Advanced Analysis Methods

Tulika Bose April 29th, 2016

Trees and leafs

- Create a tree of cuts
- Divide sample into "pass" and "fail" sets
- Each node corresponds to a cut (branch)
- A leaf corresponds to an end-point
- For each leaf, calculate purity (from MC): purity = $N_S/(N_S+N_B)$

Repeat recursively on each node

Stop (terminate at leaf) when improvement stops or when too few events left

Boosting

T Weak Hyps = 1 Strong Hyp

Try Many Weak Hyps

Weak Hyp

Combine T Weak Hyps

Weight 1 Weak Hyp 1

Weight 2 Weak Hyp 2

Weight T Weak Hyp T

http://arxiv.org/abs/physics/0508045

Example: Face Detection

- We are given a dataset of images
- We need to determine if there are faces in the images

Example: Face Detection

- Go through each possible rectangle
- Some weak hypotheses might be:
 - Is there a round object in the rectangle?
 - Does the rectangle have darker spots where the eyes should be?
 - Etc.
- Classifier = 2.1 * (Is Round) + 1.2 * (Has Eyes)

Boosting: Toy Example

- Positive examples
- Negative examples
- 2-Dimensional plane
- Weak hyps: linear separators
- 3 iterations

Toy Example: Iteration 1

Misclassified examples are circled, given more weight

Toy Example: Iteration 2

Misclassified examples are circled, given more weight

Toy Example: Iteration 3

Finished boosting

AdaBoost: A simple demonstration

The example: (somewhat artificial...but nice for demonstration):

- Data file with three "bumps"

Two reasonable cuts: a) Var0 > 0.5 \rightarrow ϵ_{signal} =66% $\epsilon_{\text{bkg}} \approx$ 0% misclassified events in total 16.5% or

b) Var0 < -0.5 \rightarrow ϵ_{signal} =33% $\epsilon_{\text{bkg}} \approx 0\%$ misclassified events in total 33%

the training of a single decision tree stump will find "cut a)"

AdaBoost: A simple demonstration

The first "tree", choosing cut a) will give an error fraction: err = 0.165

before building the next "tree": weight wrong classified training events by (1-err)/err ≈ 5

the next "tree" sees essentially the following data sample:

The combined classifier: Tree1 + Tree2
the (weighted) average of the response to
a test event from both trees is able to
separate signal from background as
good as one would expect from the most
powerful classifier

Adaptive Boosting (AdaBoost)

AdaBoost re-weights events misclassified by previous classifier by:

$$\frac{1 - f_{err}}{f_{err}} \text{ with :}$$

$$f_{err} = \frac{\text{misclassified events}}{\text{events}}$$

AdaBoost weights the classifiers also using the error rate of the individual classifier according to:

$$y(x) = \sum_{i}^{N_{Classifier}} log \left(\frac{1 - f_{err}^{(i)}}{f_{err}^{(i)}} \right) C^{(i)}(x)$$