Observation of the rare $B^0_s \to \mu^+\mu^-$ decay The combined analysis of CMS and LHCb data

Luke Pritchett

April 22, 2016

Table of Contents

Theory and Overview

Detectors

Event selection

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Analysis

Flavor physics and B decays

- ► $B^0_{(s)} \to \mu^+ \mu^-$ is a flavor-changing neutral process.
- In the SM, FCNCs are suppressed by the GIM mechanism.
- ► The Standard Model prediction is $Br(B_s^0 \rightarrow \mu\mu) = (3.66 \pm 0.23) \times 10^{-9}$ and $Br(B^0 \rightarrow \mu\mu) = (1.06 \pm 0.09) \times 10^{-10}$

◆ロト ◆掃 ト ◆ 臣 ト ◆ 臣 ト ○ 臣 ○ の Q @

- BSM theories often predict flavor changing physics, especially in the third generation.
- E.g., 2HDM, SUSY, topcolor, etc.
- FCNC measurements are a powerful constraint on BSM physics.

Results Overview

- ▶ Observation of decay $B^0_s \to \mu^+\mu^-$ with significance $> 6\sigma$
- ► Evidence for decay $B^0 \rightarrow \mu^+ \mu^-$ with significance approximately 3σ .
- All measured branching fractions and ratios are compatible with the SM within 2.3σ.

Basic Search Strategy

- 1. Tag $B^0_{(s)} \rightarrow \mu^+ \mu^-$ events.
- 2. Distinguish signal versus background
- 3. Distinguish B^0 from B^0_s
- 4. Normalize signal to get branching ratios

5. Combine statistics

Table of Contents

Theory and Overview

Detectors

Event selection

Analysis

CMS Detector

• CMS is great, but we won't cover its instrumentation here.

◆□ ▶ ◆圖 ▶ ◆ 圖 ▶ ◆ 圖 ▶ ○ 圖 ○

LHCb Experiment

- Occupies pit 8, previous home of DELPHI.
- Purpose: to study precision flavor physics, CP violation, matter / anti-matter asymmetry.
- b physics is a great portal for this mission.

LHCb Detector

- Designed for precision b physics, distinguishing B mesons.
- ► Forward detector to capture *B* mesons.
- Excellent vertex and momentum resolution.

LHCb Detector: VELO

- Vertex Locator system built around the interaction point.
- Reproduces tracks in an $r \phi$ coordinate system.
- Resolution is $\sim 8 \, \mu m$.

LHCb Detector: Muon system

- One section before the calorimeters.
 - Triple-GEM gas detector
- Four sections behind the calorimeters.
 - Multiwire Proportional Chambers (MWPCs)
 - Designed for 99% efficiency.

<ロ> (四) (四) (三) (三) (三) (三)

LHCb Detector: Muon selection

- 1. Loose binary selection based on penetration.
- 2. Log likelihood cuts using tracking information.
- Combined likelihood to further discriminate pions versus muons.

LHCb Detector: Other components

Trackers

- Trigger tracker, silicon microstrip detector.
- Inner tracker, silicon microstrip behind magnet.
- Outer tracker, Kapton / Al straws.
- Photon detectors
 - For extra π vs. K discrimination
 - Ring Imaging Cherenkov counters (RICH 1 and RICH 2).
 - Specialized Hybrid Photon Detectors

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

LHCb Detector: Other components

Calorimeters

- Reconstruction of π⁰ and prompt photons is essential for flavor tagging and B-meson decays.
- ECAL
 - Electron detection must reject charged π 's and π ⁰'s.
 - Uses a preshower detector before for charged, and a scintillator pad for π^0 .
 - Scintillator / lead structure.
 - Energy resolution $\sigma_E/E = 10\%/\sqrt{E}$ (R in GeV).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- HCAL
 - Iron and scintillating tiles.

LHCb: Triggering

L0 Trigger

- Hardware triggering
- Reduces 40 MHz crossing rate to 1 MHz readout.
- ► Reconstructs highest E_T hadron, electron and photon clusters, two highest p_T muons.
- VELO estimates the number of primary pp interactions in each bunch crossing.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

HLT

- Executed asynchronously on a processor farm.
- Reduces event rate from 1 MHz to 2 kHz.

Table of Contents

Theory and Overview

Detectors

Event selection

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Analysis

Backgrounds: Combinatorial background

- Muons from other processes, mainly semileptonic decays of other B mesons.
- ► Evaluated by extrapolating data from nearby mass sidebands, [4.9 GeV, m_{B^0} (60 MeV)] and $[m_{B_{\bullet}^0}$ +(60 MeV), 60 GeV].
- Modeled with a first-degree polynomial.
- Can be reduced to a certain extent via tracking and vertex analysis.

Backgrounds: Muon misidentification

	Yield in full	Fraction with
	BDT range	BDT > 0.7 [%]
$B^0_{(s)} \rightarrow h^+ h'^-$	15 ± 1	28
$B^{0} \rightarrow \pi^{-} \mu^{+} \nu_{\mu}$	115 ± 6	15
$B_s^0 \rightarrow K^- \mu^+ \nu_\mu$	$10{\pm}4$	21
$B^{0(+)} \to \pi^{0(+)} \mu^+ \mu^-$	28 ± 8	15
$\Lambda_b^0 \rightarrow p \mu^- \overline{\nu}_\mu$	70 ± 30	11

Pions or Kaons from B decays misidentified as muons.

$$\blacktriangleright \ B^0 \to \pi^- \mu^+ \nu, \ B^0_s \to K^- \mu^+ \nu, \ \Lambda^0_b \to p \mu^- \overline{\nu}$$

Invisible pions

$$\blacktriangleright \ B^+ \to \pi^+ \mu^+ \mu^-, \ B^0 \to \pi^0 \mu^+ \mu^-$$

• These have lower $m_{\mu\mu}$ invariant masses than signal, except:

►
$$B^0_{(s)} \rightarrow h^+ h'^-$$
, where $h^{(\prime)} = \pi$ or K .

- Estimated by normalizing to the observed $B^+ \rightarrow J/\psi K^+$ yield.
- $B^0_s \to \pi^+ K^- \text{ has known branching fraction} \\ (1.91 \pm 0.31) \times 10^{-5}.$

Event selection

- Signal candidates are chosen primarily by muon and dimuon triggers.
- Important preliminary variables are p_T cuts and vertex properties.
- ► LHCb: $0.25 < p_T < 40$ GeV and p < 500 GeV. CMS: $p_T > 4.0$ GeV for individual muons, $4.8 < m_{\mu\mu} < 6.0$ GeV.
- Muon tracks should form a secondary vertex, displaced from a primary vertex.
 - ► Time-of-flight significance > 15 between SV and most significant PV.
 - ▶ Allow B candidates with $p_T > 0.5~{\rm GeV},$ decay time less than $9 \times {\rm lifetime}.$
- ► Average trigger efficiency (for older CMS experiment) for events in signal samples from MC is (39 - 85)% ± (3 - 6)%.

Boosted Decision Tree analysis

BDT analysis further reduces backgrounds, misIDs

- CMS: Hadron-to-muon misID below 2.2×10^{-3} for π ,K, and p, as determined from well-identified hadrons in data.
- Both BDTs use 12 variables:
 - \blacktriangleright B candidate decay time, impact parameter, and p_T
 - Minimum χ^2_{IP} of the two muons with respect to any PV.

- Closest approach of the two muons.
- A 3D pointing angle
- Flight length significance between SV and PV.
- A few others

Boosted Decision Tree training

- ► BDTs were trained on simulated signal. For background LHCb used simulations of bb → µ⁺µ⁻ + X, CMS used the mass sidebands.
 - Data background split into three sets, BDT training is independent of its application.

・ロト ・四ト ・ヨト ・ヨ

- 20 BDT discriminant bins, 8 from LHCb and 12 from CMS. Bins have roughly equal expected signal yield.
- BDT dependence on $m_{\mu\mu}$ is linear and small.

Table of Contents

Theory and Overview

Detectors

Event selection

Analysis

Normalizing the Branching Ratios

- Count the number of $B^+ \rightarrow J/\psi K^+$ decays
- Use measured branching fraction to count B^+ production.
- ▶ Assume B⁰ and B⁺ are produced at the same rate.
- Use measured ratio of B^+ to B_s^0 .
- This procedure introduces uncertainty into the data, correlated between LHCb and CMS. The statistical analysis recognizes this.

Normalizing the Branching Ratios

$$Br(B_s^0 \to \mu^+ \mu^-) = \frac{N_{B_s^0 \to \mu^+ \mu^-}}{N_{\rm norm}} \times \frac{f_d}{f_s} \times \frac{\epsilon_{\rm norm}}{\epsilon_{B_s^0 \to \mu^+ \mu^-}} \times Br_{\rm norm}$$

► f_d/f_s is the ratio of probablilities for a b quark to hadronize into a B⁰ versus a B⁰_s.

- ► Theory says that the probablities for B⁺ and B⁰ are the same, also checked on the data.
- $f_d/f_s = 3.86 \pm 0.22$ as measured by LHCb previously, confirmed within error by CMS.
- ► e's are signal reconstruction efficiencies, measured from simulation and data.

- Unbinned extended maximum likelihood fit of signal function to the combined data with all its discriminants.
- Where possible, nuisance parameters are constrained to their known values with Gaussian distributions.

= 900

- ► The confidence intervals are created with the Feldman-Cousins procedure, based on maximizing log-likelihood ratios -2 log (P(data|Br)/P(data|Br*)).
- Statistical uncertainty is obtained by repeating the fit with all nuisance parameters to their fitted values.

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

► ATLAS just published their results for $B_s^0 \rightarrow \mu\mu$ decays (14 April, 2016):

