPAD

IPAD

brefclkn

(250 MHz)

Virtex-4

GT11CLK_MGT

MGTCLKP

MGTCLKN

SYNCLK1OUT

brefclkp

(250 MHz)

REFCLK1

userclk2

(125 MHz)

TXUSRCLK

TXUSRCLK2

RXUSRCLK

RXUSRCLK2

synclk1

(250MHz)

‘0’

‘0’

BUFG

TXOUTCLK1

component_name_block
(Block Level from example design)

http://www.xilinx.com

310 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 16: Interfacing to Other Cores

Features of this configuration include:

• Direct internal connections are made between the GMII interfaces between the two
cores.

• If both cores have been generated with the optional management interface, the MDIO
port can be connected up to that of the Tri-Mode Ethernet MAC core, allowing the
MAC to access the embedded configuration and status registers of the Ethernet
1000BASE-X PCS/PMA or SGMII core.

• Due to the embedded Receiver Elastic Buffer in the MGT, the entire GMII is
synchronous to a single clock domain. Therefore userclk2 is used as the 125 MHz
reference clock for both cores, and the transmitter and receiver logic of the 1 Tri-Mode
Ethernet MAC core now operate in the same clock domain.

Virtex-5 LXT and SXT Devices

Figure 16-4 illustrates the connections and clock management logic required to interface
the Ethernet 1000BASE-X PCS/PMA or SGMII core (when used in 1000BASE-X mode) to
the Tri-Mode Ethernet MAC core (TEMAC core v4.5 and older).

X-Ref Target - Figure 16-4

Figure 16-4: Legacy Tri-Mode Ethernet MAC Extended to Include 1000BASE-X PCS and
PMA Using a Virtex-5 FPGA RocketIO GTP Transceiver

Ethernet 1000BASE-X

PCS/PMA or SGMII

LogiCORE

gmii_rxd[7:0]

gmii_rx_dv

gmii_rx_er

gmii_txd[7:0]

gmii_tx_en

gmii_tx_er

mdc

mdio_in

mdio_out

mdio_tri

Virtex-5

GTP

RocketIO

no

connection

userclk

userclk2

RocketIO I/F

CLKIN

userclk2

(125 MHz)

TXUSRCLK0

TXUSRCLK20

RXUSRCLK0

RXUSRCLK20

BUFG

REFCLKOUT

component_name_block

(Block Level from example design)

clkin

(125MHz)

IBUFGDS

IPAD

brefclkp

IPAD

brefclkn

Tri-ModeEthernet

MAC

 LogiCORE

rxgmiimiiclk

phyemacrxd[7:0]

phyemacrxdv

phyemacrxer

emacphytxd7[7:0]

emacphytxen

emacphytxer

txgmiimiiclk

emacphymclkout

phyemacmdin

emacphymdout

emacphymdtri

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 311
UG155 March 1, 2011

Integration of the Tri-Mode Ethernet MAC for 1000BASE-X Operation

Features of this configuration include:

• Direct internal connections are made between the GMII interfaces between the two
cores.

• If both cores have been generated with the optional management interface, the MDIO
port can be connected up to that of the Tri-Mode Ethernet MAC core, allowing the
MAC to access the embedded configuration and status registers of the Ethernet
1000BASE-X PCS/PMA or SGMII core.

• Due to the embedded Receiver Elastic Buffer in the GTP transceiver, the entire GMII is
synchronous to a single clock domain. Therefore userclk2 is used as the 125 MHz
reference clock for both cores, and the transmitter and receiver logic of the Tri-Mode
Ethernet MAC core now operate in the same clock domain.

Virtex-5 FXT and TXT Devices

Figure 16-5 illustrates the connections and clock management logic required to interface
the Ethernet 1000BASE-X PCS/PMA or SGMII core (when used in 1000BASE-X mode) to
the Tri-Mode Ethernet MAC core (TEMAC core v4.5 and older).
X-Ref Target - Figure 16-5

Figure 16-5: Legacy Tri-Mode Ethernet MAC Extended to Include 1000BASE-X PCS
and PMA Using a Virtex-5 FPGA RocketIO GTX Transceiver

Ethernet 1000BASE-X

PCS/PMA or SGMII

LogiCORE

gmii_rxd[7:0]

gmii_rx_dv

gmii_rx_er

gmii_txd[7:0]

gmii_tx_en

gmii_tx_er

mdc

mdio_in

mdio_out

mdio_tri

Virtex-5

GTX

RocketIO

no

connection

userclk

userclk2

RocketIO I/F

CLKIN

userclk2 (125MHz)

TXUSRCLK0

TXUSRCLK20

RXUSRCLK0

RXUSRCLK20

REFCLKOUT

component_name_block

(Block Level from example design)

clkin

(125MHz)

IBUFGDS

IPAD

brefclkp

IPAD

brefclkn

DCM

CLKIN CLK0

FB

BUFG

CLKDV

BUFG
userclk (62.5MHz)

BUFG

Tri-ModeEthernet

MAC

 LogiCORE

rxgmiimiiclk

phyemacrxd[7:0]

phyemacrxdv

phyemacrxer

emacphytxd7[7:0]

emacphytxen

emacphytxer

txgmiimiiclk

emacphymclkout

phyemacmdin

emacphymdout

emacphymdtri

http://www.xilinx.com

312 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 16: Interfacing to Other Cores

Features of this configuration include:

• Direct internal connections are made between the GMII interfaces between the two
cores.

• If both cores have been generated with the optional management interface, the MDIO
port can be connected up to that of the Tri-Mode Ethernet MAC core, allowing the
MAC to access the embedded configuration and status registers of the Ethernet
1000BASE-X PCS/PMA or SGMII core.

• Due to the embedded Receiver Elastic Buffer in the GTX transceiver, the entire GMII is
synchronous to a single clock domain. Therefore userclk2 is used as the 125 MHz
reference clock for both cores, and the transmitter and receiver logic of the Tri-Mode
Ethernet MAC core now operate in the same clock domain.

Virtex-6 Devices

Figure 16-6 illustrates the connections and clock management logic required to interface
the Ethernet 1000BASE-X PCS/PMA or SGMII core (when used in 1000BASE-X mode) to
the Tri-Mode Ethernet MAC core (TEMAC core v4.5 and older).
X-Ref Target - Figure 16-6

Figure 16-6: Legacy Tri-Mode Ethernet MAC Extended to Include 1000BASE-X PCS
and PMA Using a Virtex-6 FPGA GTX Transceiver

Ethernet 1000BASE-X

PCS/PMA or SGMII

LogiCORE

gmii_rxd[7:0]

gmii_rx_dv

gmii_rx_er

gmii_txd[7:0]

gmii_tx_en

gmii_tx_er

mdc

mdio_in

mdio_out

mdio_tri

Virtex-6

GTX

Transceiver

no

connection

userclk

userclk2

userclk2

(125 MHz)

TXUSRCLK2

RXUSRCLK2

BUFG

TXOUTCLK

component_name_block

(Block Level from example design)

mgtrefclk
(125MHz)

IBUFDS_GTXE1

IPAD

mgtrefclk_p

IPAD

mgtrefclk_n

Tri-ModeEthernet

MAC

 LogiCORE

rxgmiimiiclk

phyemacrxd[7:0]

phyemacrxdv

phyemacrxer

emacphytxd7[7:0]

emacphytxen

emacphytxer

txgmiimiiclk

emacphymclkout

phyemacmdin

emacphymdout

emacphymdtri

TXUSRCLK

RXUSRCLK

GND

MGTREFCLKTX[0]
MGTREFCLKRX[0]

Transceiver I/F

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 313
UG155 March 1, 2011

Integration of the Tri-Mode Ethernet MAC for 1000BASE-X Operation

Features of this configuration include:

• Direct internal connections are made between the GMII interfaces between the two
cores.

• If both cores have been generated with the optional management interface, the MDIO
port can be connected up to that of the Tri-Mode Ethernet MAC core, allowing the
MAC to access the embedded configuration and status registers of the Ethernet
1000BASE-X PCS/PMA or SGMII core.

• Due to the embedded Receiver Elastic Buffer in the transceiver, the entire GMII is
synchronous to a single clock domain. Therefore userclk2 is used as the 125 MHz
reference clock for both cores, and the transmitter and receiver logic of the Tri-Mode
Ethernet MAC core now operate in the same clock domain.

Spartan-6 LXT Devices

Figure 16-7 illustrates the connections and clock management logic required to interface
the Ethernet 1000BASE-X PCS/PMA or SGMII core (when used in 1000BASE-X mode) to
the Tri-Mode Ethernet MAC core (TEMAC core v4.5 and older).
X-Ref Target - Figure 16-7

Figure 16-7: Legacy Tri-Mode Ethernet MAC Extended to Include 1000BASE-X PCS
and PMA Using a Spartan-6 FPGA GTP Transceiver

Ethernet 1000BASE-X

PCS/PMA or SGMII

LogiCORE

gmii_rxd[7:0]

gmii_rx_dv

gmii_rx_er

gmii_txd[7:0]

gmii_tx_en

gmii_tx_er

mdc

mdio_in

mdio_out

mdio_trino

connection

userclk

userclk2

CLKIN00

userclk2

(125 MHz)

TXUSRCLK0

TXUSRCLK20

RXUSRCLK0

RXUSRCLK20

BUFG

component_name_block

(Block Level from example design)

clkin

(125MHz)

IBUFDS

IPAD

brefclkp

IPAD

brefclkn

Tri-ModeEthernet

MAC

 LogiCORE

rxgmiimiiclk

phyemacrxd[7:0]

phyemacrxdv

phyemacrxer

emacphytxd7[7:0]

emacphytxen

emacphytxer

txgmiimiiclk

emacphymclkout

phyemacmdin

emacphymdout

emacphymdtri

Spartan-6
Transceiver

GTP

GTPCLKOUT0

Transceiver I/F

BUFIO2

http://www.xilinx.com

314 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 16: Interfacing to Other Cores

Features of this configuration include:

• Direct internal connections are made between the GMII interfaces between the two
cores.

• If both cores have been generated with the optional management interface, the MDIO
port can be connected up to that of the Tri-Mode Ethernet MAC core, allowing the
MAC to access the embedded configuration and status registers of the Ethernet
1000BASE-X PCS/PMA or SGMII core.

• Because of the embedded Receiver Elastic Buffer in the GTP transceiver, the entire
GMII is synchronous to a single clock domain. Therefore userclk2 is used as the
125 MHz reference clock for both cores, and the transmitter and receiver logic of the
Tri-Mode Ethernet MAC core now operate in the same clock domain.

Tri-Mode Ethernet MAC Core (TEMAC Core v5.1, AXI)

Virtex-6 Devices

Figure 16-8 illustrates the connections and clock management logic required to interface
the Ethernet 1000BASE-X PCS/PMA or SGMII core (when used in 1000BASE-X mode) to
the Tri-Mode Ethernet MAC core: (TEMAC core v5.1, AXI).

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 315
UG155 March 1, 2011

Integration of the Tri-Mode Ethernet MAC for 1000BASE-X Operation

Features of this configuration include:

• Observe that the “block” level of the TEMAC is instantiated. This provides the MAC
with extra functionality that is not provided by the TEMAC core netlist. When using
the MAC to connect the 1000BASE-X core, the “Internal” PHY Interface mode must be
selected from the TEMAC GUI prior to core generation. Please refer to TEMAC
documentation.

• Direct internal connections are made between the GMII interfaces between the two
cores.

• If both cores have been generated with the optional management interface, the MDIO
port can be connected up to that of the Tri-Mode Ethernet MAC core, allowing the
MAC to access the embedded configuration and status registers of the Ethernet
1000BASE-X PCS/PMA or SGMII core.

• Because of the embedded Receiver Elastic Buffer in the transceiver, the entire GMII is
synchronous to a single clock domain. Therefore userclk2 is used as the 125 MHz
reference clock for both cores, and the transmitter and receiver.

X-Ref Target - Figure 16-8

Figure 16-8: AXI Tri-Mode Ethernet MAC Extended to Include 1000BASE-X PCS
and PMA Using a Virtex-6 FPGA GTX Transceiver

Ethernet 1000BASE-X

PCS/PMA or SGMII

LogiCORE

gmii_rxd[7:0]

gmii_rx_dv

gmii_rx_er

gmii_txd[7:0]

gmii_tx_en

gmii_tx_er

mdc

mdio_in

mdio_out

mdio_tri

Virtex-6

GTX

Transceiver

no

connection

userclk

userclk2

userclk2

(125 MHz)

TXUSRCLK2

RXUSRCLK2

BUFG

TXOUTCLK

mgtrefclk
(125MHz)

IBUFDS_GTXE1

IPAD

mgtrefclk_p

IPAD

mgtrefclk_n

TXUSRCLK

RXUSRCLK

GND

MGTREFCLKTX[0]
MGTREFCLKRX[0]

Transceiver I/F

component_name_block

(Block Level from Ethernet 1000BASE-X PCS/PMA LogiCORE)

gmii_txd7:0]

gtx_clk

Statistics Vectors
Interface

 TEMAC LogiCore

Statistics
Vector Decode

AXI4-Lite
to IPIF

component_name_block

(Block Level from Tri-Mode Ethernet MAC LogiCORE)

gmii_tx_en

gmii_tx_er

gmii_rxd7:0]

gmii_rx_dv

gmii_rx_er

MAC
AXI4-Stream

I/F

mdc

mdio_tri

mdio_in

mdio_out

http://www.xilinx.com

316 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 16: Interfacing to Other Cores

Spartan-6 Devices
Figure 16-9 illustrates the connections and clock management logic required to interface
the Ethernet 1000BASE-X PCS/PMA or SGMII core (when used in 1000BASE-X mode) to
the Tri-mode Ethernet MAC core (TEMAC core v5.1, AXI).

X-Ref Target - Figure 16-9

Figure 16-9: AXI Tri-Mode Ethernet MAC Extended to Include 1000BASE-X PCS
and PMA Using a Spartan-6 FPGA GTP Transceiver

Ethernet 1000BASE-X

PCS/PMA or SGMII

LogiCORE

gmii_rxd[7:0]

gmii_rx_dv

gmii_rx_er

gmii_txd[7:0]

gmii_tx_en

gmii_tx_er

mdc

mdio_in

mdio_out

mdio_trino

connection

userclk

userclk2

CLKIN00

userclk2

(125 MHz)

TXUSRCLK0

TXUSRCLK20

RXUSRCLK0

RXUSRCLK20

BUFG

clkin

(125MHz)

IBUFDS

IPAD

brefclkp

IPAD

brefclkn

Spartan-6
Transceiver

GTP

GTPCLKOUT0

Transceiver I/F

BUFIO2

gmii_txd7:0]

gtx_clk

Statistics Vectors
Interface

 TEMAC LogiCore

Statistics
Vector Decode

AXI4-Lite
to IPIF

component_name_block

(Block Level from Tri-Mode Ethernet MAC LogiCORE)

gmii_tx_en

gmii_tx_er

gmii_rxd7:0]

gmii_rx_dv

gmii_rx_er

MAC
AXI4-Stream

I/F

mdc

mdio_tri

mdio_in

mdio_out

component_name_block

(Block Level from Ethernet 1000BASE-X PCS/PMA LogiCORE)

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 317
UG155 March 1, 2011

Integration of the Tri-Mode Ethernet MAC for 1000BASE-X Operation

Features of this configuration include:

• Observe that the “block” level of the TEMAC is instantiated. This provides the MAC
with extra functionality that is not provided by the TEMAC core netlist When using
the MAC to connect the 1000BASE-X core, the “Internal” PHY Interface mode must be
selected from the TEMAC GUI prior to core generation. Please refer to TEMAC
documentation.

• Direct internal connections are made between the GMII interfaces between the two
cores.

• If both cores have been generated with the optional management interface, the MDIO
port can be connected up to that of the Tri-Mode Ethernet MAC core, allowing the
MAC to access the embedded configuration and status registers of the Ethernet
1000BASE-X PCS/PMA or SGMII core.

Because of the embedded Receiver Elastic Buffer in the transceiver, the entire GMII is
synchronous to a single clock domain. Therefore userclk2 is used as the 125 MHz reference
clock for both cores, and the transmitter and receiver.

Virtex-7 Devices
Figure 16-10 illustrates the connections and clock management logic required to interface
the Ethernet 1000BASE-X PCS/PMA or SGMII core (when used in 1000BASE-X mode) to
the Tri-Mode Ethernet MAC core (TEMAC core v5.1, AXI).

X-Ref Target - Figure 16-10

Figure 16-10: AXI Tri-Mode Ethernet MAC Extended to Include 1000BASE-X PCS
and PMA Using a Virtex-7 FPGA GTX Transceiver

Ethernet

1000BASE-X

PCS/PMA

or SGMII

LogiCORE

gmii_rxd[7:0]

gmii_rx_dv

gmii_rx_er

gmii_txd[7:0]

gmii_tx_en

gmii_tx_er

mdc

mdio_in

mdio_out

mdio_trino

connection

userclk2

Transceiver I/Fgmii_rxd_out[7:0]

gmii_rx_dv_out

gmii_rx_er_out

gmii_txd_in[7:0]

gmii_tx_en_in

gmii_tx_er_in

gmii_rxd_in[7:0]

gmii_rx_dv_in

gmii_rx_er_in

gmii_txd_out[7:0]

gmii_tx_en_out

gmii_tx_er_out

clk125m

SGMII Adaptation

module

sgmii_clk_en

speed_is_10_100

speed_is_100

sgmii_clk_rNC

Virtex-7
GTX

Transceiver

TXUSRCLK

TXUSRCLK2

userclk2

(125 MHz)

userclk

 gtrefclk
(125MHz)

IBUFDS_GTE2

IPAD

gtrefclk_p

IPAD

gtrefclk_n

TXOUTCLK

GTREFCLK0

(125MHz)

MMCME2_ADV

CLKOUT0

CLKOUT1

CLKIN1

CLKFBOUTCLKFBIN

BUFG

BUFG
(62.5MHz)

gmii_txd7:0]

gtx_clk

Statistics Vectors
Interface

 TEMAC LogiCore

Statistics
Vector Decode

AXI4-Lite
to IPIF

component_name_block

(Block Level from Tri-Mode Ethernet MAC LogiCORE)

gmii_tx_en

gmii_tx_er

gmii_rxd7:0]

gmii_rx_dv

gmii_rx_er

MAC
AXI4-Stream

I/F

mdc

mdio_tri

mdio_in

mdio_out

speedis100

clk_enable

speedis10100

component_name_block

(Block Level from Ethernet 1000BASE-X PCS/PMA LogiCORE)

http://www.xilinx.com

318 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 16: Interfacing to Other Cores

Features of this configuration include:

• Observe that the “block” level of the TEMAC is instantiated. This provides the MAC
with extra functionality that is not provided by the TEMAC core netlist When using
the MAC to connect the 1000BASE-X core, the “Internal” PHY Interface mode must be
selected from the TEMAC GUI prior to core generation. Please refer to TEMAC
documentation.

• Direct internal connections are made between the GMII interfaces between the two
cores.

• If both cores have been generated with the optional management interface, the MDIO
port can be connected up to that of the Tri-Mode Ethernet MAC core, allowing the
MAC to access the embedded configuration and status registers of the Ethernet
1000BASE-X PCS/PMA or SGMII core.

• Because of the embedded Receiver Elastic Buffer in the transceiver, the entire GMII is
synchronous to a single clock domain. Therefore userclk2 is used as the 125 MHz
reference clock for both cores, and the transmitter and receiver

Kintex-7 Devices

Figure 16-11 illustrates the connections and clock management logic required to interface
the Ethernet 1000BASE-X PCS/PMA or SGMII core (when used in 1000BASE-X mode) to
the Tri-Mode Ethernet MAC core.

X-Ref Target - Figure 16-11

Figure 16-11: AXI Tri-Mode Ethernet MAC Extended to Include 1000BASE-X PCS
and PMA Using a Kintex-7 FPGA GTX Transceiver

gmii_txd7:0]

Ethernet

1000BASE-X

PCS/PMA

or SGMII

LogiCORE

gmii_rxd[7:0]

gmii_rx_dv

gmii_rx_er

gmii_txd[7:0]

gmii_tx_en

gmii_tx_er

mdc

mdio_in

mdio_out

mdio_trino

connection

userclk2

Transceiver I/F

gtx_clk

TXUSRCLK

TXUSRCLK2

userclk2

(125 MHz)

userclk

component_name_block

(Block Level from Ethernet 1000BASE-X PCS/PMA LogiCORE)

 gtrefclk
(125MHz)

IBUFDS_GTE2

IPAD

gtrefclk_p

IPAD

gtrefclk_n

TXOUTCLK

GTREFCLK0

(125MHz)

MMCME2_ADV

CLKOUT0

CLKOUT1

CLKIN1

CLKFBOUTCLKFBIN

BUFG

BUFG
(62.5MHz)

BUFG

 Kintex-7
 GTX
Transceiver

Statistics Vectors
Interface

 TEMAC LogiCore

Statistics
Vector Decode

AXI4-Lite
to IPIF

component_name_block

(Block Level from Tri-Mode Ethernet MAC LogiCORE)

gmii_tx_en

gmii_tx_er

gmii_rxd7:0]

gmii_rx_dv

gmii_rx_er

MAC
AXI4-Stream

I/F

mdc

mdio_tri

mdio_in

mdio_out

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 319
UG155 March 1, 2011

Integration of the Tri-Mode Ethernet MAC for Tri-speed SGMII Operation

Features of this configuration include:

• Observe that the “block” level of the TEMAC is instantiated. This provides the MAC
with extra functionality that is not provided by the TEMAC core netlist When using
the MAC to connect the 1000BASE-X core, the “Internal” PHY Interface mode must be
selected from the TEMAC GUI prior to core generation. Please refer to TEMAC
documentation.

• Direct internal connections are made between the GMII interfaces between the two
cores.

• If both cores have been generated with the optional management interface, the MDIO
port can be connected up to that of the Tri-Mode Ethernet MAC core, allowing the
MAC to access the embedded configuration and status registers of the Ethernet
1000BASE-X PCS/PMA or SGMII core.

• Because of the embedded Receiver Elastic Buffer in the transceiver, the entire GMII is
synchronous to a single clock domain. Therefore userclk2 is used as the 125 MHz
reference clock for both cores, and the transmitter and receiver.

Integration of the Tri-Mode Ethernet MAC for Tri-speed SGMII
Operation

In this section, it is assumed that the Tri-Mode Ethernet MAC core is generated for Tri-
speed operation and full-duplex only support. This will provide the most optimal solution.

This section assumes only SGMII or Dynamic switching operation and MAC mode
configuration. PHY mode configuration of SGMII is used to interface to a external PHY
device. For SGMII in PHY mode configuration, please refer to SGMII Example Design /
Dynamic Switching Example Design with Ten-Bit Interface and Chapter 9, SGMII Example
Design / Dynamic Switching Example Design Using a Transceiver. For 1000BASEX only
designs, see Integration of the Tri-Mode Ethernet MAC for 1000BASE-X Operation.

Integration of the Tri-Mode Ethernet MAC to Provide SGMII (or Dynamic
Switching) Functionality with TBI

TEMAC Core v4.5 and Older

Figure 16-12 illustrates the connections and clock management logic required to interface
the Ethernet 1000BASE-X PCS/PMA or SGMII core (when used in SGMII mode with the
TBI) to the Tri-Mode Ethernet MAC core (TEMAC core v4.5 and older). The following is a
description of the functionality.

• The SGMII Adaptation module, provided in the example design for the Ethernet
1000BASE-X PCS/PMA or SGMII core when generated to the SGMII standard, can be
used to interface the two cores.

• If both cores have been generated with the optional management interface, the MDIO
port can be connected to that of the Tri-Speed Ethernet MAC core, allowing the MAC
to access the embedded configuration and status registers of the Ethernet 1000BASE-X
PCS/PMA or SGMII core.

• Due to the Receiver Elastic Buffer in the core, the entire GMII (transmitter and receiver
paths) is synchronous to a single clock domain. Therefore, the txcoreclk and
rxcoreclk inputs of the Tri-Speed Ethernet MAC core can always be driven from
the same clock source.

http://www.xilinx.com

320 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 16: Interfacing to Other Cores

Figure 16-12 illustrates the Tri-Mode Ethernet MAC core generated with the optional clock
enable circuitry. This is the most efficient way to connect the two cores together in terms of
clock resource usage and so is recommended. See the Tri-Mode Ethernet MAC User Guide for
more information.

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 321
UG155 March 1, 2011

Integration of the Tri-Mode Ethernet MAC for Tri-speed SGMII Operation

X-Ref Target - Figure 16-12

Figure 16-12: Legacy Tri-Speed Ethernet MAC Extended to Use an SGMII with TBI

Tri-Speed
Ethernet

MAC
 LogiCORE

phyemacrxd[7:0]

phyemacrxdv

phyemacrxer

emacphytxd7:0]

emacphytxen

emacphytxer

emacphymclkout

phyemacmdin

emacphymdout

emacphymdtri

Ethernet
1000BASE-X

PCS/PMA
or SGMII

LogiCORE

gmii_rxd[7:0]

gmii_rx_dv

gmii_rx_er

gmii_txd[7:0]

gmii_tx_en

gmii_tx_er

mdc

mdio_in

mdio_out

mdio_trino
connection

userclk2

gtx_clk

gmii_rxd_out[7:0]

gmii_rx_dv_out

gmii_rx_er_out

gmii_txd_in[7:0]

gmii_tx_en_in

gmii_tx_er_in

gmii_rxd_in[7:0]

gmii_rx_dv_in

gmii_rx_er_in

gmii_txd_out[7:0]

gmii_tx_en_out

gmii_tx_er_out

clk125m

SGMII Adaptation
module

sgmii_clk_en

speed_is_10_100

speed_is_100

speedis10100

speedis100

rxgmiimiiclk

txgmiimiiclk

corehassgmii

VCC

clientemacrxenable

clientemactxenable

sgmii_clk_rNC

component_name_block
(Block Level from example design)

IPAD

IBUFG

IOB LOGIC

gtx_clk
BUFG

TBI

http://www.xilinx.com

322 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 16: Interfacing to Other Cores

Tri-Mode Ethernet MAC Core (TEMAC core v5.1, AXI)
Figure 16-13 illustrates the connections and clock management logic required to interface
the Ethernet 1000BASE-X PCS/PMA or SGMII core (when used in SGMII mode with the
TBI) to the Tri-Mode Ethernet MAC core (TEMAC core v5.1, AXI).

Features of this configuration include:

• The SGMII Adaptation module, provided in the example design for the Ethernet
1000BASE-X PCS/PMA or SGMII core when generated to the SGMII standard, can be
used to interface the two cores.

• If both cores have been generated with the optional management interface, the MDIO
port can be connected to that of the Tri-Speed Ethernet MAC core, allowing the MAC
to access the embedded configuration and status registers of the Ethernet 1000BASE-X
PCS/PMA or SGMII core.

X-Ref Target - Figure 16-13

Figure 16-13: AXI Tri-Speed Ethernet MAC Extended to Use an SGMII with TBI

Ethernet
1000BASE-X

PCS/PMA
or SGMII

LogiCORE

gmii_rxd[7:0]

gmii_rx_dv

gmii_rx_er

gmii_txd[7:0]

gmii_tx_en

gmii_tx_er

mdc

mdio_in

mdio_out

mdio_trino
connection

userclk2

gtx_clk

gmii_rxd_out[7:0]

gmii_rx_dv_out

gmii_rx_er_out

gmii_txd_in[7:0]

gmii_tx_en_in

gmii_tx_er_in

gmii_rxd_in[7:0]

gmii_rx_dv_in

gmii_rx_er_in

gmii_txd_out[7:0]

gmii_tx_en_out

gmii_tx_er_out

clk125m

SGMII Adaptation
module

sgmii_clk_en

speed_is_10_100

speed_is_100

sgmii_clk_rNC

component_name_block
(Block Level from example design)

IPAD

IBUFG

IOB LOGIC

gtx_clk
BUFG

TBIgmii_txd7:0]

gtx_clk

Statistics Vectors
Interface

 TEMAC LogiCore

Statistics
Vector Decode

AXI4-Lite
to IPIF

component_name_block
(Block Level from Tri-Mode Ethernet MAC LogiCORE)

gmii_tx_en

gmii_tx_er

gmii_rxd7:0]

gmii_rx_dv

gmii_rx_er

MAC
AXI4-Stream

I/F

mdc

mdio_tri

mdio_in

mdio_out

speedis100

clk_enable

speedis10100

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 323
UG155 March 1, 2011

Integration of the Tri-Mode Ethernet MAC for Tri-speed SGMII Operation

Integration of the Tri-Mode Ethernet MAC Using Device Specific
Transceivers

TEMAC Core v4.5 and Older

Virtex-4 Devices

Figure 16-14 illustrates the connections and clock management logic required to interface
the Ethernet 1000BASE-X PCS/PMA or SGMII core (when used in SGMII Configuration
and MAC mode with the Virtex®-4 FPGA MGT) to the Tri-Mode Ethernet MAC core:
TEMAC core v4.5 and older.

The following conditions apply.

• The SGMII Adaptation module, as provided in the example design for the Ethernet
1000BASE-X PCS/PMA or SGMII core, can be used to interface the two cores when
generated to the SGMII standard.

• If both cores have been generated with the optional management interface, the MDIO
port can be connected up to that of the Tri-Speed Ethernet MAC core, allowing the
MAC to access the embedded configuration and status registers of the Ethernet
1000BASE-X PCS/PMA or SGMII core.

• Due to the Receiver Elastic Buffer, the entire GMII (transmitter and receiver paths) is
synchronous to a single clock domain. Therefore the txcoreclk and rxcoreclk
inputs of the Tri-Speed Ethernet MAC core can always be driven from the same clock
source. The entire design is synchronous to the 125 MHz reference clock derived from
the CLK2X180 output of the DCM.

Figure 16-14 illustrates the Tri-Mode Ethernet MAC core generated with the optional clock
enable circuitry. This is the most efficient way to connect the two cores together in terms of
clock resource usage and so is recommended. See the Tri-Mode Ethernet MAC User Guide for
more information.

http://www.xilinx.com

324 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 16: Interfacing to Other Cores

X-Ref Target - Figure 16-14

Figure 16-14: Legacy Tri-Speed Ethernet MAC Extended to Use an SGMII in a Virtex-4 FPGA

Tri-Speed

Ethernet

MAC

 LogiCORE

phyemacrxd[7:0]

phyemacrxdv

phyemacrxer

emacphytxd7:0]

emacphytxen

emacphytxer

emacphymclkout

phyemacmdin

emacphymdout

emacphymdtri

Ethernet

1000BASE-X

PCS/PMA

or SGMII

LogiCORE

gmii_rxd[7:0]

gmii_rx_dv

gmii_rx_er

gmii_txd[7:0]

gmii_tx_en

gmii_tx_er

mdc

mdio_in

mdio_out

mdio_trino

connection

userclk2

RocketIO I/Fgmii_rxd_out[7:0]

gmii_rx_dv_out

gmii_rx_er_out

gmii_txd_in[7:0]

gmii_tx_en_in

gmii_tx_er_in

gmii_rxd_in[7:0]

gmii_rx_dv_in

gmii_rx_er_in

gmii_txd_out[7:0]

gmii_tx_en_out

gmii_tx_er_out

clk125m

SGMII Adaptation

module

sgmii_clk_en

speed_is_10_100

speed_is_100

speedis10100

speedis100

rxgmiimiiclk

txgmiimiiclk

corehassgmii

VCC

clientemacrxenable

clientemactxenable

sgmii_clk_rNC

Virtex-4

GT11

RocketIO

(used)

IPAD

brefclkp

(250MHz)

IPAD

brefclkn

(250MHz)

Virtex-4

GT11CLK_MGT

MGTCLKP

MGTCLKN

SYNCLK1OUT

REFCLK1

TXUSRCLK

TXUSRCLK2

userclk2

(125 MHz)

synclk1

(250MHz)

userclk

‘0’

BUFG

TXOUTCLK1

component_name_block
(Block Level from example design)

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 325
UG155 March 1, 2011

Integration of the Tri-Mode Ethernet MAC for Tri-speed SGMII Operation

Virtex-5 LXT and SXT Devices

Figure 16-15 illustrates the connections and clock management logic required to interface
the Ethernet 1000BASE-X PCS/PMA or SGMII core (when used in SGMII Configuration
and MAC mode with the Virtex-5 FPGA GTP) to the Tri-Mode Ethernet MAC core
(TEMAC core v4.5 and older).

The following conditions apply.

• The SGMII Adaptation module, as provided in the example design for the Ethernet
1000BASE-X PCS/PMA or SGMII core, when generated to the SGMII standard and
MAC mode, can be used to interface the two cores.

• If both cores have been generated with the optional management interface, the MDIO
port can be connected up to that of the Tri-Speed Ethernet MAC core, allowing the
MAC to access the embedded configuration and status registers of the Ethernet
1000BASE-X PCS/PMA or SGMII core.

• Because of the embedded Receiver Elastic Buffer in the GTP transceiver, the entire
GMII is synchronous to a single clock domain. Therefore userclk2 is used as the
125 MHz reference clock for both cores, and the transmitter and receiver logic of the
Tri-Mode Ethernet MAC core now operate in the same clock domain.

Figure 16-15 illustrates the Tri-Mode Ethernet MAC core generated with the optional clock
enable circuitry. This is the most efficient way to connect the two cores together in terms of
clock resource usage and so is recommended. See the Tri-Mode Ethernet MAC User Guide for
more information.

http://www.xilinx.com

326 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 16: Interfacing to Other Cores

X-Ref Target - Figure 16-15

Figure 16-15: Legacy Tri-Speed Ethernet MAC Extended to Use an SGMII in a Virtex-5 LXT/SXT Device

Tri-Speed

Ethernet

MAC

 LogiCORE

phyemacrxd[7:0]

phyemacrxdv

phyemacrxer

emacphytxd7:0]

emacphytxen

emacphytxer

emacphymclkout

phyemacmdin

emacphymdout

emacphymdtri

Ethernet

1000BASE-X

PCS/PMA

or SGMII

LogiCORE

gmii_rxd[7:0]

gmii_rx_dv

gmii_rx_er

gmii_txd[7:0]

gmii_tx_en

gmii_tx_er

mdc

mdio_in

mdio_out

mdio_trino

connection

userclk2

RocketIO I/Fgmii_rxd_out[7:0]

gmii_rx_dv_out

gmii_rx_er_out

gmii_txd_in[7:0]

gmii_tx_en_in

gmii_tx_er_in

gmii_rxd_in[7:0]

gmii_rx_dv_in

gmii_rx_er_in

gmii_txd_out[7:0]

gmii_tx_en_out

gmii_tx_er_out

clk125m

SGMII Adaptation

module

sgmii_clk_en

speed_is_10_100

speed_is_100

speedis10100

speedis100

rxgmiimiiclk

txgmiimiiclk

corehassgmii

VCC

clientemacrxenable

clientemactxenable

sgmii_clk_rNC

Virtex-5
GTP

RocketIO

CLKIN

TXUSRCLK0

TXUSRCLK20

userclk2

(125 MHz)

userclk

BUFG

REFCLKOUT

component_name_block
(Block Level from example design)

clkin
(125MHz)

IBUFGDS

IPAD

brefclkp

IPAD

brefclkn

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 327
UG155 March 1, 2011

Integration of the Tri-Mode Ethernet MAC for Tri-speed SGMII Operation

Virtex-5 FXT and TXT Devices

Figure 16-16 illustrates the connections and clock management logic required to interface
the Ethernet 1000BASE-X PCS/PMA or SGMII core (when used in SGMII Configuration
and MAC mode with the Virtex-5 FPGA GTX) to the Tri-Mode Ethernet MAC core
(TEMAC core v4.5 and older).

The following conditions apply.

• The SGMII Adaptation module, as provided in the example design for the Ethernet
1000BASE-X PCS/PMA or SGMII core, when generated to the SGMII standard and
MAC mode, can be used to interface the two cores.

• If both cores have been generated with the optional management interface, the MDIO
port can be connected up to that of the Tri-Speed Ethernet MAC core, allowing the
MAC to access the embedded configuration and status registers of the Ethernet
1000BASE-X PCS/PMA or SGMII core.

• Due to the Receiver Elastic Buffer, the entire GMII (transmitter and receiver paths) is
synchronous to a single clock domain. Therefore the txcoreclk and rxcoreclk
inputs of the Tri-Speed Ethernet MAC core can always be driven from the same clock
source. The entire design is synchronous to the 125 MHz reference clock derived from
the CLK2X180 output of the DCM.

Figure 16-16 illustrates the Tri-Mode Ethernet MAC core generated with the optional clock
enable circuitry. This is the most efficient way to connect the two cores together in terms of
clock resource usage and so is recommended. See the Tri-Mode Ethernet MAC User Guide for
more information.

http://www.xilinx.com

328 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 16: Interfacing to Other Cores

X-Ref Target - Figure 16-16

Figure 16-16: Legacy Tri-Speed Ethernet MAC Extended to Use an SGMII in a Virtex-5 FXT and TXT Device

Tri-Speed

Ethernet

MAC

 LogiCORE

phyemacrxd[7:0]

phyemacrxdv

phyemacrxer

emacphytxd7:0]

emacphytxen

emacphytxer

emacphymclkout

phyemacmdin

emacphymdout

emacphymdtri

Ethernet

1000BASE-X

PCS/PMA

or SGMII

LogiCORE

gmii_rxd[7:0]

gmii_rx_dv

gmii_rx_er

gmii_txd[7:0]

gmii_tx_en

gmii_tx_er

mdc

mdio_in

mdio_out

mdio_trino

connection

userclk2

RocketIO I/Fgmii_rxd_out[7:0]

gmii_rx_dv_out

gmii_rx_er_out

gmii_txd_in[7:0]

gmii_tx_en_in

gmii_tx_er_in

gmii_rxd_in[7:0]

gmii_rx_dv_in

gmii_rx_er_in

gmii_txd_out[7:0]

gmii_tx_en_out

gmii_tx_er_out

clk125m

SGMII Adaptation

module

sgmii_clk_en

speed_is_10_100

speed_is_100

speedis10100

speedis100

rxgmiimiiclk

txgmiimiiclk

corehassgmii

VCC

clientemacrxenable

clientemactxenable

sgmii_clk_rNC

Virtex-5

GTX
RocketIO

CLKIN

TXUSRCLK0

TXUSRCLK20

userclk

REFCLKOUT

component_name_block

(Block Level from example design)

clkin

(125MHz)

IBUFGDS

IPAD

brefclkp

IPAD

brefclkn

userclk2 (125MHz)

DCM

CLKIN CLK0

FB

BUFG

CLKDV

BUFG
userclk (62.5MHz)

BUFG

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 329
UG155 March 1, 2011

Integration of the Tri-Mode Ethernet MAC for Tri-speed SGMII Operation

Virtex-6 Devices

Figure 16-17 illustrates the connections and clock management logic required to interface
the Ethernet 1000BASE-X PCS/PMA or SGMII core (when used in SGMII mode with the
Virtex-6 FPGA GTX) to the Tri-Mode Ethernet MAC core (TEMAC core v4.5 and older).

The following conditions apply.

• The SGMII Adaptation module, as provided in the example design for the Ethernet
1000BASE-X PCS/PMA or SGMII core, can when generated to the SGMII standard
and MAC mode, can be used to interface the two cores.

• If both cores have been generated with the optional management interface, the MDIO
port can be connected up to that of the Tri-Speed Ethernet MAC core, allowing the
MAC to access the embedded configuration and status registers of the Ethernet
1000BASE-X PCS/PMA or SGMII core.

• Because of the embedded Receiver Elastic Buffer, the entire GMII is synchronous to a
single clock domain. Therefore userclk2 is used as the 125 MHz reference clock for
both cores, and the transmitter and receiver logic of the Tri-Mode Ethernet MAC core
now operate in the same clock domain.

See also the Tri-Mode Ethernet MAC User Guide for more information.

http://www.xilinx.com

330 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 16: Interfacing to Other Cores

X-Ref Target - Figure 16-17

Figure 16-17: Legacy Tri-Speed Ethernet MAC Extended to use an SGMII in Virtex-6 Devices

Tri-Speed

Ethernet

MAC

 LogiCORE

phyemacrxd[7:0]

phyemacrxdv

phyemacrxer

emacphytxd7:0]

emacphytxen

emacphytxer

emacphymclkout

phyemacmdin

emacphymdout

emacphymdtri

Ethernet

1000BASE-X

PCS/PMA

or SGMII

LogiCORE

gmii_rxd[7:0]

gmii_rx_dv

gmii_rx_er

gmii_txd[7:0]

gmii_tx_en

gmii_tx_er

mdc

mdio_in

mdio_out

mdio_trino

connection

userclk2

Transceiver I/Fgmii_rxd_out[7:0]

gmii_rx_dv_out

gmii_rx_er_out

gmii_txd_in[7:0]

gmii_tx_en_in

gmii_tx_er_in

gmii_rxd_in[7:0]

gmii_rx_dv_in

gmii_rx_er_in

gmii_txd_out[7:0]

gmii_tx_en_out

gmii_tx_er_out

clk125m

SGMII Adaptation

module

sgmii_clk_en

speed_is_10_100

speed_is_100

speedis10100

speedis100

rxgmiimiiclk

txgmiimiiclk

corehassgmii

VCC

clientemacrxenable

clientemactxenable

sgmii_clk_rNC

Virtex-6
GTX

Transceiver

TXUSRCLK

TXUSRCLK2

userclk2

(125 MHz)

userclk

BUFG

component_name_block

(Block Level from example design)

mgtrefclk
(125MHz)

IBUFDS_GTXE1

IPAD

mgtrefclk_p

IPAD

mgtrefclk_n

GND

TXOUTCLK

MGTREFCLKTX[0]
MGTREFCLKRX[0]

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 331
UG155 March 1, 2011

Integration of the Tri-Mode Ethernet MAC for Tri-speed SGMII Operation

Spartan-6 LXT Devices

Figure 16-18 illustrates the connections and clock management logic required to interface
the Ethernet 1000BASE-X PCS/PMA or SGMII core (when used in SGMII configuration
and MAC mode with the Spartan®-6 FPGA GTP) to the Tri-Mode Ethernet MAC core (
TEMAC core v4.5 and older).

The following conditions apply.

• The SGMII Adaptation module, as provided in the example design for the Ethernet
1000BASE-X PCS/PMA or SGMII core, when generated to the SGMII standard and
MAC mode, can be used to interface the two cores.

• If both cores have been generated with the optional management interface, the MDIO
port can be connected up to that of the Tri-Speed Ethernet MAC core, allowing the
MAC to access the embedded configuration and status registers of the Ethernet
1000BASE-X PCS/PMA or SGMII core.

• Due to the embedded Receiver Elastic Buffer in the GTP transceiver, the entire GMII is
synchronous to a single clock domain. Therefore userclk2 is used as the 125 MHz
reference clock for both cores, and the transmitter and receiver logic of the Tri-Mode
Ethernet MAC core now operate in the same clock domain.

Figure 16-18 illustrates the Tri-Mode Ethernet MAC core generated with the optional clock
enable circuitry. This is the most efficient way to connect the two cores together in terms of
clock resource usage and so is recommended. See the Tri-Mode Ethernet MAC User Guide for
more information.

http://www.xilinx.com

332 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 16: Interfacing to Other Cores

X-Ref Target - Figure 16-18

Tri-Mode Ethernet MAC Core (TEMAC core v5.1, AXI)

Virtex-6 Devices

Figure 16-19 illustrates the connections and clock management logic required to interface
the Ethernet 1000BASE-X PCS/PMA or SGMII core (when used in SGMII mode with the
Virtex-6 FPGA GTX) to the Tri-Mode Ethernet MAC core (TEMAC core v5.1, AXI).

Features of this configuration include:

• Observe that the “block” level of the TEMAC is instantiated. This provides the MAC
with extra functionality that is not provided by the TEMAC core netlist When using
the MAC to connect the 1000BASE-X core, the “Internal” PHY Interface mode must

Figure 16-18: Legacy Tri-Speed Ethernet MAC Extended to Use an SGMII in a Spartan-6 LXT Device

Tri-Speed

Ethernet

MAC

 LogiCORE

phyemacrxd[7:0]

phyemacrxdv

phyemacrxer

emacphytxd7:0]

emacphytxen

emacphytxer

emacphymclkout

phyemacmdin

emacphymdout

emacphymdtri

Ethernet

1000BASE-X

PCS/PMA

or SGMII

LogiCORE

gmii_rxd[7:0]

gmii_rx_dv

gmii_rx_er

gmii_txd[7:0]

gmii_tx_en

gmii_tx_er

mdc

mdio_in

mdio_out

mdio_trino

connection

userclk2

Transceiver I/Fgmii_rxd_out[7:0]

gmii_rx_dv_out

gmii_rx_er_out

gmii_txd_in[7:0]

gmii_tx_en_in

gmii_tx_er_in

gmii_rxd_in[7:0]

gmii_rx_dv_in

gmii_rx_er_in

gmii_txd_out[7:0]

gmii_tx_en_out

gmii_tx_er_out

clk125m

SGMII Adaptation

module

sgmii_clk_en

speed_is_10_100

speed_is_100

speedis10100

speedis100

rxgmiimiiclk

txgmiimiiclk

corehassgmii

VCC

clientemacrxenable

clientemactxenable

sgmii_clk_rNC
CLKIN00

TXUSRCLK0

TXUSRCLK20

userclk2

(125 MHz)

userclk

BUFG

GTPCLKOUT0

component_name_block

(Block Level from example design)

clkin

(125MHz)

IBUFDS

IPAD

brefclkp

IPAD

brefclkn

Spartan-6
Transceiver

GTP

BUFIO2

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 333
UG155 March 1, 2011

Integration of the Tri-Mode Ethernet MAC for Tri-speed SGMII Operation

beselected from the TEMAC GUI prior to core generation. Please refer to TEMAC
documentation.

• The SGMII Adaptation module, as provided in the example design for the Ethernet
1000BASE-X PCS/PMA or SGMII core, when generated to the SGMII standard and
MAC mode, can be used to interface the two cores.

• If both cores have been generated with the optional management interface, the MDIO
port can be connected up to that of the Tri-Speed Ethernet MAC core, allowing the
MAC to access the embedded configuration and status registers of the Ethernet
1000BASE-X PCS/PMA or SGMII core.

• Because of the Receiver Elastic Buffer, the entire GMII (transmitter and receiver paths)
is synchronous to a single clock domain. Therefore, userclk2 is used as the 125 MHz
reference clock for both cores, and the transmitter and receiver logic of the Tri-Speed
Ethernet MAC core now operate in the same clock domain.

Spartan-6 Devices

Figure 16-20 illustrates the connections and clock management logic required to interface
the Ethernet 1000BASE-X PCS/PMA or SGMII core (when used in SGMII mode with the
Spartan®-6 FPGA GTP) to the Tri-Mode Ethernet MAC core (TEMAC core v5.1, AXI).

Features of this configuration include:

• Observe that the “block” level of the TEMAC is instantiated. This provides the MAC
with extra functionality that is not provided by the TEMAC core netlist When using
the MAC to connect the 1000BASE-X core, the “Internal” PHY Interface mode must be
selected from the TEMAC GUI prior to core generation. Please refer to TEMAC
documentation.

X-Ref Target - Figure 16-19

Figure 16-19: AXI Tri-Speed Ethernet MAC Extended to use an SGMII in Virtex-6 Devices

Ethernet

1000BASE-X

PCS/PMA

or SGMII

LogiCORE

gmii_rxd[7:0]

gmii_rx_dv

gmii_rx_er

gmii_txd[7:0]

gmii_tx_en

gmii_tx_er

mdc

mdio_in

mdio_out

mdio_trino

connection

userclk2

Transceiver I/Fgmii_rxd_out[7:0]

gmii_rx_dv_out

gmii_rx_er_out

gmii_txd_in[7:0]

gmii_tx_en_in

gmii_tx_er_in

gmii_rxd_in[7:0]

gmii_rx_dv_in

gmii_rx_er_in

gmii_txd_out[7:0]

gmii_tx_en_out

gmii_tx_er_out

clk125m

SGMII Adaptation

module

sgmii_clk_en

speed_is_10_100

speed_is_100

sgmii_clk_rNC

Virtex-6
GTX

Transceiver

TXUSRCLK

TXUSRCLK2

userclk2

(125 MHz)

userclk

BUFG

mgtrefclk
(125MHz)

IBUFDS_GTXE1

IPAD

mgtrefclk_p

IPAD

mgtrefclk_n

GND

TXOUTCLK

MGTREFCLKTX[0]
MGTREFCLKRX[0]

component_name_block

(Block Level from Ethernet 1000BASE-X PCS/PMA LogiCORE)

gmii_txd7:0]

gtx_clk

Statistics Vectors
Interface

 TEMAC LogiCore

Statistics
Vector Decode

AXI4-Lite
to IPIF

component_name_block

(Block Level from Tri-Mode Ethernet MAC LogiCORE)

gmii_tx_en

gmii_tx_er

gmii_rxd7:0]

gmii_rx_dv

gmii_rx_er

MAC
AXI4-Stream

I/F

mdc

mdio_tri

mdio_in

mdio_out

speedis100

clk_enable

speedis10100

http://www.xilinx.com

334 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 16: Interfacing to Other Cores

• The SGMII Adaptation module, as provided in the example design for the Ethernet
1000BASE-X PCS/PMA or SGMII core when generated to the SGMII standard and
MAC mode, can be used to interface the two cores.

• If both cores have been generated with the optional management interface, the MDIO
port can be connected up to that of the Tri-Speed Ethernet MAC core, allowing the
MAC to access the embedded configuration and status registers of the Ethernet
1000BASE-X PCS/PMA or SGMII core.

• Due to the Receiver Elastic Buffer, the entire GMII (transmitter and receiver paths) is
synchronous to a single clock domain. Therefore, userclk2 is used as the 125 MHz
reference clock for both cores, and the transmitter and receiver logic of the Tri-Speed
Ethernet MAC core now operate in the same clock domain.

Virtex-7 Devices

Figure 16-21 illustrates the connections and clock management logic required to interface
the Ethernet 1000BASE-X PCS/PMA or SGMII core (when used in SGMII Configuration
and MAC mode with the 7 Series FPGA Transceiver) to the Tri-Mode Ethernet MAC core
(TEMAC core v5.1, AXI).

Features of this configuration include:

• Observe that the “block” level of the TEMAC is instantiated. This provides the MAC
with extra functionality that is not provided by the TEMAC core netlist When using
the MAC to connect the 1000BASE-X core, the “Internal” PHY Interface mode must be
selected from the TEMAC GUI prior to core generation. Please refer to TEMAC
documentation.

X-Ref Target - Figure 16-20

Figure 16-20: Tri-Speed Ethernet MAC v5.1 Extended to use an SGMII in Spartan-6 Devices

Ethernet

1000BASE-X

PCS/PMA

or SGMII

LogiCORE

gmii_rxd[7:0]

gmii_rx_dv

gmii_rx_er

gmii_txd[7:0]

gmii_tx_en

gmii_tx_er

mdc

mdio_in

mdio_out

mdio_trino

connection

userclk2

Transceiver I/Fgmii_rxd_out[7:0]

gmii_rx_dv_out

gmii_rx_er_out

gmii_txd_in[7:0]

gmii_tx_en_in

gmii_tx_er_in

gmii_rxd_in[7:0]

gmii_rx_dv_in

gmii_rx_er_in

gmii_txd_out[7:0]

gmii_tx_en_out

gmii_tx_er_out

clk125m

SGMII Adaptation

module

sgmii_clk_en

speed_is_10_100

speed_is_100

sgmii_clk_rNC
CLKIN00

TXUSRCLK0

TXUSRCLK20

userclk2

(125 MHz)

userclk

BUFG

GTPCLKOUT0

clkin

(125MHz)

IBUFDS

IPAD

brefclkp

IPAD

brefclkn

Spartan-6
Transceiver

GTP

BUFIO2

component_name_block

(Block Level from Ethernet 1000BASE-X PCS/PMA LogiCORE)

gmii_txd7:0]

gtx_clk

Statistics Vectors
Interface

 TEMAC LogiCore

Statistics
Vector Decode

AXI4-Lite
to IPIF

component_name_block

(Block Level from Tri-Mode Ethernet MAC LogiCORE)

gmii_tx_en

gmii_tx_er

gmii_rxd7:0]

gmii_rx_dv

gmii_rx_er

MAC
AXI4-Stream

I/F

mdc

mdio_tri

mdio_in

mdio_out

speedis100

clk_enable

speedis10100

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 335
UG155 March 1, 2011

Integration of the Tri-Mode Ethernet MAC for Tri-speed SGMII Operation

• The SGMII Adaptation module, as provided in the example design for the Ethernet
1000BASE-X PCS/PMA or SGMII core when generated to the SGMII standard and
MAC mode, can be used to interface the two cores.

• If both cores have been generated with the optional management interface, the MDIO
port can be connected up to that of the Tri-Speed Ethernet MAC core, allowing the
MAC to access the embedded configuration and status registers of the Ethernet
1000BASE-X PCS/PMA or SGMII core.

• Because of the Receiver Elastic Buffer, the entire GMII (transmitter and receiver paths)
is synchronous to a single clock domain. Therefore, userclk2 is used as the 125 MHz
reference clock for both cores, and the transmitter and receiver logic of the Tri-Speed
Ethernet MAC core now operate in the same clock domain.

Kintex-7 Devices

Figure 16-23 illustrates the connections and clock management logic required to interface
the Ethernet 1000BASE-X PCS/PMA or SGMII core (when used in SGMII Configuration
and MAC mode with the 7 Series FPGA Transceiver) to the Tri-Mode Ethernet MAC core
(TEMAC core v5.1, AXI).

X-Ref Target - Figure 16-21

Figure 16-21: Tri-Speed Ethernet MAC v5.1 Extended to use an SGMII in Virtex-7 Devices

Ethernet

1000BASE-X

PCS/PMA

or SGMII

LogiCORE

gmii_rxd[7:0]

gmii_rx_dv

gmii_rx_er

gmii_txd[7:0]

gmii_tx_en

gmii_tx_er

mdc

mdio_in

mdio_out

mdio_trino

connection

userclk2

Transceiver I/Fgmii_rxd_out[7:0]

gmii_rx_dv_out

gmii_rx_er_out

gmii_txd_in[7:0]

gmii_tx_en_in

gmii_tx_er_in

gmii_rxd_in[7:0]

gmii_rx_dv_in

gmii_rx_er_in

gmii_txd_out[7:0]

gmii_tx_en_out

gmii_tx_er_out

clk125m

SGMII Adaptation

module

sgmii_clk_en

speed_is_10_100

speed_is_100

sgmii_clk_rNC

Virtex-7
GTX

Transceiver

TXUSRCLK

TXUSRCLK2

userclk2

(125 MHz)

userclk

 gtrefclk
(125MHz)

IBUFDS_GTE2

IPAD

gtrefclk_p

IPAD

gtrefclk_n

TXOUTCLK

GTREFCLK0

(125MHz)

MMCME2_ADV

CLKOUT0

CLKOUT1

CLKIN1

CLKFBOUTCLKFBIN

BUFG

BUFG
(62.5MHz)

BUFG

gmii_txd7:0]

gtx_clk

Statistics Vectors
Interface

 TEMAC LogiCore

Statistics
Vector Decode

AXI4-Lite
to IPIF

component_name_block

(Block Level from Tri-Mode Ethernet MAC LogiCORE)

gmii_tx_en

gmii_tx_er

gmii_rxd7:0]

gmii_rx_dv

gmii_rx_er

MAC
AXI4-Stream

I/F

mdc

mdio_tri

mdio_in

mdio_out

speedis100

clk_enable

speedis10100

component_name_block

(Block Level from Ethernet 1000BASE-X PCS/PMA LogiCORE)

http://www.xilinx.com

336 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 16: Interfacing to Other Cores

Features of this configuration include:

• Observe that the “block” level of the TEMAC is instantiated. This provides the MAC
with extra functionality that is not provided by the TEMAC core netlist When using
the MAC to connect the 1000BASE-X core, the “Internal” PHY Interface mode must be
selected from the TEMAC GUI prior to core generation. Please refer to TEMAC
documentation.

• The SGMII Adaptation module, as provided in the example design for the Ethernet
1000BASE-X PCS/PMA or SGMII core when generated to the SGMII standard and
MAC mode, can be used to interface the two cores.

• If both cores have been generated with the optional management interface, the MDIO
port can be connected up to that of the Tri-Speed Ethernet MAC core, allowing the
MAC to access the embedded configuration and status registers of the Ethernet
1000BASE-X PCS/PMA or SGMII core.

• Because of the Receiver Elastic Buffer, the entire GMII (transmitter and receiver paths)
is synchronous to a single clock domain. Therefore, userclk2 is used as the 125 MHz
reference clock for both cores, and the transmitter and receiver logic of the Tri-Speed
Ethernet MAC core now operate in the same clock domain.

X-Ref Target - Figure 16-22

Figure 16-22: AXI Tri-Speed Ethernet MAC Extended to use an SGMII in Kintex-7 Devices

Ethernet

1000BASE-X

PCS/PMA

or SGMII

LogiCORE

gmii_rxd[7:0]

gmii_rx_dv

gmii_rx_er

gmii_txd[7:0]

gmii_tx_en

gmii_tx_er

mdc

mdio_in

mdio_out

mdio_trino

connection

userclk2

Transceiver I/Fgmii_rxd_out[7:0]

gmii_rx_dv_out

gmii_rx_er_out

gmii_txd_in[7:0]

gmii_tx_en_in

gmii_tx_er_in

gmii_rxd_in[7:0]

gmii_rx_dv_in

gmii_rx_er_in

gmii_txd_out[7:0]

gmii_tx_en_out

gmii_tx_er_out

clk125m

SGMII Adaptation

module

sgmii_clk_en

speed_is_10_100

speed_is_100

sgmii_clk_rNC

Virtex-7
GTX

Transceiver

TXUSRCLK

TXUSRCLK2

userclk2

(125 MHz)

userclk

 gtrefclk
(125MHz)

IBUFDS_GTE2

IPAD

gtrefclk_p

IPAD

gtrefclk_n

TXOUTCLK

GTREFCLK0

(125MHz)

MMCME2_ADV

CLKOUT0

CLKOUT1

CLKIN1

CLKFBOUTCLKFBIN

BUFG

BUFG
(62.5MHz)

BUFG

gmii_txd7:0]

gtx_clk

Statistics Vectors
Interface

 TEMAC LogiCore

Statistics
Vector Decode

AXI4-Lite
to IPIF

component_name_block

(Block Level from Tri-Mode Ethernet MAC LogiCORE)

gmii_tx_en

gmii_tx_er

gmii_rxd7:0]

gmii_rx_dv

gmii_rx_er

MAC
AXI4-Stream

I/F

mdc

mdio_tri

mdio_in

mdio_out

speedis100

clk_enable

speedis10100

component_name_block

(Block Level from Ethernet 1000BASE-X PCS/PMA LogiCORE)

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 337
UG155 March 1, 2011

Integration of the Tri-Mode Ethernet MAC for Tri-speed SGMII Operation

Integration of the Tri-Mode Ethernet MAC Using Asynchronous
Oversampling over Virtex-6 LVDS

Figure 16-23 illustrates the connections and clock management logic required to interface
the Ethernet 1000BASE-X PCS/PMA or SGMII core (when used in SGMII Asynchronous
Oversampling over Virtex-6 LVDS) to the Tri-Mode Ethernet MAC core.

Note that the IO Bank Level of the Example Design should be taken from the example
design and instantiated for connection to the Tri-Mode Ethernet MAC. This IO Bank
module may contain multiple SGMII port instantiations (only one SGMII port is
illustrated). Connections from a unique Tri-Mode Ethernet MAC core to each unique
SGMII port are identical and are as shown in Figure 16-23.

The following conditions apply to each connected Tri-Mode Ethernet MAC and SGMII
port pair:

• The SGMII Adaptation module, as provided in the example design for the Ethernet
1000BASE-X PCS/PMA or SGMII core when generated to the SGMII standard, can be
used to interface the two cores.

• If both cores have been generated with the optional management interface, the MDIO
port can be connected up to that of the Tri-Speed Ethernet MAC core, allowing the
MAC to access the embedded configuration and status registers of the Ethernet
1000BASE-X PCS/PMA or SGMII core.

• Due to the embedded Receiver Elastic Buffer in the LVDS transceiver, the entire GMII
is synchronous to a single clock domain. Therefore clk125m is used as the 125 MHz
reference clock for both cores, and the transmitter and receiver logic of the Tri-Mode
Ethernet MAC core now operate in the same clock domain.

Figure 16-23 illustrates a Tri-Mode Ethernet MAC core generated with the optional clock
enable circuitry. This is the most efficient way to connect the two cores together in terms of
clock resource usage and so is recommended. See the Tri-Mode Ethernet MAC User Guide for
more information.

http://www.xilinx.com

338 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 16: Interfacing to Other Cores

X-Ref Target - Figure 16-23

Figure 16-23: Tri-Speed Ethernet MAC Extended to Use SGMII Using Asynchronous Oversampling over
Virtex-6 LVDS

Tri-Speed

Ethernet

MAC

 LogiCORE

phyemacrxd[7:0]

phyemacrxdv

phyemacrxer

emacphytxd7:0]

emacphytxen

emacphytxer

emacphymclkout

phyemacmdin

emacphymdout

emacphymdtri

Ethernet

1000BASE-X

PCS/PMA

or SGMII

LogiCORE

gmii_rxd[7:0]

gmii_rx_dv

gmii_rx_er

gmii_txd[7:0]

gmii_tx_en

gmii_tx_er

mdc

mdio_in

mdio_out

mdio_trino

connection

userclk2

Transceiver I/Fgmii_rxd_out[7:0]

gmii_rx_dv_out

gmii_rx_er_out

gmii_txd_in[7:0]

gmii_tx_en_in

gmii_tx_er_in

gmii_rxd_in[7:0]

gmii_rx_dv_in

gmii_rx_er_in

gmii_txd_out[7:0]

gmii_tx_en_out

gmii_tx_er_out

clk125m

SGMII Adaptation

module

sgmii_clk_en

speed_is_10_100

speed_is_100

speedis10100

speedis100

rxgmiimiiclk

txgmiimiiclk

corehassgmii

VCC

clientemacrxenable

clientemactxenable

sgmii_clk_r/fNC

Virtex-6
LVDS

Transceiver

clk125m

userclk

component_name_block

(Block Level from example design)

MMCM
clock

alignment
state

machine

clock buffers

various clock
frequencies
and phases

OSERDES

ISERDES

I/O Bank Clocking

clk625m_tx_bufio

clk125m_tx_bufr

clk625m_rx_bufio_0

clk625m_rx_bufio_90

clk625m

clk312p5m

clk125m

component_name_iobank
(IO Bank Level from example design)

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 339
UG155 March 1, 2011

Chapter 17

Special Design Considerations

This chapter describes the unique design considerations associated with implementing the
Ethernet 1000BASE-X PCS/PMA or SGMII core.

Power Management
No power management considerations are recommended for the Ethernet 1000BASE-X
PCS/PMA or SGMII core when using it with the TBI. When using the Ethernet 1000BASE-
X PCS/PMA or SGMII core with a Virtex®-5, Virtex-6, Virtex-7, Kintex®-7 or Spartan®-6
device, the transceiver may be placed in a low-power state in either of the following ways:

• Writing to the PCS Configuration Register 0 (if using the core with the optional
Management Interface). The low-power state can only be removed by issuing the core
with a reset. This reset can be achieved either by writing to the software reset bit in the
PCS Configuration Register 0, or by driving the core reset port.

• Asserting the Power Down bit in the configuration_vector (if using the core
without the optional Management Interface). The low-power state can only be
removed by issuing the core with a reset by driving the reset port of the core.

Startup Sequencing
IEEE 802.3-2008 clause 22.2.4.1.6 states that by default, a PHY should power-up in an
isolate state (electrically isolated from the GMII).

• If you are using the core with the optional Management Interface, it is necessary to
write to the PCS Configuration Register 0 to take the core out of the isolate state.

• If using the core without the optional Management interface, it is the responsibility of
the client to ensure that the isolate input signal in the configuration_vector is
asserted at power-on.

http://www.xilinx.com

340 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 17: Special Design Considerations

Loopback
This section details the implementation of the loopback feature. Loopback mode is enabled
or disabled by either the MDIO Management Interface, or by the Optional Configuration
Vector.

Core with the TBI
There is no physical loopback path in the core. Placing the core into loopback has the effect
of asserting logic 1 on the ewrap signal of the TBI (see). This instructs the attached PMA
SERDES device to enter loopback mode as illustrated in Figure 17-1.
X-Ref Target - Figure 17-1

Core with Transceiver
The loopback path is implemented in the core as illustrated in Figure 17-2. When placed
into loopback, the data is routed from the transmitter path to the receiver path at the last
possible point in the core. This point is immediately before the device-specific transceiver
(or LVDS transceiver) interface. When placed in loopback, the core creates a constant
stream of Idle code groups that are transmitted through the MGT or GTP transceiver in
accordance with the IEEE 802.3-2008 specification.

Earlier versions (before v5.0) of the core implemented loopback differently. The serial
loopback feature of the device-specific transceiver was used by driving the
LOOPBACK[1:0] port of the device-specific (MGT or GTP) transceiver. This is no longer
the case, and the loopback[1:0] output port of the core is now permanently set to logic
“00.” However, for debugging purposes, the LOOPBACK[1:0] input port of the device-
specific transceiver may be directly driven by the user logic to place it in either parallel or
serial loopback mode.

Figure 17-1: Loopback Implementation Using the TBI

Ethernet 1000BASE-X
PCS/PMA or SGMII

Core

1000BASE-X PMA
SERDES

Tx

Rx

TBI

FPGA

Loopback occurs in
external SERDES

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 341
UG155 March 1, 2011

Loopback

X-Ref Target - Figure 17-2

Figure 17-2: Loopback Implementation When Using the Core with Device-Specific
Transceivers

Ethernet 1000BASE-X
PCS/PMA or SGMII Core

Device
Specific

Transceiver

Tx

Rx

FPGA

Loopback occurs in core

PCS Tx Engine

PCS Rx Engine

Idle Stream

loopback control

http://www.xilinx.com

342 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 17: Special Design Considerations

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 343
UG155 March 1, 2011

Chapter 18

Implementing the Design

This chapter describes how to simulate and implement your design containing the
Ethernet 1000BASE-X PCS/PMA or SGMII core.

Pre-implementation Simulation
A functional model of the Ethernet 1000BASE-X PCS/PMA or SGMII core netlist is
generated by the CORE Generator™ software to allow simulation of the core in the design
phase of the project.

Using the Simulation Model
For information about setting up your simulator to use the pre-implemented model, please
consult the Xilinx Synthesis and Verification Design Guide, included in your Xilinx software
installation.

The model is provided in the CORE Generator software project directory.

VHDL Design Entry

<component_name>.vhd

Verilog Design Entry

<component_name>.v

This model can be compiled along with your code to simulate the overall system.

Synthesis

XST - VHDL
In the CORE Generator software project directory, there is a <component_name>.vho file
that is a component and instantiation template for the core. Use this to help instance the
Ethernet 1000BASE-X PCS/PMA or SGMII core into your VHDL source.

After the entire design is complete, create the following:

• An XST project file top_level_module_name.prj listing all the user source code
files

• An XST script file top_level_module_name.scr containing your required
synthesis options.

To synthesize the design, run

$ xst -ifn top_level_module_name.scr

http://www.xilinx.com

344 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 18: Implementing the Design

See the XST User Guide for more information on creating project and synthesis script files,
and running the xst program.

XST - Verilog
There is a module declaration for the Ethernet 1000BASE-X PCS/PMA or SGMII core in the
CORE Generator software project directory:

<component_name>/implement/<component_name>_mod.v

Use this module to help instance the Ethernet 1000BASE-X PCS/PMA or SGMII core into
your Verilog source.

After the entire design is complete, do the following:

• Generate an XST project file top_level_module_name.prj listing all user source
code files.

Make sure to include the following as the first two files in the project list.

%XILINX%/verilog/src/iSE/unisim_comp.v

and

<component_name>/implement/component_name_mod.v

• Generate an XST script file top_level_module_name.scr containing your
required synthesis options.

To synthesize the design, run:

$ xst -ifn top_level_module_name.scr

See the XST User Guide for more information on creating project and synthesis script files,
and running the xst program.

Implementation

Generating the Xilinx Netlist
To generate the Xilinx netlist, the ngdbuild tool is used to translate and merge the
individual design netlists into a single design database—the NGD file. Also merged at this
stage is the UCF for the design. An example of the ngdbuild command is:

$ ngdbuild -sd path_to_core_netlist -sd path_to_user_synth_results \

-uc top_level_module_name.ucf top_level_module_name

Mapping the Design
To map the logic gates of the user design netlist into the CLBs and IOBs of the FPGA, run
the map command. The map command writes out a physical design to an NCD file. An
example of the map command is:

$ map -o top_level_module_name_map.ncd top_level_module_name.ngd \

top_level_module_name.pcf

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 345
UG155 March 1, 2011

Post-Implementation Simulation

Placing and Routing the Design
The par command must be executed to place and route your design logic components
(mapped physical logic cells) within an NCD file, in accordance with the layout and timing
requirements specified within the PCF file. The par command outputs the placed and
routed physical design to an NCD file.

An example of the par command is:

$ par top_level_module_name_map.ncd top_level_module_name.ncd \

top_level_module_name.pcf

Static Timing Analysis
The trce command must be executed to evaluate timing closure on a design and create a
Timing Report file (TWR) that is derived from static timing analysis of the Physical Design
file (NCD). The analysis is typically based on constraints included in the optional PCF file.

An example of the trce command is:

$ trce -o top_level_module_name.twr top_level_module_name.ncd \

top_level_module_name.pcf

Generating a Bitstream
The bitgen command must be executed to create the configuration bitstream (BIT) file
based on the contents of a physical implementation file (NCD). The BIT file defines the
behavior of the programmed FPGA.

An example of the bitgen command is:

$ bitgen -w top_level_module_name.ncd

Post-Implementation Simulation
The purpose of post-implementation simulation is to verify that the design as
implemented in the FPGA works as expected.

Generating a Simulation Model
To generate a chip-level simulation netlist for your design, the netgen command must be
run.

VHDL

$ netgen -sim -ofmt vhdl -ngm top_level_module_name_map.ngm \

-tm netlist top_level_module_name.ncd \

top_level_module_name_postimp.vhd

Verilog

$ netgen -sim -ofmt verilog -ngm top_level_module_name_map.ngm \

-tm netlist top_level_module_name.ncd \

top_level_module_name_postimp.v

http://www.xilinx.com

346 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Chapter 18: Implementing the Design

Using the Model
For information about setting up your simulator to use the pre-implemented model, please
consult the Xilinx Synthesis and Verification Design Guide, included in your Xilinx software
installation.

In addition, use the following guidelines to determine the simulator type required:

Designs incorporating a device-specific transceiver require a Verilog LRM-IEEE 1364-2005
encryption-compliant simulator. Currently supported simulators are:

• Mentor Graphics ModelSim v6.6d

• Cadence Incisive Enterprise Simulator (IES) v10.2

• Synopsys VCS and VCS MX 2010.06

For VHDL simulation, a mixed HDL license is required.

Other Implementation Information
For more information about using the Xilinx implementation tool flow, including
command line switches and options, consult the software manuals provided with the
Xilinx ISE® software.

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 347
UG155 March 1, 2011

Appendix A

Core Verification, Compliance, and
Interoperability

Verification
The Ethernet 1000BASE-X PCS/PMA or SGMII core has been verified with extensive
simulation and hardware verification.

Simulation
A highly parameterizable transaction based test bench was used to test the core. Testing
included the following:

• Register Access

• Loss of Synchronization

• Auto-Negotiation and error handling

• Frame Transmission and error handling

• Frame Reception and error handling

• Clock Compensation in the Elastic Buffers

Hardware Verification
The core has been tested in a variety of hardware test platforms at Xilinx to represent
different parameterizations, including the following:

• The core with device-specific transceiver and performing the 1000BASE-X standard
was tested with the Tri-Mode Ethernet MAC core from Xilinx.

This follows the architecture shown in Figure 16-3. A test platform was built around
these cores, including a back-end FIFO capable of performing a simple ping function,
and a test pattern generator. Software running on the embedded PowerPC® processor
was used to provide access to all configuration and status registers. Version 3.0 of this
core was taken to the University of New Hampshire Inter operability Lab (UNH IOL)
where conformance and inter operability testing was performed.

• The core with device-specific transceiver (all supported families) and performing the
SGMII standard was tested with the Tri-speed Ethernet MAC core from Xilinx.

This was connected to an external PHY capable of performing 10BASE-T, 100BASE-T
and 1000BASE-T. The system was tested at all three speeds, following the architecture
shown in Figure 16-8 and included the PowerPC processor based test platform.

http://www.xilinx.com

348 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Appendix A: Core Verification, Compliance, and Interoperability

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 349
UG155 March 1, 2011

Appendix B

Core Latency

Core Latency
The standalone core does not meet all the latency requirements specified in IEEE 802.3-
2008 because of the latency of the Elastic Buffers in both TBI and device-specific transceiver
versions. However, the core may be used for backplane and other applications where strict
adherence to the IEEE latency specification is not required.

Where strict adherence to the IEEE 802.3-2008 specification is required, the core may be
used with an Ethernet MAC core that is within the IEEE specified latency for a MAC
sublayer. For example, when the core is connected to the Xilinx Tri-Mode Ethernet MAC
core, the system as a whole is compliant with the overall IEEE 802.3-2008 latency
specifications.

Latency for 1000BASE-X PCS with TBI
The following measurements are for the core only, and do not include any IOB registers or
the Transmitter Elastic Buffer added in the example design.

Transmit Path Latency

As measured from a data octet input into gmii_txd[7:0] of the transmitter side GMII
until that data appears on tx_code_group[9:0] on the TBI interface, the latency
through the core in the transmit direction is 5 clock periods of gtx_clk.

Receive Path Latency

Measured from a data octet input into the core on rx_code_group0[9:0] or
rx_code_group1[9:0] from the TBI interface (until that data appears on
gmii_rxd[7:0] of the receiver side GMII), the latency through the core in the receive
direction is equal to 16 clock periods of gtx_clk, plus an additional number of clock
cycles equal to the current value of the Receiver Elastic Buffer.

The Receiver Elastic Buffer is 32 words deep. The nominal occupancy will be at half-full,
thereby creating a nominal latency through the receiver side of the core equal to 16 + 16= 32
clock cycles of gtx_clk.

http://www.xilinx.com

350 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Appendix B: Core Latency

Latency for 1000BASE-X PCS and PMA Using a Transceiver
These measurements are for the core only–they do not include the latency through the
Virtex®-4 FPGA MGT, Virtex-5 FPGA GTP, Virtex-5 FPGA GTX RocketIO™ transceiver,
Virtex-6 FPGA GTX transceiver, Spartan®-6 FPGA GTP transceiver, Virtex-7 and Kintex®-
7 GTX transceiver, or the Transmitter Elastic Buffer added in the example design.

Transmit Path Latency

As measured from a data octet input into gmii_txd[7:0] of the transmitter side GMII
(until that data appears on txdata[7:0] on the MGT interface), the latency through the
core in the transmit direction is 4 clock periods of userclk2.

Receive Path Latency

As measured from a data octet input into the core on rxdata[7:0] from the MGT
interface (until that data appears on gmii_rxd[7:0] of the receiver side GMII), the
latency through the core in the receive direction is 6 clock periods of userclk2.

Latency for SGMII
When performing the SGMII standard, the core latency figures are identical to the Latency
for 1000BASE-X PCS and PMA using the MGT. Again these figures do not include the
latency through the MGT or any Elastic Buffers added in the example design.

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 351
UG155 March 1, 2011

Appendix C

1000BASE-X State Machines

This appendix is intended to serve as a reference for the basic operation of the
1000BASE-X IEEE 802.3-2008 clause 36 transmitter and receiver state machines.

Introduction
Table C-1 illustrates the Ordered Sets defined in IEEE 802.3-2008 clause 36. These code
group characters are inserted by the PCS Transmit Engine into the transmitted data stream,
encapsulating the Ethernet frames indicated via the GMII transmit signals.

The PCS Receive Engine performs the opposite function; it uses the Ordered Sets to detect
the Ethernet frames and from them creates the GMII receive signals.

Cross reference Table C-1 with the remainder of this Appendix. See IEEE 802.3-2008 clause
36 for further information on these Orders Sets.

Table C-1: Defined Ordered Sets

Code Ordered_Set No. of Code-Groups Encoding

/C/ Configuration Alternating /C1/ and /C2/

/C1/ Configuration 1 4 /K28.5/D21.5/Config_Reg1

/C2/ Configuration 2 4 /K28.5/D2.2/Config_Reg1

/I/ IDLE
Correcting /I1/,

Preserving /I2/

/I1/ IDLE_1 2 /K28.5/D5.6/

/I2/ IDLE_2 2 /K28.5/D16.2/

Encapsulation

/R/ Carrier_Extend 1 /K23.7/

/S/ Start_of_Packet 1 /K27.7/

/T/ End_of_Packet 1 /K29.7/

/V/ Error_Propagation 1 /K30.7/

1. Two data code-groups representing the Config_Reg value (contains Auto-Negotiation information)

http://www.xilinx.com

352 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Appendix C: 1000BASE-X State Machines

Start of Frame Encoding

The Even Transmission Case
Figure C-1 illustrates the translation of GMII encoding into the code-group stream
performed by the PCS Transmit Engine. This stream is transmitted out of the core, either
serially using the device-specific transceiver or in parallel across the TBI.

It is important to note that the encoding of Idle periods /I2/ is constructed from a couple
of code groups—the /K28.5/ character (considered the even position) and the /D16.2/
character (considered the odd position). In this example, the assertion of the gmii_tx_en
signal of the GMII occurs in the even position. In response, the state machines insert a Start
of Packet code group /S/ following the Idle (in the even position). This is inserted in place
of the first byte of the frame preamble field.
X-Ref Target - Figure C-1

Figure C-1: 1000BASE-X Transmit State Machine Operation (Even Case)

gmii_txd[7:0]

gmii_tx_en

gmii_tx_er

preamble

S
F

D
PCS Transmit Engine Encoding

preamble

S
F

Dtx_code_group I2 I2 I2 S

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 353
UG155 March 1, 2011

Start of Frame Encoding

Reception of the Even Case
Figure C-2 illustrates the reception of the in-bound code-group stream, received either
serially using the device-specific transceiver, or in parallel across the TBI, and translation
of this code-group stream into the receiver GMII. This is performed by the PCS Receive
Engine.

The Start of Packet code group /S/ is replaced with a preamble byte. This results in the
restoration of the full preamble field.
X-Ref Target - Figure C-2

Figure C-2: 1000BASE-X Reception State Machine Operation (Even Case)

gmii_rxd[7:0]

gmii_rx_dv

gmii_rx_er

preamble

S
F

D

preamble

S
F

Drx_code_group I2 I2 I2 S

PCS Receive Engine Decoding

http://www.xilinx.com

354 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Appendix C: 1000BASE-X State Machines

The Odd Transmission Case
Figure C-3 illustrates the translation of GMII encoding into the code-group stream
performed by the PCS Transmit Engine; this stream is transmitted out of the core, either
serially using the device-specific transceiver, or in parallel across the TBI.

In this example, the assertion of the gmii_tx_en signal of the GMII occurs in the odd
position; in response, the state machines are unable to immediately insert a Start-Of-Packet
code group /S/ as the Idle character must first be completed. The Start of Packet code
group /S/ is therefore inserted (in the even position) after completing the Idle. This results
in the /D16.2/ character of the Idle /I2/ sequence being inserted in place of the first byte
of the preamble field, and the Start-Of-Packet /S/ being inserted in place of the second
byte of preamble as illustrated.
X-Ref Target - Figure C-3

Figure C-3: 1000BASE-X Transmit State Machine Operation (Odd Case)

gmii_txd[7:0]

gmii_tx_en

gmii_tx_er

preamble

S
F

D

preamble

S
F

Dtx_code_group I2 I2 I2 S

PCS Transmit Engine Encoding

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 355
UG155 March 1, 2011

Start of Frame Encoding

Reception of the Odd Case
Figure C-4 illustrates the reception of the in-bound code-group stream, received either
serially using the device-specific transceiver, or in parallel across the TBI, and translation
of this code-group stream into the receiver GMII. This is performed by the PCS Receive
Engine.

The Start of Packet code group /S/ is again replaced with a preamble byte. However, the
first preamble byte of the original transmit GMII (see Figure C-3) frame (which was
replaced with the /D16.2/ character to complete the Idle sequence), has not been replaced.
This has resulted in a single byte of preamble loss across the system.

Preamble Shrinkage
As previously described, a single byte of preamble can be lost across the 1000BASE-X
system (the actual loss occurs in the 1000BASE-X PCS transmitter state machine).

• There is no specific statement for this preamble loss in the IEEE 802.3-2008
specification; the preamble loss falls out as a consequence of the state machines (see
figures 36-5 and 36-6 in the IEEE 802.3-2008 specification).

• IEEE 802.3ah-2004 does, however, specifically state in clause 65.1.3.2.1:

“NOTE 1 – The 1000BASE-X PCS transmit function replaces the first octet of preamble
with the /S/ code-group or it discards the first octet and replaces the second octet of
preamble with the /S/ code-group. This decision is based upon the even or odd
alignment of the PCS transmit state diagram (see Figure 36-5).“

X-Ref Target - Figure C-4

Figure C-4: 1000BASE-X Reception State Machine Operation (Odd Case)

gmii_rxd[7:0]

gmii_rx_dv

gmii_rx_er

preamble
S

F
D

preamble

S
F

Drx_code_group I2 I2 I2 S

PCS Receive Engine Decoding

http://www.xilinx.com

356 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Appendix C: 1000BASE-X State Machines

End of Frame Encoding

The Even Transmission Case
Figure C-5 illustrates the translation of GMII encoding into the code-group stream
performed by the PCS Transmit Engine. This stream is transmitted out of the core, either
serially using the device-specific transceiver or in parallel across the TBI.

In response to the deassertion of gmii_tx_en, an End of Packet code group /T/ is
immediately inserted. The even and odd alignment described in persists throughout the
Ethernet frame. If the /T/ character occurs in the even position (the frame contained an
even number of bytes starting from the /S/ character), then this is followed with a single
Carrier Extend code group /R/. This allows the /K28.5/ character of the following Idle
code group to be aligned to the even position.

Note: The first Idle to follow the frame termination sequence will be a /I1/ if the frame ended with
positive running disparity or a /I2/ if the frame ended with negative running disparity. This is illustrated
as the shaded code group.
X-Ref Target - Figure C-5

Figure C-5: 1000BASE-X Transmit State Machine Operation (Even Case)

gmii_txd[7:0]

gmii_tx_en

gmii_tx_er

FCS

FCS I2 I2 I2T R I1/I2tx_code_group

PCS Transmit Engine Encoding

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 357
UG155 March 1, 2011

End of Frame Encoding

Reception of the Even Case
Figure C-6 illustrates the reception of the in-bound code-group stream, received either
serially using the device-specific transceiver, or in parallel across the TBI, and translation
of this code-group stream into the receiver GMII. This is performed by the PCS Receive
Engine.
X-Ref Target - Figure C-6

Figure C-6: 1000BASE-X Reception State Machine Operation (Even Case)

gmii_rxd[7:0]

gmii_rx_dv

gmii_rx_er

FCS

FCS I2 I2 I2T R I1/I2rx_code_group

PCS Receive Engine Decoding

http://www.xilinx.com

358 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Appendix C: 1000BASE-X State Machines

The Odd Transmission Case
Figure C-7 illustrates the translation of GMII encoding into the code-group stream
performed by the PCS Transmit Engine; this stream is transmitted out of the core, either
serially using the device-specific transceiver, or in parallel across the TBI.

In response to the deassertion of gmii_tx_en, an End of Packet code group /T/ is
immediately inserted. The even and odd alignment described in persists throughout the
Ethernet frame. If the /T/ character occurs in the odd position (the frame contained an odd
number of bytes starting from the /S/ character), then this is followed with two Carrier
Extend code groups /R/. This allows the /K28.5/ character of the following Idle code
group to be aligned to the even position.

Note: The first Idle to follow the frame termination sequence will be a /I1/ if the frame ended with
positive running disparity or a /I2/ if the frame ended with negative running disparity. This is illustrated
as the shaded code group.
X-Ref Target - Figure C-7

Figure C-7: 1000BASE-X Transmit State Machine Operation (Even Case)

gmii_txd[7:0]

gmii_tx_en

gmii_tx_er

FCS

FCS I2 I2 I2T R I1/I2Rtx_code_group

PCS Transmit Engine Encoding

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 359
UG155 March 1, 2011

End of Frame Encoding

Reception of the Odd Case
Figure C-8 illustrates the reception of the in-bound code-group stream, received either
serially using the device-specific transceiver, or in parallel across the TBI, and translation
of this code-group stream into the receiver GMII. This is performed by the PCS Receive
Engine.

As defined in IEEE 802.3-2008 figure 36-7b, the combined /T/R/R/ sequence results in the
GMII encoding of Frame Extension. This occurs for a single clock cycle following the end
of frame reception; the gmii_rx_er signal is driven high and the frame extension code of
0x0F is driven onto gmii_rxd[7:0]. This occurs even in full-duplex mode.
X-Ref Target - Figure C-8

Figure C-8: 1000BASE-X Reception State Machine Operation (Odd Case)

gmii_rxd[7:0]

gmii_rx_dv

gmii_rx_er

FCS

rx_code_group FCS I2 I2 I2T R I1/I2R

0x
0F

PCS Receive Engine Decoding

http://www.xilinx.com

360 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Appendix C: 1000BASE-X State Machines

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 361
UG155 March 1, 2011

Appendix D

Rx Elastic Buffer Specifications

This appendix is intended to serve as a reference for the Rx Elastic Buffer sizes used in the
core and the related maximum frame sizes that can be used without causing a buffer
underflow or overflow error.

Throughout this appendix, all analyses are based on 100 ppm clock tolerances on both
sides of the elastic buffer (200 ppm total difference). This corresponds to the Ethernet clock
tolerance specification.

Introduction
The need for an Rx Elastic Buffer is illustrated in The Requirement for the FPGA Fabric Rx
Elastic Buffer. The analysis included in this chapter shows that for standard Ethernet clock
tolerances (100 ppm) there can be a maximum difference of one clock edge every 5000 clock
periods of the nominal 125 MHz clock frequency.

This slight difference in clock frequency on either side of the buffer will accumulate and
either start to fill or empty the Rx Elastic Buffer over time. The Rx Elastic buffer copes with
this by performing clock correction during the interframe gaps by either inserting or
removing Idle characters. The Rx Elastic Buffer will always attempt to restore the buffer
occupancy to the half full level during an interframe gap. See Clock Correction.

http://www.xilinx.com

362 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Appendix D: Rx Elastic Buffer Specifications

Rx Elastic Buffers: Depths and Maximum Frame Sizes

Device Specific Transceiver Rx Elastic Buffers
Figure D-1 illustrates the transceiver Rx Elastic Buffer depths and thresholds in Virtex®-4
FX, Virtex-5 LXT, SXT, FXT and TXT families, Spartan®-6 LXT family, Virtex-6, Virtex-7
and Kintex®-7 families. Each FIFO word corresponds to a single character of data
(equivalent to a single byte of data following 8B10B decoding).
X-Ref Target - Figure D-1

Virtex-5, Virtex-6, Virtex-7, Kintex-7 and Spartan-6 Devices

Consider the example, where the shaded area represents the usable buffer availability for
the duration of frame reception.

• If the buffer is filling during frame reception, there are 52-34 = 18 FIFO locations
available before the buffer reaches the overflow mark.

• If the buffer is emptying during reception, then there are 30-12 = 18 FIFO locations
available before the buffer reaches the underflow mark.

This analysis assumes that the buffer is approximately at the half-full level at the start of
the frame reception. As illustrated, there are two locations of uncertainty, above and below
the exact half-full mark of 32, resulting from the clock correction decision, and is based
across an asynchronous boundary.

Because there is a worst-case scenario of one clock edge difference every 5000 clock
periods, the maximum number of clock cycles (bytes) that can exist in a single frame
passing through the buffer before an error occurs is:

5000 x 18 = 90000 bytes

Figure D-1: Elastic Buffer Sizes for all Transceiver Families

64
34

52 - Overflow Mark

12 - Underflow Mark

64

57 - Overflow Mark

16 - Underflow Mark

CLK_COR_MAX_LAT + 2

CLK_COR_MIN_LAT - 230

Virtex-5, Virtex-6, Virtex-7,
Kintex07 and Spartan-6

Device Specific Transceiver
Rx Elastic Buffer

Virtex-4 FX

RocketIO Transceiver

Rx Elastic Buffer

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 363
UG155 March 1, 2011

Rx Elastic Buffers: Depths and Maximum Frame Sizes

Table D-1 translates this into maximum frame size at different Ethernet speeds. At SGMII
speeds lower than 1 Gbps, performance is diminished because bytes are repeated multiple
times (see Using the Core Netlist Client-side GMII for the SGMII Standard).

Virtex-4 FX Device

Consider the Virtex-4 FX device case also illustrated in Figure D-1. The thresholds are
different to that of other families, but the overall size of the buffer is the same. Instead of
the half full point, there are configurable clock correction thresholds. During the
interframe gap, clock correction will attempt to restore the occupancy to within these two
thresholds.

However, by setting both CLK_COR_MAX_LAT and CLK_COR_MIN_LAT thresholds to the
same value, symmetrically between overflow and underflow marks, it is possible to obtain
the same figures as for other families. For this reason, by adjusting the threshold attributes
accordingly, Table D-1 is also applicable.

Table D-1: Maximum Frame Sizes: Transceiver Rx Elastic Buffers
(100ppm Clock Tolerance)

Standard / Speed Maximum Frame Size

1000BASE-X (1 Gbps only) 90000

SGMII (1 Gbps) 90000

SGMII (100 Mbps) 9000

SGMII (10 Mbps) 900

http://www.xilinx.com

364 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Appendix D: Rx Elastic Buffer Specifications

SGMII Fabric Rx Elastic Buffer
Figure D-2 illustrates the FPGA fabric Rx Elastic Buffer depth. This fabric elastic buffer is
used with the core when:

• performing SGMII Support Using Asynchronous Oversampling over Virtex-6 FPGA
LVDS.

• This buffer can optionally be used to replace the Rx Elastic Buffers of the transceiver
when performing (see SGMII / Dynamic Standards Switching with Transceivers (see
Receiver Elastic Buffer Implementations).

The shaded area of Figure D-2 represents the usable buffer availability for the duration of
frame reception.

• If the buffer is filling during frame reception, there are 122-66 = 56 FIFO locations
available before the buffer reaches the overflow mark.

• If the buffer is emptying during reception, then there are 62-6 = 56 FIFO locations
available before the buffer reaches the underflow mark.

This analysis assumes the buffer is approximately at the half-full level at the start of the
frame reception. As illustrated, there are two locations of uncertainty, above and below the
exact half-full mark of 64. This is as a result of the clock correction decision, and is based
across an asynchronous boundary.

Because there is a worst-case scenario of one clock edge difference every 5000 clock
periods, the maximum number of clock cycles (bytes) that can exist in a single frame
passing through the buffer before an error occurs is:

5000 x 56 = 280000 bytes

Table D-2 translates this into maximum frame size at different Ethernet speeds. At SGMII
speeds lower than 1 Gbps, performance is diminished because bytes are repeated multiple
times (see Using the Core Netlist Client-side GMII for the SGMII Standard).).

X-Ref Target - Figure D-2

Figure D-2: Elastic Buffer Size for all Transceiver Families

128
66

122 - Overflow Mark

6 - Underflow Mark

SGMII FPGA Fabric
 Rx Elastic Buffer

62

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 365
UG155 March 1, 2011

Rx Elastic Buffers: Depths and Maximum Frame Sizes

TBI Rx Elastic Buffer

For SGMII / Dynamic Switching

The Rx Elastic Buffer used for the SGMII or Dynamic Standards Switching is identical to
the method used in SGMII Fabric Rx Elastic Buffer.

For 1000BASE-X

Figure D-3 illustrates the Rx Elastic Buffer depth and thresholds when using the Ten-Bit-
Interface with the 1000BASE-X standard. This buffer is intentionally smaller than the
equivalent buffer for SGMII/Dynamic Switching; because a larger size is not required, the
buffer is kept smaller to save logic and keep latency low. Each FIFO word corresponds to a
single character of data (equivalent to a single byte of data following 8B10B decoding).

The shaded area of Figure D-3 represents the usable buffer availability for the duration of
frame reception.

• If the buffer is filling during frame reception, then there are 30-18 = 12 FIFO locations
available before the buffer reaches the overflow mark.

• If the buffer is emptying during reception, then there are 14-2 = 12 FIFO locations
available before the buffer reaches the underflow mark.

Table D-2: Maximum Frame Sizes: Fabric Rx Elastic Buffers
(100ppm Clock Tolerance)

Standard / Speed Maximum Frame Size

1000BASE-X (1 Gbps only) 280000

SGMII (1 Gbps) 280000

SGMII (100 Mbps) 28000

SGMII (10 Mbps) 2800

X-Ref Target - Figure D-3

Figure D-3: TBI Elastic Buffer Size for All Families

32
18

30 - Overflow Mark

2 - Underflow Mark

TBI
 Rx Elastic Buffer

14

http://www.xilinx.com

366 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Appendix D: Rx Elastic Buffer Specifications

This analysis assumes that the buffer is approximately at the half-full level at the start of
the frame reception. As illustrated, there are two locations of uncertainty above and below
the exact half-full mark of 16. This is as a result of the clock correction decision, and is
based across an asynchronous boundary.

Since there is a worst-case scenario of 1 clock edge difference every 5000 clock periods, the
maximum number of clock cycles (bytes) that can exist in a single frame passing through
the buffer before an error occurs is:

5000 x 12 = 60000 bytes

This translates into a maximum frame size of 60000 bytes.

Clock Correction
The calculations in all previous sections assumes that the Rx Elastic Buffers are restored to
approximately half occupancy at the start of each frame. This is achieved by the elastic
buffer performing clock correction during the interframe gaps either by inserting or
removing Idle characters as required.

• If the Rx Elastic Buffer is emptying during frame reception, there are no restrictions on
the number of Idle characters that can be inserted due to clock correction. The
occupancy will be restored to half full and the assumption holds true.

• If the Rx Elastic Buffer is filling during frame reception, Idle characters need to be
removed. Restrictions that need to be considered are described in the following
sections.

Idle Character Removal at 1 Gbps (1000BASE-X and SGMII)

The minimum number of clock cycles that may be presented to an Ethernet receiver,
according to the IEEE 802.3-2008 specification, is 64-bit times at any Ethernet speed. At 1
Gbps 1000BASE-X and SGMII, this corresponds to 8 bytes (8 clock cycles) of interframe
gap. However, an interframe gap consists of a variety of code groups, namely /T/, /R/,
/I1/ and /I2/ characters (please see Appendix C, 1000BASE-X State Machines). Of these,
only /I2/ can be used as clock correction characters.

In a minimum interframe gap at 1 Gbps, we can only assume that two /I2/ characters are
available for removal. This corresponds to 4 bytes of data.

Looking at this from another perspective, 4 bytes of data will need to be removed in an
elastic buffer (which is filling during frame reception) for a frame which is 5000 x 4 = 20000
bytes in length. So if the frame being received is 20000 bytes in length or shorter, at 1 Gbps,
we can assume that the occupancy of the elastic buffer will always self correct to half full
before the start of the subsequent frame.

For frames that are longer than 20000 bytes, the assumption that the elastic buffer will be
restored to half full occupancy does not hold true. For example, for a long stream of 250000
byte frames, each separated by a minimum interframe gap, the Rx Elastic Buffer will
eventually fill and overflow. This is despite the 250000 byte frame length being less than
the maximum frame size calculated in the Rx Elastic Buffers: Depths and Maximum Frame
Sizes section.

However, since the legal maximum frame size for Ethernet frames is 1522 bytes (for a
VLAN frame), idle character removal restrictions are not usually an issue.

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 367
UG155 March 1, 2011

Clock Correction

Idle Character Removal at 100 Mbps (SGMII)

At SGMII, 100 Mbps, each byte is repeated 10 times. This also applies to the interframe gap
period. For this reason, the minimum of 8 bytes for the 1 Gbps case corresponds to a
minimum of 80 bytes for the 100 Mbps case.

Additionally, the majority of characters in this 80-byte interframe-gap period are going to
be the /I2/ clock correction characters. Because of the clock correction circuitry design, a
minimum of 20 /I2/ code groups will be available for removal. This translates into 40
bytes, giving a maximum run size of 40 x 5000 = 200000 bytes. Because each byte at 100
Mbps is repeated ten times, this corresponds to an Ethernet frame size of 20000 bytes, the
same size as the 1 Gbps case.

So in summary, at 100 Mbps, for any frame size of 20000 bytes or less, it can still be
assumed that the Elastic Buffer will return to half full occupancy before the start of the next
frame. However, a frame size of 20000 is larger than can be received in the device-specific
transceiver Elastic Buffer (see). Only the SGMII fabric Rx Elastic buffer is large enough.

Idle Character Removal at 10 Mbps (SGMII)

Using a similar argument to the 100 Mbps case, it can be shown that clock correction
circuitry can also cope with a frame size up to 20000 bytes. However, this is larger than the
maximum frame size for any Elastic Buffer provided with the core (see Rx Elastic Buffers:
Depths and Maximum Frame Sizes).

http://www.xilinx.com

368 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Appendix D: Rx Elastic Buffer Specifications

Maximum Frame Sizes for Sustained Frame Reception
Sustained frame reception refers to the maximum size of frames which can be
continuously received when each frame is separated by a minimum interframe gap.

The size of frames that can be reliably received is dependent on the two considerations
previously introduced in this appendix:

• The size of the Elastic Buffer, see Rx Elastic Buffers: Depths and Maximum Frame
Sizes

• The number of clock correction characters present in a minimum interframe gap,
(see Clock Correction)

Table D-3 summarizes the maximum frame sizes for sustained frame reception when used
with the different Rx Elastic Buffers provided with the core. All frame sizes are provided in
bytes.

Jumbo Frame Reception
A jumbo frame is an Ethernet frame which is deliberately larger than the maximum sized
Ethernet frame allowed in the IEEE 802.3-2008 specification. The size of jumbo frames that
can be reliably received is identical to the frame sizes defined in Maximum Frame Sizes for
Sustained Frame Reception.

Table D-3: Maximum Frame Size: (Sustained Frame Reception) Capabilities of the Rx Elastic Buffers

Ethernet Standard and
Speed

Rx Elastic Buffer Type

TBI
Device Specific

Transceiver

SGMII Fabric Buffer
(used with the Virtex-6
LVDS transceiver and
optional for use with

device specific
transceivers)

1000BASE-X (1 Gbps)
20000 (limited by clock
correction)

20000 (limited by clock
correction)

20000 (limited by clock
correction)

SGMII 1 Gbps
20000 (limited by clock
correction)

20000 (limited by clock
correction)

20000 (limited by clock
correction)

SGMII 100 Mbps
20000 (limited by clock
correction)

9000 (limited by buffer size)
20000 (limited by clock
correction)

SGMII 10 Mbps 2800 (limited by buffer size) 900 (limited by buffer size) 2800 (limited by buffer size)

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 369
UG155 March 1, 2011

Appendix E

Implementing External GMII

In certain applications, the Client-Side GMII data path may be used as a true GMII to
connect externally off chip across a PCB. This external GMII functionality is included in the
HDL example design delivered with the core by the CORE Generator™ tool for 1000BASE-
X designs. This extra logic required to accomplishe this is described in this Appendix.

Note: Virtex®-7 devices support GMII at 3.3V or lower only in certain parts and packages: please
see the Virtex-7 Device Documentation. Virtex-6 devices support GMII at 2.5V only. Please see the
Virtex-6 FPGA Data Sheet: DC and Switching Characteristics for more information. Kintex®-7,
Virtex-5, Virtex-4, Spartan®-6 and Spartan-3 devices support GMII at 3.3V or lower.

GMII Transmitter Logic
When implementing an external GMII, the GMII transmitter signals will be synchronous to
their own clock domain. The core must be used with a Transmitter Elastic Buffer to transfer
these GMII transmitter signals onto the cores internal 125 MHz reference clock (gtx_clk
when using the TBI; userclk2 when using the device-specific transceiver). A Transmitter
Elastic Buffer is provided for the 1000BASE-X standard by the example design provided
with the core.

Spartan-3, Spartan-3E, Spartan-3A/3A DSP and Virtex-4 Devices
A DCM must be used on the gmii_tx_clk clock path, as illustrated in Figure E-1. This is
performed by the top-level example design delivered with the core (all signal names and
logic match Figure E-1). This DCM circuitry may optionally be used in other families.

Phase-shifting should then be applied to the DCM to fine-tune the setup and hold times at
the GMII IOB input flip-flops. The fixed phase shift is applied to the DCM with the
example UCF for the example design. See Constraints When Implementing an External
GMII.

http://www.xilinx.com

370 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Appendix E: Implementing External GMII

X-Ref Target - Figure E-1

Figure E-1: External GMII Transmitter Logic for Spartan-3, Spartan-3E, Spartan-3A/3A DSP and Virtex-4
Devices

gmii_txd[0]
IBUF

D Q

gmii_tx_en

gmii_tx_er

gmii_txd[0]

gmii_tx_en

gmii_tx_er

Ethernet 1000BASE-X
PCS/PMA

or SGMII LogiCORE

IPAD

IPAD

IPAD

IBUF

IBUF

D Q

D Q

gmii_txd_int[0]

gmii_tx_en_int

gmii_tx_er_int

Transmitter
Elastic
Buffer

userclk2 (if RocketIO is used)
gtx_clk (if TBI is used)

gmii_tx_clk
IBUFG

IOB LOGIC

IPAD

BUFG

gmii_tx_clk_bufg

DCM

CLKIN CLK0

FB

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 371
UG155 March 1, 2011

GMII Transmitter Logic

Virtex-5 Devices
Three possible solutions are:

1. For Virtex-5 devices, a DCM may be used on the gmii_tx_clk clock path, using
global clock routing, and illustrated in Figure E-1 for the Spartan-3 and Virtex-4 family.

2. Input Delay Elements may be used on the GMII data and clock path, using global clock
routing (not illustrated). This implementation was provided as the default example
design for Virtex-5 devices in versions of this core prior to version 10.1.

3. Using a combination of IODELAY elements on the data, and using BUFIO and BUFR
regional clock routing for the gmii_tx_clk input clock, as illustrated in Figure E-2.

The design for case 3 provides a simpler solution than the DCM logic of case 1 and
provides better input setup and hold time margins than case 2. It has therefore been
chosen as the default example design from version 10.1 of the core onwards.

In this implementation, a BUFIO is used to provide the lowest form of clock routing
delay from input clock to input GMII Tx signal sampling at the device IOBs. Please
note, however, that this creates placement constraints: a BUFIO capable clock input pin
must be selected, and all other input GMII Tx signals must be placed in the respective
BUFIO region. The Virtex-5 FPGA User Guide should be consulted.

The clock is then placed onto regional clock routing using the BUFR component and
the input GMII Tx data immediately resampled as illustrated.

The IODELAY elements can be adjusted to fine-tune the setup and hold times at the GMII
IOB input flip-flops. The delay is applied to the IODELAY element using constraints in the
UCF; these can be edited if desired. See Constraints When Implementing an External GMII
for more information.

http://www.xilinx.com

372 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Appendix E: Implementing External GMII

X-Ref Target - Figure E-2

Figure E-2: External GMII Transmitter Logic for Virtex-5, Virtex-6, Virtex-7 and Kintex-7 Devices

gmii_tx_clk

IOB LOGIC

IPAD

gmii_txd[0]
IBUF

D Q

gmii_tx_en

gmii_tx_er

gmii_txd[0]

gmii_tx_en

gmii_tx_er

BUFR

Ethernet 1000BASE-X
PCS/PMA

or SGMII LogiCORE

IPAD

IPAD

IPAD

IBUF

IBUF

D Q

D Q

gmii_tx_clk_bufr

Transmitter
Elastic
Buffer

userclk2 (if transceiver is used)
gtx_clk (if TBI is used)

IODELAY

IODELAY

IODELAY

BUFIO

IOB LOGIC

D Q

D Q

D Q

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 373
UG155 March 1, 2011

GMII Transmitter Logic

Virtex-7, Kintex-7 and Virtex-6 Devices
Two possible solutions are:

1. A MMCM may be used on the gmii_tx_clk clock path, using global clock routing.
This is as illustrated in Figure E-1 for the Spartan-3 and Virtex-4 family; simply replace
the DCM for a MMCM.

2. Using a combination of IODELAY elements on the data, and using BUFIO and BUFR
regional clock routing for the gmii_tx_clk input clock, as illustrated in Figure E-2.

The design for case 2 provides a simpler solution than that of case 1. It has therefore
been chosen as the default example design for Virtex-7, Kintex-7 and Virtex-6 devices.

In this implementation, a BUFIO is used to provide the lowest form of clock routing
delay from input clock to input GMII Tx signal sampling at the device IOBs. Please
note, however, that this creates placement constraints: a BUFIO capable clock input pin
must be selected, and all other input GMII Tx signals must be placed in the respective
BUFIO region. The Device FPGA User Guides should be consulted.

The clock is then placed onto regional clock routing using the BUFR component and
the input GMII Tx data immediately resampled as illustrated.

The IODELAY elements can be adjusted to fine-tune the setup and hold times at the
GMII IOB input flip-flops. The delay is applied to the IODELAY element using
constraints in the UCF; these can be edited if desired. See Constraints When
Implementing an External GMII for more information.

Spartan-6 Devices
Three possible solutions are:

1. For Spartan-6 devices, a MMCM may be used on the gmii_tx_clk clock path, using
global clock routing, and illustrated in Figure E-1 for the Spartan-3 and Virtex-4 family.

2. Using a combination of IODELAY elements on the data, and using BUFIO2 and BUFG
global clock routing for the gmii_tx_clk input clock, as illustrated in Figure E-3.

The design for case 2 provides a simpler solution than that of case 1. It has therefore
been chosen as the default example design for Spartan-6 devices.

In this implementation, a BUFIO2 is used to provide the lowest form of clock routing
delay from input clock to input GMII Tx signal sampling at the device IOBs. Please
note, however, that this creates placement constraints: a BUFIO capable clock input pin
must be selected, and all other input GMII Tx signals must be placed in the respective
BUFIO2 region. The Spartan-6 FPGA User Guide should be consulted.

The clock is then placed onto global clock routing using the BUFG component and the
input GMII Tx data immediately resampled as illustrated.

The IODELAY2 elements can be adjusted to fine-tune the setup and hold times at the
GMII IOB input flip-flops. The delay is applied to the IODELAY2 element using
constraints in the UCF; these can be edited if desired. See Constraints When
Implementing an External GMII for more information.

http://www.xilinx.com

374 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Appendix E: Implementing External GMII

X-Ref Target - Figure E-3

Figure E-3: External GMII Transmitter Logic for Spartan-6 Devices

gmii_tx_clk

IOB LOGIC

IPAD

gmii_txd[0]
D Q

gmii_tx_en

gmii_tx_er

gmii_txd[0]

gmii_tx_en

gmii_tx_er

BUFG

Ethernet 1000BASE-X
PCS/PMA

or SGMII LogiCORE

IPAD

IPAD

IPAD

D Q

D Q

gmii_tx_clk_bufg

Transmitter
Elastic
Buffer

userclk2 (if transceiver is used)
gtx_clk (if TBI is used)

BUFIO2

IOB LOGIC

D Q

D Q

D Q

IODELAY2

IODELAY2

IODELAY2

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 375
UG155 March 1, 2011

GMII Receiver Logic

GMII Receiver Logic
Figure E-4 illustrates an external GMII receiver created in a Virtex-5 family device. The
signal names and logic shown in the figure exactly match those delivered with the example
design when the GMII is selected. If other families are selected, equivalent primitives and
logic specific to that family is automatically used in the example design.

Figure E-4 also shows that the output receiver signals are registered in device IOBs before
driving them to the device pads. The logic required to forward the receiver GMII clock is
also shown. This uses an IOB output Double-Data-Rate (DDR) register so that the clock
signal produced incurs exactly the same delay as the data and control signals. This clock
signal, gmii_rx_clk, is inverted so that the rising edge of gmii_rx_clk occurs in the
center of the data valid window, which maximizes setup and hold times across the
interface. All receiver logic is synchronous to a single clock domain.

The clock name varies depending on the CORE Generator software options. When used
with the device-specific transceiver, the clock name is userclk2; when used with the TBI,
the clock name is gtx_clk. For more information on clocking, see Chapter 6, Core
Architecture, Chapter 7, The Ten-Bit Interface, and Chapter 8, 1000BASE-X with
Transceivers.

http://www.xilinx.com

376 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Appendix E: Implementing External GMII

X-Ref Target - Figure E-4

Figure E-4: External GMII Receiver Logic

IOB LOGIC

OBUFT

FDDRRSE

OPAD

DQ '0'

'1'

gmii_rxd_obuf[0]
OPAD

OPAD

OPAD

OBUFT

OBUFT

OBUFT

DQ

DQ

DQ

DQ

gmii_rx_dv_obuf

gmii_rx_er_obuf

gmii_rxd[0]

gmii_rx_dv

gmii_rx_er

gmii_rx_clk
gmii_rx_clk_obuf

gmii_rxd[0]

gmii_rx_dv

gmii_rx_er

Ethernet 1000BASE-X
PCS/PMA

or SGMII LogiCORE

gmii_isolate

userclk2 (if transceiver is used)
gtx_clk (if TBI is used)

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 377
UG155 March 1, 2011

Appendix F

Calculating the DCM Fixed Phase Shift
or IODelay Tap Setting

Two differing methods are used by the core to meet input bus (GMII or TBI) setup and hold
timing specifications. There are:

• DCM Usage

A DCM is used on the input bus synchronous clock path to meet the input setup and
hold requirements when implementing GMI and TBI using the core in Spartan®-3,
Spartan-3E, Spartan-3A, Spartan-3A DSP and Virtex®-4 devices.

• IODelay Usage

IODelays are used on the input bus synchronous clock path to meet the input setup
and hold requirements when implementing GMII and TBI using the core in Spartan-6,
Virtex-5 and Virtex-6 devices.

DCM Usage

Requirement for DCM Phase Shifting
A DCM is used in the clock path to meet the input setup and hold requirements when
using the core with a TBI (see Chapter 7, The Ten-Bit Interface) and with an external GMII
implementation in Spartan-3, Spartan-3E, Spartan-3A/3AN/3A DSP devices (see Spartan-
3, Spartan-3E, Spartan-3A/3A DSP and Virtex-4 Devices).

In these cases, a fixed phase shift offset is applied to the DCM to skew the clock. This will
initiate a static alignment by using the clock DCM to shift the internal version of the clock
so that its edges are centered on the data eye at the IOB DDR flip-flops. The ability to shift
the internal clock in small increments is critical for sampling high-speed source
synchronous signals such as TBI and GMII. For statically aligned systems, the DCM output
clock phase offset (as set by the phase shift value) is a critical part of the system, as is the
requirement that the PCB is designed with precise delay and impedance-matching for all
the GMII/TBI data bus and control signals.

Determine the best DCM setting (phase shift) to ensure that the target system has the
maximum system margin required to perform across voltage, temperature, and process
(multiple chips) variations. Testing the system to determine the best DCM phase shift
setting has the added advantage of providing a benchmark of the system margin based on
the UI (unit interval or bit time).

System margin is defined as:

System Margin (ps) = UI(ps) * (working phase shift range/128)

http://www.xilinx.com

378 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Appendix F: Calculating the DCM Fixed Phase Shift or IODelay Tap Setting

Finding the Ideal Phase Shift Value for Your System
Xilinx cannot recommend a singular phase shift value that is effective across all hardware
platforms. Xilinx does not recommend attempting to determine the phase shift setting
empirically. In addition to the clock-to-data phase relationship, other factors such as
package flight time (package skew) and clock routing delays (internal to the device) affect
the clock-to-data relationship at the sample point (in the IOB) and are difficult to
characterize.

Xilinx recommends extensive investigation of the phase shift setting during hardware
integration and debugging. The phase shift settings provided in the example design UCF is
a placeholder and works successfully in back-annotated simulation of the example design.

Perform a complete sweep of phase-shift settings during your initial system test. Use a test
range which covers at least half of the clock period or 128 taps. This does not imply that 128
phase-shift values must be tested; increments of 4 (52, 56, 60, and so forth) correspond to
roughly one DCM tap at 125 MHz, and consequently provide an appropriate step size.
Additionally, it is not necessary to characterize areas outside the working phase-shift
range.

At the edge of the operating phase shift range, system behavior changes dramatically. In
eight phase shift settings or fewer, the system can transition from no errors to exhibiting
errors. Checking the operational edge at a step size of two (on more than one board) refines
the typical operational phase shift range. Once the range is determined, choose the average
of the high and low working phase shift values as the default. During the production test,
Xilinx recommends that you re-examine the working range at corner case operating
conditions to determine whether any adjustments to the final phase shift setting are
needed.

You can use the FPGA Editor to generate the required test file set instead of resorting to
multiple PAR runs. Performing the test on design files that differ only in phase shift setting
prevents other variables from affecting the test results. FPGA Editor operations can even
be scripted further, reducing the effort needed to perform this characterization.

IODelay Usage

IODelay Tap Setting Requirements
With this method, an IODelay is used on either the clock or Data (or both) to adjust the
Clock/Data relationship such that the input data is sampled at the optimum time. The
ability to adjust this relationship in small increments is critical for sampling high-speed
source synchronous signals. For statically aligned systems, the IODelay Tap setting is a
critical part of the system, as is the requirement that the PCB is designed with precise delay
and impedance-matching for all the GMII or TBI input data bus and control signals.

You must determine the best IODelay Tap setting to ensure that the target system has the
maximum system margin to perform across voltage, temperature, and process (multiple
chips) variations.

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 379
UG155 March 1, 2011

IODelay Usage

Finding the Ideal Tap Setting Value
Xilinx cannot recommend a singular tap value that is effective across all hardware families.
Xilinx does not recommend attempting to determine the tap setting empirically. In
addition to the clock-to-data phase relationship, other factors such as package flight time
(package skew) and clock routing delays (internal to the device) affect the clock to data
relationship at the sample point (in the IOB) and are difficult to characterize.

Xilinx recommends extensive investigation of the tap setting during hardware integration
and debugging. The tap settings provided in the example design constraint file are
placeholders, and work successfully in back-annotated simulation of the example design.

Perform a complete sweep of tap settings during your initial system test. If possible, use a
test range which covers at least half of the clock period. This does not imply that all values
must be tested as it may be simpler to use a large step size initially to identify a tighter
range for a subsequent run. Additionally, it is not necessary to characterize areas outside
the working range. If an IODelay is used on both Clock and Data then ensure this test
range covers both clock only and data only adjustments.

At the edge of the operating range, system behavior changes dramatically. In four tap
settings or less, the system can transition from no errors to exhibiting errors. Checking the
operational edge at a step size of two (on more than one board) refines the typical
operational range. Once the range is determined, choose the average of the high and low
working values as the default. During the production test, Xilinx recommends that you re-
examine the working range at corner case operating conditions to determine whether any
final adjustments to the final setting are needed. Where IODelays are used on the data it
may be necessary or beneficial to use slightly different values for each bit.

You can use the FPGA Editor to generate the required test file set instead of resorting to
multiple PAR runs. Performing the test on design files that differ only in tap setting
prevents other variables from affecting the test results. FPGA Editor operations can even
be scripted further, reducing the effort needed to perform this characterization.

http://www.xilinx.com

380 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Appendix F: Calculating the DCM Fixed Phase Shift or IODelay Tap Setting

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 381
UG155 March 1, 2011

Appendix G

Debugging Guide

This appendix provides assistance for debugging the core within a system. For additional
help, contact Xilinx by submitting a WebCase at support.xilinx.com/.

General Checks
• Ensure that all the timing constraints for the core were met during Place and Route.

• Does it work in timing simulation? If problems are seen in hardware but not in timing
simulation, this could indicate a PCB issue.

• Ensure that all clock sources are clean. If using DCMs in the design, ensure that all
DCMs have obtained lock by monitoring the LOCKED port.

Problems with the MDIO
• Ensure that the MDIO is driven properly. See MDIO Management Interface for

detailed information about performing MDIO transactions.

• Check that the mdc clock is running and that the frequency is 2.5 MHz or less.

• Read from a configuration register that does not have all 0s as a default. If all 0s are
read back, the read was unsuccessful. Check that the PHYAD field placed into the
MDIO frame matches the value placed on the phyad[4:0] port of the core.

Problems with Data Reception or Transmission
When no data is being received or transmitted:

• Ensure that a valid link has been established between the core and its link partner,
either by Auto-Negotiation or Manual Configuration: status_vector[0] and
status_vector[1] should both be high. If no link has been established, see the
topics discussed in the next section.

• Problems with Auto-Negotiation

• Problems in Obtaining a Link (Auto-Negotiation Disabled)

Note: Transmission through the core is not allowed unless a link has been established. This
behavior can be overridden by setting the Unidirectional Enable bit.

• Ensure that the Isolate state has been disabled.

By default, the Isolate state is enabled after power-up. For an external GMII, the PHY
will be electrically isolated from the GMII; for an internal GMII, it will behave as if it is
isolated. This results in no data transfer across the GMII. See for more information.

http://www.xilinx.com/support/clearexpress/websupport.htm
http://www.xilinx.com

382 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Appendix G: Debugging Guide

If data is being transmitted and received between the core and its link partner, but with a
high rate of packet loss, see Chapter 17, Special Design Considerations.

Problems with Auto-Negotiation
Determine whether Auto-Negotiation has completed successfully by doing one of the
following.

• Poll the Auto-Negotiation completion bit 1.5 in MDIO Register 1: Status Register

Use the Auto-Negotiation interrupt port of the core (see Using the Auto-Negotiation
Interrupt).

If Auto-Negotiation is not completing:

1. Ensure that Auto-Negotiation is enabled in both the core and in the link partner (the
device or test equipment connected to the core). Auto-Negotiation cannot complete
successfully unless both devices are configured to perform Auto-Negotiation.

The Auto-Negotiation procedure requires that the Auto-Negotiation handshaking
protocol between the core and its link partner, which lasts for several link timer
periods, occur without a bit error. A detected bit error will cause Auto-Negotiation to
go back to the beginning and restart. Therefore, a link with an exceptionally high bit
error rate may not be capable of completing Auto-Negotiation, or may lead to a long
Auto-Negotiation period caused by the numerous Auto-Negotiation restarts. If this
appears to be the case, try the next step and see Problems with a High Bit Error Rate.

2. Try disabling Auto-Negotiation in both the core and the link partner and see if both
devices report a valid link and are able to pass traffic. If they do, it proves that the core
and link partner are otherwise configured correctly. If they do not pass traffic, see
Problems in Obtaining a Link (Auto-Negotiation Disabled)).

Problems in Obtaining a Link (Auto-Negotiation Disabled)
Determine whether the device has successfully obtained a link with its link partner by
doing the following:

• Reading bit 1.2, Link Status, in MDIO Register 1: Status Register when using the
optional MDIO management interface (or look at status_vector[1]).

• Monitoring the state of status_vector[0]. If this is logic ‘1,’ then synchronization,
and therefore a link, has been established. See Bit[0]: Link Status.

If the devices have failed to form a link then do the following:

• Ensure that Auto-Negotiation is disabled in both the core and in the link partner (the
device or test equipment connected to the core).

http://www.xilinx.com

Ethernet 1000BASE-X PCS/PMA or SGMII v11.1 www.xilinx.com 383
UG155 March 1, 2011

Problems with a High Bit Error Rate

• Monitor the state of the signal_detect signal input to the core. This should either
be:

• connected to an optical module to detect the presence of light. Logic ‘1’ indicates
that the optical module is correctly detecting light; logic ‘0’ indicates a fault.
Therefore, ensure that this is driven with the correct polarity.

• Signal must be tied to logic ‘1’ (if not connected to an optical module).

Note: When signal_detect is set to logic ‘0,’ this forces the receiver synchronization
state machine of the core to remain in the loss of sync state.

• See Problems with a High Bit Error Rate in a subsequent section.

Transceiver Specific

When using a device-specific transceiver, perform these additional checks:

• Ensure that the polarities of the TXN/TXP and RXN/RXP lines are not reversed. If they
are, this can be easily fixed by using the TXPOLARITY and RXPOLARITY ports of the
device-specific transceiver.

• Check that the device-specific transceiver is not being held in reset by monitoring the
mgt_tx_reset and mgt_rx_reset signals between the core and the device-specific
transceiver. If these are asserted then this indicates that the PMA PLL circuitry in the
device-specific transceiver has not obtained lock; please check the PLL Lock signals
output from the device-specific transceiver.

• Monitor the RXBUFERR signal when Auto-Negotiation is disabled. If this is being
asserted, the Elastic Buffer in the receiver path of the device-specific transceiver is
either under or overflowing. This indicates a clock correction problem caused by
differences between the transmitting and receiving ends. Check all clock management
circuitry and clock frequencies applied to the core and to the device-specific
transceiver.

Problems with a High Bit Error Rate

Symptoms
The severity of a high-bit error rate can vary and cause any of the following symptoms:

• Failure to complete Auto-Negotiation when Auto-Negotiation is enabled.

• Failure to obtain a link when Auto-Negotiation is disabled in both the core and the
link partner.

• High proportion of lost packets when passed between two connected devices that are
capable of obtaining a link through Auto-Negotiation or otherwise. This can usually
be accurately measured if the Ethernet MAC attached to the core contains statistic
counters.

Note: All bit errors detected by the 1000BASE-X PCS/PMA logic during frame reception will
show up as Frame Check Sequence Errors in an attached Ethernet MAC.

http://www.xilinx.com

384 www.xilinx.com Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
UG155 March 1, 2011

Appendix G: Debugging Guide

Debugging
• Compare the problem across several devices or PCBs to ensure that the problem is not

a one-off case.

• Try using an alternative link partner or test equipment and then compare results.

• Try putting the core into loopback (both by placing the core into internal loopback,
and by looping back the optical cable) and compare the behavior. The core should
always be capable of Auto-Negotiating with itself and looping back with itself from
transmitter to receiver so direct comparisons can be made. If the core exhibits correct
operation when placed into internal loopback, but not when loopback is performed
via an optical cable, this may indicate a faulty optical module or a PCB problem.

• Try swapping the optical module on a misperforming device and repeat the tests.

Transceiver Specific Checks

Perform these additional checks when using a device-specific transceiver:

• Directly monitor the following ports of the device-specific transceiver by attaching
error counters to them, or by triggering on them using the Chipscope™ tool or an
external logic analyzer.

RXDISPERR

RXNOTINTABLE

These signals should not be asserted over the duration of a few seconds, minutes or
even hours. If they are frequently asserted, it may indicate a problem with the device-
specific transceiver. Consult Answer Record 19699 for debugging device-specific
transceiver issues.

• Place the device-specific transceiver into parallel or serial loopback.

• If the core exhibits correct operation in device-specific transceiver serial loopback,
but not when loopback is performed via an optical cable, it may indicate a faulty
optical module.

• If the core exhibits correct operation in device-specific transceiver parallel
loopback but not in serial loopback, this may indicate a device-specific transceiver
problem. See Answer Record 19699 for details.

• A mild form of bit error rate may be solved by adjusting the transmitter
TX_PREEMPHASIS, TX_DIFF_CTRL and TERMINATION_IMP attributes of the device-
specific transceiver.

http://www.xilinx.com/xlnx/xil_ans_display.jsp?iLanguageID=1&iCountryID=1&getPagePath=19699
http://www.xilinx.com/xlnx/xil_ans_display.jsp?iLanguageID=1&iCountryID=1&getPagePath=19699
http://www.xilinx.com

	LogiCORE™ IP Ethernet 1000BASE-X PCS/PMA or SGMII v11.1
	Revision History
	Table of Contents
	Schedule of Figures
	Schedule of Tables
	About This Guide
	Guide Contents
	Additional Resources
	Conventions
	Typographical
	Online Document
	List of Acronyms

	Introduction
	System Requirements
	About the Core
	Designs Using Transceivers

	Licensing the Core
	Recommended Design Experience
	Additional Core Resources
	Related Xilinx Ethernet Products and Services
	Specifications

	Technical Support
	Feedback
	Ethernet 1000BASE-X PCS/PMA or SGMII Core
	Document

	Quick Start Guide
	Overview
	Generating the Core
	Implementing the Example Design
	Simulating the Example Design
	Setting up for Simulation
	Functional Simulation
	Timing Simulation

	What’s Next?

	Generating and Customizing the Core
	GUI Interface
	Component Name
	Core Functionality
	SGMII/Dynamic Standard Switching Elastic Buffer Options
	SGMII/Dynamic Standard Mode of Operation
	Transceiver Tile Configuration

	Parameter Values in the XCO File

	CORE Generator Deliverables
	Directory Structure
	Directory and File Contents
	<project directory>
	<project directory>/<component name>
	<component name>/doc
	<component name>/example design
	<component name>/implement
	implement/results
	<component name>/simulation
	simulation/functional
	simulation/timing

	Implementation Scripts
	Simulation Scripts
	Functional Simulation
	Timing Simulation

	Designing with the Core
	Design Guidelines
	Understand the Features and Interfaces Provided by the Core Netlist
	Customize and Generate the Core
	Examine the Example Design Provided with the Core
	Implement the Ethernet 1000BASE-X PCS/PMA or SGMII Core in Your Application

	Core Architecture
	System Overview
	Ethernet 1000BASE-X PCS/PMA or SGMII Using A Device Specific Transceiver
	Ethernet 1000BASE-X PCS/PMA or SGMII with Ten-Bit-Interface
	SGMII Support Using Asynchronous Oversampling over Virtex-6 FPGA LVDS

	Core Interfaces
	Client Side Interface
	Physical Side Interface

	The Ten-Bit Interface
	Ten-Bit-Interface Logic
	Transmitter Logic
	Receiver Logic

	Clock Sharing across Multiple Cores with TBI
	Example Designs for the Ten-Bit Interface (TBI)
	Example Design for 1000BASE-X with Ten-Bit Interface
	SGMII Example Design / Dynamic Switching Example Design with Ten-Bit Interface

	1000BASE-X with Transceivers
	Transceiver Logic
	Virtex-4 FX Devices
	Virtex-5 LXT and SXT Devices
	Virtex-5 FXT and TXT Devices
	Virtex-6 Devices
	Spartan-6 LXT Devices
	Virtex-7 Devices
	Kintex-7 Devices

	Clock Sharing Across Multiple Cores with Transceivers
	Virtex-4 FX Devices
	Virtex-5 LXT and SXT Devices
	Virtex-5 FXT and TXT Devices
	Virtex-6 Devices
	Spartan-6 LXT Devices
	Virtex-7 Devices
	Kintex-7 Devices

	Example Design for 1000BASE-X with Transceivers
	Top-Level Example Design HDL
	Block Level HDL
	Files for Virtex-7 and Kintex-7 Devices
	Transceiver Files for Spartan-6 Devices
	Files for Virtex-6 Devices
	RocketIO Transceiver Files for Virtex-5 Devices
	Virtex-5 FPGA RocketIO GTX Transceiver Specific Files
	RocketIO Transceiver Files for Virtex-4 FX Devices
	Transmitter Elastic Buffer
	Demonstration Test Bench
	Customizing the Test Bench

	SGMII / Dynamic Standards Switching with Transceivers
	Receiver Elastic Buffer Implementations
	Selecting the Buffer Implementation from the GUI
	The Requirement for the FPGA Fabric Rx Elastic Buffer
	The Transceiver Rx Elastic Buffer

	Logic Using the Transceiver Rx Elastic Buffer
	Transceiver Logic with the Fabric Rx Elastic Buffer
	Virtex-4 Devices for SGMII or Dynamic Standards Switching
	Virtex-5 LXT or SXT Devices for SGMII or Dynamic Standards Switching
	Virtex-5 FXT and TXT Devices for SGMII or Dynamic Standards Switching
	Virtex-6 Devices for SGMII or Dynamic Standards Switching
	Spartan-6 LXT Devices for SGMII or Dynamic Standards Switching
	Virtex-7 Devices for SGMII or Dynamic Standards Switching
	Kintex-7 Devices for SGMII or Dynamic Standards Switching
	Kintex-7 FPGA GTX Transceiver Wizard

	Clock Sharing - Multiple Cores with Transceivers, Fabric Elastic Buffer
	Virtex-4 FX Devices
	Virtex-5 LXT and SXT Devices
	Virtex-5 FXT and TXT Devices
	Virtex-6 Devices
	Spartan-6 LXT Devices
	Virtex-7 Devices
	Kintex-7 Devices

	SGMII Example Design / Dynamic Switching Example Design Using a Transceiver
	Top-Level Example Design HDL
	Block Level HDL
	Files for Virtex-7 and Kintex-7 Devices
	Transceiver Files for Spartan-6 Devices
	Transceiver Files for Virtex-6 Devices
	RocketIO Transceiver Files for Virtex-5 Devices
	RocketIO Transceiver Files for Virtex-4 FX Devices
	Receiver Elastic Buffer
	SGMII Adaptation Module
	Demonstration Test Bench
	Customizing the Test Bench

	SGMII Support Using Asynchronous Oversampling over Virtex-6 FPGA LVDS
	Design Requirements
	SGMII Only
	Supported in Virtex-6 Devices, -2 Speed Grade or Faster
	Receiver UI Specification
	Recommended for Chip to Chip Copper Implementations Only

	Clocking Logic
	SGMII Tx and Rx Ports are in the Same I/O Bank
	SGMII Tx and Rx Ports are in Different I/O Banks

	Layout and Placement
	Guidelines

	Example Design Implementation
	Example Design Top Level
	IO Bank Level of the Example Design
	Block Level of the Example Design
	LVDS Transceiver
	IO Bank Clocking
	SGMII Adaptation Module
	Demonstration Test Bench
	Customizing the Test Bench

	Using the Client-Side GMII Data Path
	Using the Core Netlist Client-side GMII for the 1000BASE-X Standard
	GMII Transmission
	GMII Reception
	status_vector[15:0] signals

	Using the Core Netlist Client-side GMII for the SGMII Standard
	Overview
	GMII Transmission
	GMII Reception

	Additional Client-Side SGMII Logic Provided in the Example Design
	SGMII Adaptation Module Top Level
	Transmitter Rate Adaptation Module
	Receiver Rate Adaptation Module
	Clock Generation

	Configuration and Status
	MDIO Management Interface
	MDIO Bus System
	MDIO Transactions
	MDIO Addressing
	Connecting the MDIO to an Internally Integrated STA
	Connecting the MDIO to an External STA

	Management Registers
	1000BASE-X Standard Using the Optional Auto-Negotiation
	1000BASE-X Standard Without the Optional Auto-Negotiation
	SGMII Standard Using the Optional Auto-Negotiation
	SGMII Standard without the Optional Auto-Negotiation
	Both 1000BASE-X and SGMII Standards

	Optional Configuration Vector

	Auto-Negotiation
	Overview of Operation
	1000BASE-X Standard
	SGMII Standard

	Setting the Configurable Link Timer
	1000BASE-X Standard
	SGMII Standard
	Simulating Auto-Negotiation

	Using the Auto-Negotiation Interrupt
	Use of Clock Correction Sequences in Device Specific Transceivers
	1000BASE-X Standard

	Dynamic Switching of 1000BASE-X and SGMII Standards
	Typical Application
	Operation of the Core
	Selecting the Power-On / Reset Standard
	Switching the Standard Using MDIO
	Auto-Negotiation State Machine
	Setting the Auto-Negotiation Link Timer

	Constraining the Core
	Required Constraints
	Device, Package, and Speedgrade Selection
	I/O Location Constraints
	Placement Constraints
	Virtex-4 FPGA MGT Transceivers for 1000BASE-X Constraints
	Virtex-4 FPGA RocketIO MGT Transceivers for SGMII or Dynamic Standards Switching Constraints
	Virtex-5 FPGA RocketIO GTP Transceivers for 1000BASE-X Constraints
	Virtex-5 FPGA RocketIO GTP Transceivers for SGMII or Dynamic Standards Switching Constraints
	Virtex-5 FPGA RocketIO GTX Transceivers for 1000BASE-X Constraints
	Virtex-5 FPGA RocketIO GTX Transceivers for SGMII or Dynamic Standards Switching Constraints
	Virtex-6 FPGA GTX Transceivers for 1000BASE-X Constraints
	Virtex-6 FPGA GTX Transceivers for SGMII or Dynamic Standards Switching Constraints
	Spartan-6 FPGA GTP Transceivers for 1000BASE-X Constraints
	Spartan-6 FPGA GTP Transceivers for SGMII or Dynamic Standards Switching Constraints
	7 Series FPGA GTX Transceivers for 1000BASE-X Constraints
	7 Series FPGA GTX Transceivers for SGMII or Dynamic Standards Switching Constraints
	SGMII Using Asynchronous Oversampling over Virtex-6 LVDS Constraints
	Ten-Bit Interface Constraints
	Constraints When Implementing an External GMII
	Understanding Timing Reports for Setup/Hold Timing

	Interfacing to Other Cores
	Integration of the Tri-Mode Ethernet MAC for 1000BASE-X Operation
	Integration of the Tri-Mode Ethernet MAC to Provide 1000BASE-X PCS with TBI
	Integration of the Tri-Mode Ethernet MAC to Provide 1000BASE-X Using Transceivers
	Tri-Mode Ethernet MAC Core (TEMAC Core v5.1, AXI)
	Spartan-6 Devices
	Virtex-7 Devices

	Integration of the Tri-Mode Ethernet MAC for Tri-speed SGMII Operation
	Integration of the Tri-Mode Ethernet MAC to Provide SGMII (or Dynamic Switching) Functionality with TBI
	Tri-Mode Ethernet MAC Core (TEMAC core v5.1, AXI)
	Integration of the Tri-Mode Ethernet MAC Using Device Specific Transceivers
	Tri-Mode Ethernet MAC Core (TEMAC core v5.1, AXI)
	Integration of the Tri-Mode Ethernet MAC Using Asynchronous Oversampling over Virtex-6 LVDS

	Special Design Considerations
	Power Management
	Startup Sequencing
	Loopback
	Core with the TBI
	Core with Transceiver

	Implementing the Design
	Pre-implementation Simulation
	Using the Simulation Model

	Synthesis
	XST - VHDL
	XST - Verilog

	Implementation
	Generating the Xilinx Netlist
	Mapping the Design
	Placing and Routing the Design
	Static Timing Analysis
	Generating a Bitstream

	Post-Implementation Simulation
	Generating a Simulation Model
	Using the Model

	Other Implementation Information

	Core Verification, Compliance, and Interoperability
	Verification
	Simulation
	Hardware Verification

	Core Latency
	Core Latency
	Latency for 1000BASE-X PCS with TBI
	Latency for 1000BASE-X PCS and PMA Using a Transceiver
	Latency for SGMII

	1000BASE-X State Machines
	Introduction
	Start of Frame Encoding
	The Even Transmission Case
	Reception of the Even Case
	The Odd Transmission Case
	Reception of the Odd Case
	Preamble Shrinkage

	End of Frame Encoding
	The Even Transmission Case
	Reception of the Even Case
	The Odd Transmission Case
	Reception of the Odd Case

	Rx Elastic Buffer Specifications
	Introduction
	Rx Elastic Buffers: Depths and Maximum Frame Sizes
	Device Specific Transceiver Rx Elastic Buffers
	SGMII Fabric Rx Elastic Buffer
	TBI Rx Elastic Buffer

	Clock Correction
	Maximum Frame Sizes for Sustained Frame Reception
	Jumbo Frame Reception

	Implementing External GMII
	GMII Transmitter Logic
	Spartan-3, Spartan-3E, Spartan-3A/3A DSP and Virtex-4 Devices
	Virtex-5 Devices
	Virtex-7, Kintex-7 and Virtex-6 Devices
	Spartan-6 Devices

	GMII Receiver Logic

	Calculating the DCM Fixed Phase Shift or IODelay Tap Setting
	DCM Usage
	Requirement for DCM Phase Shifting
	Finding the Ideal Phase Shift Value for Your System

	IODelay Usage
	IODelay Tap Setting Requirements
	Finding the Ideal Tap Setting Value

	Debugging Guide
	General Checks
	Problems with the MDIO
	Problems with Data Reception or Transmission
	Problems with Auto-Negotiation
	Problems in Obtaining a Link (Auto-Negotiation Disabled)
	Problems with a High Bit Error Rate
	Symptoms
	Debugging

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings false
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A0648062706410642062900200644064406370628062706390629002006300627062A002006270644062C0648062F0629002006270644063906270644064A06290020064506460020062E06440627064400200627064406370627062806390627062A00200627064406450643062A0628064A062900200623064800200623062C06470632062900200625062C06310627062100200627064406280631064806410627062A061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0020064506390020005000440046002F0041060C0020062706440631062C062706210020064506310627062C063906290020062F0644064A0644002006450633062A062E062F06450020004100630072006F006200610074061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d044204380020043704300020043a0430044704350441044204320435043d0020043f04350447043004420020043d04300020043d043004410442043e043b043d04380020043f04400438043d04420435044004380020043800200443044104420440043e043904410442043204300020043704300020043f04350447043004420020043d04300020043f0440043e0431043d04380020044004300437043f0435044704300442043a0438002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b0020006e0061002000730074006f006c006e00ed006300680020007400690073006b00e10072006e00e100630068002000610020006e00e1007400690073006b006f007600fd006300680020007a0061015900ed007a0065006e00ed00630068002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006c006100750061002d0020006a00610020006b006f006e00740072006f006c006c007400f5006d006d006900730065007000720069006e0074006500720069007400650020006a0061006f006b00730020006b00760061006c006900740065006500740073006500740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003b303b903b1002003b503ba03c403cd03c003c903c303b7002003c003bf03b903cc03c403b703c403b103c2002003c303b5002003b503ba03c403c503c003c903c403ad03c2002003b303c103b103c603b503af03bf03c5002003ba03b103b9002003b403bf03ba03b903bc03b103c303c403ad03c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f006200650020005200650061006400650072002000200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405D305E405E105D4002005D005D905DB05D505EA05D905EA002005D105DE05D305E405E105D505EA002005E905D505DC05D705E005D905D505EA002005D505DB05DC05D9002005D405D205D405D4002E002005DE05E105DE05DB05D9002005D4002D005000440046002005E905E005D505E605E805D905DD002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV <FEFF005a00610020007300740076006100720061006e006a0065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0061007400610020007a00610020006b00760061006c00690074006500740061006e0020006900730070006900730020006e006100200070006900730061010d0069006d006100200069006c0069002000700072006f006f006600650072002000750072006501110061006a0069006d0061002e00200020005300740076006f00720065006e0069002000500044004600200064006f006b0075006d0065006e007400690020006d006f006700750020007300650020006f00740076006f00720069007400690020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006b00610073006e0069006a0069006d0020007600650072007a0069006a0061006d0061002e>
 /HUN <FEFF004d0069006e0151007300e9006700690020006e0079006f006d00610074006f006b0020006b00e90073007a00ed007400e9007300e900680065007a002000610073007a00740061006c00690020006e0079006f006d00740061007400f3006b006f006e002000e9007300200070007200f300620061006e0079006f006d00f3006b006f006e00200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002c00200068006f007a007a006f006e0020006c00e9007400720065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00610074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002c00200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002000e9007300200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c00200020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b007500720069006500200073006b00690072007400690020006b006f006b0079006200690161006b0061006900200073007000610075007300640069006e007400690020007300740061006c0069006e0069006100690073002000690072002000620061006e00640079006d006f00200073007000610075007300640069006e007400750076006100690073002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0074007500730020006b00760061006c0069007400610074012b0076006100690020006400720075006b010101610061006e00610069002000610072002000670061006c006400610020007000720069006e00740065007200690065006d00200075006e0020007000610072006100750067006e006f00760069006c006b0075006d0075002000690065007300700069006500640113006a00690065006d002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f3007700200050004400460020007a002000770079017c0073007a010500200072006f007a0064007a00690065006c0063007a006f015b0063006901050020006f006200720061007a006b00f30077002c0020007a0061007000650077006e00690061006a0105006301050020006c006500700073007a01050020006a0061006b006f015b0107002000770079006400720075006b00f30077002e00200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000700065006e007400720075002000740069007001030072006900720065002000640065002000630061006c006900740061007400650020006c006100200069006d007000720069006d0061006e007400650020006400650073006b0074006f00700020015f0069002000700065006e0074007200750020007600650072006900660069006300610074006f00720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f044004350434043d04300437043d043004470435043d043d044b044500200434043b044f0020043a0430044704350441044204320435043d043d043e04390020043f043504470430044204380020043d04300020043d043004410442043e043b044c043d044b04450020043f04400438043d044204350440043004450020043800200443044104420440043e04390441044204320430044500200434043b044f0020043f043e043b044304470435043d0438044f0020043f0440043e0431043d044b04450020043e0442044204380441043a043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e00200020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f00620065002000500044004600200070007200650020006b00760061006c00690074006e00fa00200074006c0061010d0020006e0061002000730074006f006c006e00fd0063006800200074006c0061010d00690061007201480061006300680020006100200074006c0061010d006f007600fd006300680020007a006100720069006100640065006e0069006100630068002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e000d000a>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f0062006500200050004400460020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020006e00610020006e0061006d0069007a006e006900680020007400690073006b0061006c006e0069006b0069006800200069006e0020007000720065007600650072006a0061006c006e0069006b00690068002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF004d00610073006100fc0073007400fc002000790061007a013100630131006c006100720020007600650020006200610073006b01310020006d0061006b0069006e0065006c006500720069006e006400650020006b0061006c006900740065006c00690020006200610073006b013100200061006d0061006301310079006c0061002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043404400443043a04430020043d04300020043d0430044104420456043b044c043d043804450020043f04400438043d044204350440043004450020044204300020043f04400438044104420440043e044f044500200434043b044f0020043e044204400438043c0430043d043d044f0020043f0440043e0431043d0438044500200437043e04310440043004360435043d044c002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

