LHC Physics GRS PY 898 B8

Lecture #3

Tulika Bose

Trigger & DAQ: Part II

Seminar Topics

- 1) Higgs: overview of Higgs searches at LHC; One specific Higgs search (Phil)
- 2) SUSY: overview of SUSY searches at LHC; One specific SUSY search [jets/MET signatures only; no leptons] Adam
- 3) SUSY2: overview of SUSY searches at LHC; One specific SUSY search [leptonic signatures]
- 4) Exotica: overview of searches for new vector boson high mass states (W', Z', RS-Graviton...);
- 5) Exotica2: overview of alternative signatures (technicolor, Little Higgs, Composite Higgs, Twin Higgs...) David
- 6) Top quark physics at the LHC
- 7) Electroweak measurements at the LHC: Keith
- 8) QCD measurements at the LHC: John
- 9) B physics at the LHC
- 10) Model Independent Search methods (see for eg. http://cms-physics.web.cern.ch/ cms-physics/public/EXO-08-005-pas.pdf)

Physics Selection @ LHC

Challenges @ LHC

Challenges:

1 GHz of Input Interactions

Beam-crossing every 25 ns with ~ 25 interactions produces over 1 MB of data

Archival Storage at about 300 Hz of 1 MB events

Challenges @ LHC

Challenges:

1 GHz of Input Interactions

Beam-crossing every 25 ns with ~ 25 interactions produces over 1 MB of data

Archival Storage at about 300 Hz of 1 MB events

Challenges @ LHC

- # of channel ~ O(10⁷). ~25 interactions every 25ns
 - Need large number of connections, need information super-highway
- Calorimeter information should correspond to tracker information
 - Need to synchronize detectors to better than 25ns
- Sometimes detector signal/time of flight > 25ns
 - Integrate information from more than one bunch crossing
 - Need to correctly identify bunch crossing
- Can store data at O(100 Hz)
 - Need to reject most events
- Selection is done Online in real-time
 - Cannot go back and recover events
 - Need to monitor selection

Multi-tiered trigger systems

Level-1 trigger: Integral part of all trigger systems – always exists reduces rate to ~50-100kHz.

Upstream: further reduction needed – typically done in 1 or 2 steps

ATLAS Trigger/DAQ Architecture

L1 Trigger design goals

- Need large reduction in physics rate already at the first level (otherwise readout system becomes unaffordable)
 - − $O(10^9)$ interaction rate → less than 100 kHz
 - Require complex algorithms to reject background while keeping signal
- An important constraint is to achieve this without significant "dead-time"
 - Information from all detector channels ($O(10^7)$ channels!) has to be held in local memory on detector pending the L1 decision
 - ~2.5 μs in ATLAS/~3.2 μs in CMS
- Require flexibility to react to changing conditions (*e.g.* wide luminosity range) and hopefully new physics
 - Algorithms must be programmable (adjustable parameters at least)

Pipelined L1 trigger

- The time between LHC bunch crossings is 25ns
 - Too short to read out Megabytes of data for each event and to provide trigger decision
- The data is stored in a "pipeline" and the L1 decision is transmitted to the detector electronics within ~3µs of the crossing ("trigger latency")
 - Allows the L1 trigger to concurrently process many events
 - Can be achieved by "pipelining" the processing in custom trigger processors built using modern digital electronics
 - Break down processing into a series of steps, each of which can be performed within a single BX period
 - Many operations can be performed in parallel by having separate processing logic for each one
 - Note that the latency of the trigger is fixed
 - Determined by the number of steps in the calculation plus the time taken to move signals and data to and from the components of the trigger system

Pipelined readout

- In pipelined readout systems, the information from each bunch crossing, for each detector element, is retained during the latency of the LVL1 trigger (~3 µs)
- The information retained may be in several forms
 - Analog level (held on capacitor)
 - Digital value (e.g. ADC result)
 - Binary value (i.e. hit / no hit)

Preventing overflows

Trigger Rules (CMS)

- •Level-1 Latency 3.2 µs (128 bunch crossings or bx)
- "Standard" trigger rules:
 - •No more than 1 Level 1 Accept per 75 ns (> 2 bx btw. L1A),
 - Dead time 5x10⁻³ @ 100 KHz L1A rate
 - •Required by tracker and preshower
 - •No more than 2 Level 1 Accepts per 625 ns (25 bx)
 - •Dead time 1.3x10⁻³ @ 100 KHz L1A rate
 - •No more than 3 Level 1 Accepts per 2.5µs (100 bx)
 - •Dead time 1.2x10⁻³ @ 100 KHz L1A rate
 - •No more than 4 Level 1 Accepts per $6\mu s$ (240 bx)
 - •Dead time 1.4x10⁻³ @ 100 KHz L1A rate

Total deadtime cost @ 100 KHz L1A rate of order of 0.9%.

State-of-the-art technology

- ASICs (Application-Specific Integrated Circuits) used in some cases
 - Highest performance option, better radiation tolerance, lower-power consumption
- FPGAs (Field-Programmable Gate Arrays)
 - Impressive evolution with time; operating at 40MHz
 - Biggest advantage: flexibility
 - Can modify algorithms and their parameters in situ
- Communication technologies
 - High speed serial links (copper or fiber)
 - LVDS up to 10m and 400 Mb/s, G-link, Vitesse for longer distances and Gb/s transmission
 - Backplanes
 - Very large number of connections, multiplexing data, operate at ~160 Mb/s

L1 selection criteria

- Features that distinguish new physics from the bulk of the cross-section for Standard Model processes at hadron colliders are:
 - In general, the presence of high- p_T particles (or jets)
 - *e.g.* these may be the products of the decays of new heavy particles
 - In contrast, most of the particles produced in minimum-bias interactions are soft ($p_T \sim 1$ GeV or less)
 - More specifically, the presence of high-p_T leptons (e, μ , τ), photons, and/ or neutrinos
 - *e.g.* the products (directly or indirectly) of new heavy particles
 - These give a clean signature *c.f.* low-p_T hadrons in minimumbias case, especially if they are "isolated" (*i.e.* not inside jets)
 - The presence of known heavy particles
 - *e.g.* W and Z bosons may be produced in Higgs particle decays
 - Leptonic W and Z decays give a very clean signature
 - » Also interesting for physics analysis and detector studies

L1 signatures and backgrounds

- L1 triggers therefore search for:
 - High-p_T muons
 - Identified beyond calorimeters; need p_T cut to control rate from $p^+ \rightarrow \mu \nu$, $K^+ \rightarrow \mu \nu$, as well as semi-leptonic beauty and charm decays
 - High-p_T photons
 - Identified as narrow EM calorimeter clusters; need cut on E_T ; cuts on isolation and hadronic-energy veto reduce strongly rates from high- p_T jets
 - High-p_T electrons
 - Same as photon at L1 (matching track is required in subsequent selection)
 - High-p_T taus (decaying to hadrons)
 - Identified as narrow cluster in EM + hadronic calorimeters
 - High-p_T jets
 - Identified as cluster in EM + hadronic calorimeter need to cut at very high p_T to control rate (jets are dominant high-p_T process)
 - Large missing E_T or total scalar E_T

ATLAS Trigger Architecture

- LVL1 decision made with <u>calorimeter</u> data with coarse granularity and <u>muon trigger</u> <u>chambers</u> data.
 - Buffering on detector
- LVL2 uses <u>Region of Interest</u> <u>data</u> (~2%) with full granularity and combines information from all detectors; performs fast rejection.
 - Buffering in ROBs
- EventFilter refines the selection, can perform event reconstruction at full granularity using latest alignment and calibration data.
 - Buffering in EB & EF

CMS Level-1 Trigger & DAQ

• Overall Trigger & DAQ Architecture: 2 Levels:

CMS L1 Muon Trigger

- Level-1 muon trigger info is obtained from:
 - Dedicated trigger detector (Resistive parallel plate chambers: RPC)
 - Excellent time resolution
 - Muon chambers with accurate position resolution
 - Drift Tubes (DT) in barrel
 - Cathode Strip Chambers (CSC) in endcaps
 - Bending in magnetic field =>
 - Determine pT
 - And cut on it

Muon Trigger Overview

CMS Muon Trigger Primitives

- Assigns p, value

CMS Muon Trigger

Drift Tubes

Drift Tubes (DT)

Meantimers recognize tracks and form vector / quartet.

Correlator combines them into one vector / station.

Cathod Strip Chambers (CSC)

Sort based on P_{T} , Quality - keep loc.

Combine at next level match

Top 4 highest P_{T} and quality muons with

Hit strips of 6 layers form a vectocation coord.

Hardware Implementation:

ASICs for Trigger Primitive Generators FPGAs for Track finder processors

threshold

L1 Global Muon Trigger

- Combines information from different trigger decisions (RPC, DT, CSC)
 - Match muon candidates
 - Use complementarity of the sub-systems
 - Maximize efficiency, minimize rate
 - Identify 4 "best" muons and pass them onto the Global Trigger

Calorimeter Trigger Processing

CMS Jet/ τ Algorithm

• 12x12 trigger tower E_{τ} sums in 4x4 region steps with central region > others

• Larger trigger towers in HF but ~ same jet region size, 1.5 η x 1.0 ϕ τ algorithm (isolated narrow energy deposits), within -2.5 < η < 2.5

• Redefine jet as τ jet if none of the nine 4x4 region τ -veto bits are on Output

Top 4 τ-jets and top 4 jets in central rapidity, and top 4 jets in forward rapidity

H_T Trigger

- Total scalar E_T integrates too much noise and is not easily calibrated
 - At L1 tower-by-tower E_T calibration is not available
- However, jet calibration is available as function of (E_T, η, φ)
- Therefore, H_T which is the sum of scalar E_T of all high E_T objects in the event is more useful for heavy particle discovery/study
 - SUSY sparticles
 - Тор

- A very large OR-AND network which allows specification of complex conditions:
 - 1 electron with pT > 20 GeV OR 2 electrons with pT > 14 GeV OR 1 electron with pT > 12 GeV AND 1 jet with pT > 40 GeV
 - The top-level logic requirements (1 electron + 1 jet for eg.) constitute a "Trigger table"
 - Allocating rates to different trigger conditions is a complex process that requires optimization of physics efficiencies versus backgrounds, rates and machine conditions

CMS Global Trigger

Input:

- Jets: 4 Central, 4 Forward, 4 Tau-tagged, & Multiplicities
- Electrons: 4 Isolated, 4 Non-isolated
- •4 Muons (from 8 RPC, 4 DT & 4 CSC w/P, & quality)
 - -All above include location in η and ϕ
- Missing E_{T} & Total E_{T}

Output

L1 Accept from combinations & proximity of above

Global L1 Trigger Algorithms

Particle Conditions

1⁺(1)

μ⁻(2)

 $p_T(1) > p_T(1)$ ^{threshold}

 $p_T(2) > p_T(2)^{\text{threshold}}$

 $170^{\circ} \le |\phi(1) - \phi(2)| < 190^{\circ}$ ISO(1) = 1, ISO(2) = 1

MIP(1) = 1, MIP(2) = 1

SGN(1) = 1, SGN(2) = -1

 $0^{\circ} \le \phi(1) < 360^{\circ}$ $0^{\circ} \le \phi(2) < 360^{\circ}$

Logical Combinations

Level-1 Trigger Rates:

Trigger cuts determine the physics reach

- Efficiency for $H \rightarrow \gamma \gamma$ and $H \rightarrow 4$ leptons = >90% (in fiducial volume of detector)
- Efficiency for WH and ttH production with $W \rightarrow I_V = \sim 85\%$
- Efficiency for qqH with H $\rightarrow \tau\tau$ ($\tau \rightarrow 1/3$ prong hadronic) = $\sim 75\%$
- Efficiency for qqH with H \rightarrow invisible or H \rightarrow bb = \sim 40-50%

L1 Trigger Table

- Determined by the physics priorities of the experiment
- L1 table optimized to fit within the L1 bandwidth
- Allow a safety factor of 3
 - underestimation of input cross sections, poor beam conditions, detector performance, etc.
 - 17 kHz instead of nominal 50 kHz allowed by DAQ at startup
- Realistic menu including double and mixed triggers for specific physics channels

Example Level-1 Trigger Table (DAQ TDR: 2 x 10³³)

Trigger	Threshold (GeV or GeV/c)	Rate (kHz)	Cumulative Rate (kHz)
Isolated e/γ	29	3.3	3.3
Di-e/γ	17	1.3	4.3
Isolated muon	14	2.7	7.0
Di-muon	3	0.9	7.9
Single tau-jet	86	2.2	10.1
Di-tau-jet	59	1.0	10.9
1-jet, 3-jet, 4-jet	177, 86, 70	3.0	12.5
Jet*E _T ^{miss}	88*46	2.3	14.3
Electron*jet	21*45	0.8	15.1
Min-bias		0.9	16.0
TOTAL			16.0

 \times 3 safety factor \Rightarrow 50 kHz (expected start-up DAQ bandwidth)

DAQ Overview

DAQ Architecture

- Detector Front-ends:
 - Modules which store data from detector front-end electronics upon a L1 accept
- Readout systems:
 - Modules which read data from front-end systems and store the data until it is sent to the processors for analysis
- Intermediate trigger level (a la ATLAS)
 - Local detector data (partially assembled) provides an intermediate trigger level
- Builder network:
 - Collection of networks (switches) provide interconnections between the Readout and Filter systems, assembles events
- Filter Systems:
 - Processors which execute HLT algorithms to select interesting events for offline processing
DAQ Overview

DAQ Architecture

- Event Manager:
 - Responsible for controlling the flow of data (events) in the DAQ system
 - Simplifies overall system synchronization
- Computing systems:
 - Processors which receive filtered events from the Filter farms
- Controls:
 - Entities responsible for the user interface, configuration and monitoring of the DAQ

Event Builder Scheme

Event Building with a Switch

SWITCH : Networking device that connects network segments

Allows one to send data from a PC connected to a port (input port) to a PC connected to another port (output port) directly without duplicating the packet to all ports (i.e. an "intelligent" hub)

Switch inspects data packets as they are received, determines the source and destination device of that packet and forwards it appropriately

Conserves network bandwidth and optimizes data transfers

A switch you may be familiar with:

8-port consumer grade switch

HEP Switching Technologies

Gigabit Ethernet: 64 ports @ 1.2 Gb/s

Myricom Myrinet: 64 ports @ 2.5 Gb/s

Traffic Issues

Event Builder congestion should not lead to readout buffer overflow:

Need traffic shaping!

Dealing with traffic

Barrel shifter

Barrel Shifter:

The sequence of send from each source to each destination follows the cyclic permutations of all destinations

Allow to reach a throughput closer to 100% of input bandwidth

Additional traffic shaping techniques being used as well

Strategies

The massive Level-1 data rate poses problems even for network-based event building — ATLAS and CMS have adopted different strategies:

ATLAS: Uses Region-of-Interest (RoI) mechanism with sequential selection to access the data only as required – i.e. only move data needed for Level-2 processing

- Reduces by a substantial factor the amount of data that needs to be moved from the Readout Systems to the Processors
- Relatively complicated strategies needed to serve the data selectively to the Level-2 processors

 more complex software

CMS: Event building is factorized into a number of slices each of which sees only a fraction of the rate

• Requires large total network bandwidth (\Rightarrow cost), but avoids the need for a very large single network switch

CMS DAQ Slices

- Level-2 (ATLAS):
 - Region of Interest (ROI) data is ~1% of total
 - Smaller switching network is needed (not in # of ports but in throughput)
 - But adds:
 - Level-2 farm
 - Lots of control and synchronization
 - Problem of large network
 → problem of Level-2

- Combined HLT (CMS):
 - Needs very high throughput
 - Needs large switching network
 - But it is:
 - Simpler data flow and operations
 - More flexible (the entire event is available to the HLT - not just a piece of it)
 - Problem of selection \rightarrow problem of technology

High Level Trigger

- Strategy/design:
 - Use offline software as much as possible
 - Easy to maintain (software can be easily updated)
 - Uses our best (bug-free) understanding of the detector
- Boundary conditions:
 - Code runs in a single processor, which analyzes one event at a time
 - Have access to full event data (full granularity and resolution)
 - Limitations:
 - CPU time
 - Output selection rate: ~100 Hz
 - Precision of calibration constants

HLT Requirements

- Flexible:
 - Working conditions at 14 TeV are difficult to evaluate (prepare for different scenarios)
- Robust:
 - HLT algorithms should not depend in a critical way on alignment and calibration constants
- Inclusive selection:
 - Rely on inclusive selection to guarantee maximum efficiency to new physics
- Fast event rejection:
 - Event not selected should be rejected as fast as possible (i.e. early on in the processing)
- Quasi-offline software:
 - Offline software used online should be optimized for performance
 - (we need to select events that are "interesting enough")

HLT Processing

Example Trigger Path: CMS E/γ

- "Level-2" (CAL info only):
 - Confirm L1 candidates
 - Apply "clustering"
 - Supercluster algorithm recovers bremmstrahlung
 - Select highest E_T cluster
- "Level-2.5" (pixel only)
 - CAL particles traced back to vertex detector
- "Level-3"
 - Track reconstruction starting with L 2.5 seed & track quality cuts (electrons)
 - High Et cut (photons)

Trigger Menus

Need to address the following questions:

- What to save permanently on mass storage?
 - Which trigger streams should be created?
 - What is the bandwidth allocated to each stream?
 - (Usually the bandwidth depends on the status of the experiment and its physics priorities)
- What selection criteria to apply ?
 - Inclusive triggers (to cover major known or unknown physics channels)
 - Exclusive triggers (to extend the physics potential of certain analyses say b-physics)
 - Prescaled triggers, triggers for calibration & monitoring

General rule :

Trigger tables should be flexible, extensible (to different luminosities for eg.), and allow the discovery of unexpected physics.

Performance is a key factor too...

CMS HLT "Exercise"

CMS Report (LHCC): "What is the CPU performance of the HLT?"

CERN-LHCC 2007-021

Focus:

- Compile strawman Trigger Menu that covers CMS needs
- Determine CPU-performance of HLT algorithms
 - Implementation of 2008 physics-run (14 TeV) trigger menu
- (Study motivated by the need to purchase the Filter Farm by end 2007)

HLT cpu time budget ~ 40ms/event †

 \Rightarrow Select events that are "interesting enough" and bring down rate as quickly as possible

† DAQ-TDR (Dec 02):
"In 2007, for a L1 accept rate of 50 kHz & 2000 CPUs we need an average processing time of 2000/50 kHz ~ 40 ms/evt"₅₃

CMS HLT Exercise result

Average time needed to run <u>full</u> Trigger Menu on L1 accepted events: 43 ms/event † † Core 2 5160 Xeon processor running at 3.0 GHz

Strong dependence of CPU-times on HLT input: Safety factors used:

- factor of 3 in allocation of L1 bandwidth; only 17 kHz
- factor of 2 in HLT accept rate;
 only 150 Hz allocated

"Tails": Will eliminate with time-out mechanism

Auto-accept event if processing time exceeds e.g. 600 ms This saves significant time in MC (probably much more in real data) + will keep events of "unexpected" nature

Triggering on the unexpected

How does one trigger on the unknown?

General Strategy

Start by looking at various physics signals/signatures...

What are the main backgrounds?

Design a trigger using the above info

Estimate rates and efficiencies

Recognizing physics

Object	High E _⊤ Leptons	High E_T Jets	Missing E_{T}	Displ. Vertices
Bgrd QCD	rare	low E	all visible	rare
W/Z	>	✓	W	
pp→bb	low E		_	 Image: A second s
b→J/ψK _s	J/ψ→/⁺/⁻	—	_	\checkmark
Top t→bW	✓	 Image: A set of the set of the	√	✓
Higgs pp→hW/Z h →bb				 Image: A second s
W'	<i>✓</i>	 ✓ 	✓	1

 $p\overline{p} \rightarrow t\overline{t} \rightarrow \ell \nu b\overline{b}jj$ e b b Artes e

"Alternatives" signatures

- 1) Di-lepton, di-jet, di-photon resonances
 - Z' (leptons, jets),
 - RS Extra dimensions (leptons, photons, jets)
 - Z_{KK} in TeV⁻¹
 - heavy neutrino from right-handed W (di-lepton + di-jets)

3) Single photon + missing E_{T}

ADD direct graviton emission

"Alternatives" signatures

5) (a) Multi-lepton + multi-jet

Technicolor, littlest Higgs, universal extra dimensions

"Alternatives" signatures

- 5) Same sign di-leptons
 - same-sign top
- 8) Black Holes
 - High multiplicity events, jets/lepton ratio of 5:1

<u>Having robust lepton and jets triggers will be crucial !</u> (Cross-channel triggers like leptons + jets v. important too.)

(NOTE:

Many BSM signatures involve 3^{rd} generation particles: b's and τ and also MET Though challenging, triggers for these need to be commissioned at the same time)

CMS HLT Trigger Rates

HLT path	L1 condition	Thresholds (GeV)	HLT Rate (Hz)	Total Rate (Hz)
Single Isolated μ	A_SingleMu7	11	18.3 ± 2.2	18.3
Single Relaxed μ	A_SingleMu7	16	22.7 ± 1.5	37.7
Double Relaxed μ	A_DoubleMu3	(3, 3)	12.3 ± 1.6	48.5
μ + jet	A_Mu5_Jet15	(7, 40)	6.3 ± 0.7	60.8
$e + \mu$	*	(8, 7)	0.5 ± 0.4	61.2
$e + \mu$ relaxed	*	(10, 10)	0.1 ± 0.0	61.3
$\mu + \tau$	A_Mu5_TauJet20	(15, 20)	0.0 ± 0.0	61.3
Single-Jet	A_SingleJet150	200 9.3 ± 0		70.1
Double-Jet	A_SingleJet150 A_DoubleJet70	150	10.6 ± 0.0	74.4
"bread & butte BSM analyses	er" triggers for many	 μ: 50 Hz eγ: 30 Hz jets/ME 	z z T/Ht: 30 -	Ηz
For complete "triggerlist" see CERN-LHCC 2007-021, LHCC-G-134 @ L=10 ³² cm ⁻² s ⁻¹		 τ: / Hz b-jets: 1 34 x-chann prescale Total: 1 	10 Hz els: 20 Hz ed: 15 Hz 50 Hz	61

CMS HLT Trigger Rates

HLT path	L1 condition	Thresholds (GeV)	HLT Rate (Hz)	Total Rate (Hz)
Single Jet Prescale 10	A_SingleJet100	150	3.5 ± 0.0	87.9
Single Jet Prescale 100	A_SingleJet70	110	1.5 ± 0.0	89.1
Single Jet Prescale 1000	A_SingleJet30	60	0.8 ± 0.4	89.9
VBF Double-Jet + E_T	A_ETM30	(40, 60)	0.2 ± 0.0	89.0
SUSY 2-jet+ E_T	A_ETM30	(80,20,60)	2.0 ± 0.1	90.4
Acopl. Double-Jet + E_T	A_ETM30	(60, 60)	1.0 ± 0.0	90.4
Single Isolated e	A_SingleIsoEG12	15	17.1 ± 2.3	107.5
Single Relaxed e	A_SingleEG15	17	9.6 ± 1.3	109.3
Double Isolated e	A_DoubleIsoEG8	10	0.2 ± 0.1	109.4
Double Relaxed e	A_DoubleEG10	12	0.8 ± 0.1	109.9
Single Isolated γ	A_SingleIsoEG12	30	8.4 ± 0.7	118.1
Single Relaxed γ	A_SingleEG15	40	2.8 ± 0.2	118.5
Double Isolated γ	A_DoubleIsoEG8	(20,20)	0.6 ± 0.4	119.0
Double Relaxed γ	A_DoubleEG10	(20,20)	1.8 ± 0.5	120.1
High $E_T e$	A_SingleEG15	80	0.5 ± 0.0	120.4
High $E_T e$	A_SingleEG15	200	0.1 ± 0.0	120.4

"bread & butter" triggers for many BSM analyses Similar trigger menus are being designed by ATLAS

@ L=10³² cm⁻² s⁻¹

Lepton thresholds/efficiencies

HLT trigger path	E_T threshold (GeV)
Single isolated electron	15
Single relaxed electron	17
Double isolated electron	10
Double relaxed electron	12
Single isolated photon	30
Single relaxed photon	40
Double isolated photon	20
Double relaxed photon	20
Single high energy EM	80
Single very high energy EM	200

Efficiency of "e60" trigger Vs electron p_T based on a sample of 500 GeV RS $G \rightarrow ee$

Signal Efficiencies (LI eff=100%)						
Signal process	single high	Single very high	Total			
	energy EM	energy EM				
$Z' \rightarrow ee \ (M \ge 200 \text{ GeV})$	67	7.0	67			
$Z' \rightarrow ee \ (M \ge 500 \text{ GeV})$	91	69	93			
$Z' \to ee \ (M \ge 1000 \text{ GeV})$	94	92	98			
$Z' \to ee \ (M \ge 2000 \text{ GeV})$	90	97	98			
$G \rightarrow \gamma \gamma ~(M \ge 2000 \text{ GeV})$	91	97	98			

63

Summary

- Triggering at the LHC is a real challenge
- Sophisticated multi-tiered trigger systems have been designed by ATLAS and CMS
- Trigger menus for early physics runs are being laid out
 - Tools are in place and strategies are being optimized
- These strategies cover final states predicted by most BSM models
- Perhaps the most important strategy? KEEP AN OPEN MIND!

Trigger: A tricky business

in the small fraction of selected events?

Last Resort Trigger

- General trigger strategies work, but what if an object fails "standard quality" cuts ?
 - More likely to happen at the HLT, as L1 quality requirements are, in general, fairly loose

• Examples:

- Electron/photons with large impact parameter resulting in a "funny" cluster profile
- Events with abnormally high multiplicity of relatively soft objects
- b-tagged jets with extremely large impact parameter
- Funny tracking patterns in roads defined by L1 candidates
- Abnormally large fraction of L1 triggers fired with no HLT triggers to pass
- Abnormal density of tracks within HLT roads

- ...

Last Resort Trigger

- Proposal:
 - Take advantage of the sequential nature of HLT processing
 - Let individual HLT paths set a "weirdness flag" when the event fails the trigger, but in the process something in the event is found to look fairly strange (e.g., one of the cuts is failed by a very large margin)
- Run the "Last Resort" HLT filter as the last one in the path
 - Try to rescue these weird events by analyzing "weirdness flags" set by individual paths and/or based on global event properties
 - Forcefully accepts the event if several such flags are set
 - Accepts the event if large number of L1 triggers is fired...
 - Cuts designed to keep very low output rate («1Hz)
- The LRT could allow for an early warning system for "weird" events, which may indicate hardware failure or interesting, exotic physics
 - Designated triggers can then be developed for particular exotic signatures found by the LRT without compromising taking these data

BACKUP

Compact Muon Solenoid (CMS) DETECTOR

A Toroidal LHC AppartuS (ATLAS) DETECTOR

Magnets: solenoid (Inner Detector) 2T, air-core toroids (Muon Spectrometer) ~0.5T

CMS L1 Trigger Rates

L1 Trigger	Threshold (GeV)	Prescale	Rate (kHz)
A_SingleMu3	3	1000	0.01 ± 0.00
A_SingleMu5	5	1000	0.00 ± 0.00
A_SingleMu7	7	1	1.11 ± 0.04
A_SingleMu10	10	1	0.47 ± 0.03
A_SingleMu14	14	1	0.18 ± 0.02
A_SingleMu20	20	1	0.09 ± 0.01
A_SingleMu25	25	1	0.06 ± 0.01
A_SingleIsoEG5	5	10000	0.00 ± 0.00
A_SingleIsoEG8	8	1000	0.01 ± 0.00
A_SingleIsoEG10	10	100	0.04 ± 0.01
A_SingleIsoEG12	12	1	2.47 ± 0.06
A_SingleIsoEG15	15	1	1.10 ± 0.04
A_SingleIsoEG20	20	1	0.32 ± 0.02
A_SingleIsoEG25	25	1	0.14 ± 0.01
A_SingleEG5	,5	10000	0.00 ± 0.00
A_SingleEG8	8	1000	0.01 ± 0.00
A_SingleEG10	10	100	0.04 ± 0.01
A_SingleEG12	12	100	0.03 ± 0.01
A_SingleEG15	15	1	1.51 ± 0.05
A_SingleEG20	20	1	0.52 ± 0.03
A_SingleEG25	25	1	0.25 ± 0.02
A_SingleJet70	70	100	0.02 ± 0.01
A_SingleJet100	100	1	0.43 ± 0.02
A_SingleJet150	150	1	0.07 ± 0.01
A_SingleJet200	200	1	0.02 ± 0.01
A_SingleTauJet40	40	1000	0.02 ± 0.01
A_SingleTauJet80	80	1	0.68 ± 0.03
A_SingleTauJet100	100	1	0.20 ± 0.02
A_HTT250	250	1	2.56 ± 0.06
A_HTT300	300	1	0.65 ± 0.03
A_HTT400	400	1	0.08 ± 0.01

	L1 Trigger		Three (Ge	shold eV)	Pr	escale	Ra (kł	ite Hz)
	A_HTT500			500		1	0.02	± 0.00
	A_ETM20			20		10000	0.00	± 0.00
	A_ETM30			30		1	5.69	± 0.09
	A_ETM40			40		1	0.40	± 0.02
	A_ETM50			50		1	0.05	± 0.01
	A_ETM60			60		1	0.01	± 0.00
	A_DoubleMu	3		3	-	1	0.28	± 0.02
	A_DoubleIsoE	G8		8		1	0.28	± 0.02
	A_DoubleIsoE	G10		10		1	0.08	± 0.01
	A_DoubleEG	5		5	- 5	10000	0.00	± 0.00
	A_DoubleEG1	.0		10		1	0.19	± 0.02
	A_DoubleEG1	.5		15		1	0.05	± 0.01
	A_DoubleJet	70		70		1	0.58	± 0.03
	A_DoubleJet1	.00		100		1	0.11	± 0.01
	A_DoubleTauJe	t20		20		1000	0.02	± 0.01
	A_DoubleTauJe	t30		30		100	0.08	± 0.01
	A_DoubleTauJe	t40		40		1	2.36	± 0.06
	A_Mu3_IsoEG	5		3,5		1	0.95	± 0.04
	A_Mu5_IsoEG	LO		5,10		1	0.04	± 0.01
	A_Mu3_EG12	2		3,12		1	0.09	± 0.01
	A_Mu3_Jet1	5		3,15		20	0.30	± 0.02
A_I	soEG10_Jet30		10,30	3	1	1.95 :	± 0.05	= 0.05
A_I	soEG10_Jet20		10,20		1	3.04 =	± 0.06	= 0.01
A_I	soEG10_Jet70		10,70	6 17	1	0.26 =	± 0.02	= 0.04
A_Isc	EG10_TauJet20		10,20		1	1.95 :	± 0.05	: 0.03
A_Isc	EG10_TauJet30		10,30		1	1.33 :	± 0.04	= 0.02
A_Ta	auJet30_ETM30		30,30		1	1.96 :	± 0.05	= 0.01
A_Ta	auJet30_ETM40		30,40	2 2	1	0.26 =	± 0.02	
A	_TripleMu3	8	3	1	1	0.01 =	± 0.00	
A	LQuadJet30		30		1	0.58 :	± 0.03	
A_M	inBias_HTT10		10	lar	ge		0.40	71
1	A_ZeroBias	1	0	lar	ge		0.40	
	Total L1 Trigge	r Rate	(kHz)			16.67 :	± 0.15	

CMS High Level Trigger Rates

HLT path	L1 condition	Thresholds (GeV)	HLT Rate (Hz)	Total Rate (Hz)	
Single Isolated μ	A_SingleMu7	11	18.3 ± 2.2	18.3	
Single Relaxed μ	A_SingleMu7	16	22.7 ± 1.5	37.7	
Double Relaxed μ	A_DoubleMu3	(3, 3)	12.3 ± 1.6	48.5	
$J/\psi ightarrow \mu \mu$	A_DoubleMu3	$(3,3)\ M_{\mu\mu}\in [2.9,3.3]$	2.0 ± 0.8	49.4	
$\Upsilon \to \mu \mu$	A_DoubleMu3	$(3, 3) \ M_{\mu\mu} \in [8, 12]$	1.8 ± 0.5	50.5	
$Z ightarrow \mu \mu$	A_DoubleMu3	(7, 7) $M_{\mu\mu} \in [80, 100]$	0.1 ± 0.0	50.5	
Triple Relaxed μ	A_TripleMu3	(3, 3, 3)	0.1 ± 0.0	50.5	
Same-sign double μ	A_DoubleMu3	(3, 3)	5.7 ± 1.2	52.5	
$b \rightarrow \mu$ tag 1-jet Prescale 20	A_Mu5_Jet15	$\frac{20}{\Delta R(\mu, j)} < 0.4$	4.0 ± 0.1	56.1	
$b \rightarrow \mu$ tag 2-jets	A_Mu5_Jet15	$120, p_T^{rel}(\mu) > 0.7$ $\Delta R(\mu, j) < 0.4$	0.5 ± 0.0	56.1	
$b \rightarrow \mu$ tag 3-jets	A_Mu5_Jet15	70, $p_T^{rel}(\mu) > 0.7$ $\Delta R(\mu, j) < 0.4$	0.3 ± 0.0	56.1	
$b \rightarrow \mu$ tag 4-jets	A_Mu5_Jet15	40, $p_T^{\text{rel}}(\mu) > 0.7$ $\Delta R(\mu, j) < 0.4$	0.4 ± 0.0	56.1	
$b ightarrow \mu$ tag H_T	A_HTT250	$300, p_T^{rel}(\mu) > 0.7$ $\Delta R(\mu, j) < 0.4$	2.6 ± 0.2	56.6	
$b ightarrow J/\psi(\mu\mu)$	A_DoubleMu3	(4, 4) $M_{\mu\mu} \in [2.95, 3.25]$	0.7 ± 0.1	56.8	
$\mu + b$ -jet	A_Mu5_Jet15	(7, 35)	0.1 ± 0.0	56.8	
$\mu + b \rightarrow \mu$ -jet	A_Mu5_Jet15	(7, 20)	0.1 ± 0.1	56.8	
μ + jet	A_Mu5_Jet15	(7, 40)	6.3 ± 0.7	60.8	
$e + \mu$	*	(8, 7)	0.5 ± 0.4	61.2	
$e + \mu$ relaxed	*	(10, 10)	0.1 ± 0.0	61.3	
$\mu + \tau$	A_Mu5_TauJet20	(15, 20)	0.0 ± 0.0	61.3	
Single-Jet	A_SingleJet150	200	9.3 ± 0.1	70.1	
Double-Jet	A_SingleJet150 A_DoubleJet70	150	10.6 ± 0.0	74.4	
Triple-Jet	t	85	7.5 ± 0.1	78.8	
Quad-Jet	‡	60	3.9 ± 0.1	80.5	
E_T	A_ETM40	65	4.9 ± 0.7	84.0	
Acopl. Double-Jet	A_SingleJet150 A_DoubleJet70	125	1.4 ± 0.0	84.0	
Acopl. Single-Jet + E_T	A_ETM30	(100, 60)	1.6 ± 0.0	84.2	
Single-Jet + E_T	A_ETM30	(180, 60)	2.2 ± 0.1	84.4	
Double-Jet + E_T	A_ETM30	(125, 60)	1.0 ± 0.0	84.4	
Triple-Jet + E_T	A_ETM30	(60, 60)	0.6 ± 0.0	84.4	
Quad-Jet + E_T	A_ETM30	(35, 60)	1.2 ± 0.1	84.6	
$H_T + E_T$	A_HTT300	(350, 65)	4.4 ± 0.1	86.2	
Single Jet Prescale 10	A_SingleJet100	150	3.5 ± 0.0	87.9	
Single Jet Prescale 100	A_SingleJet70	110	1.5 ± 0.0	89.1	
Single Jet Prescale 1000	A_SingleJet30	60	0.8 ± 0.4	89.9	
	Continued on r	ext page		1	

HLT path	L1 condition	Thresholds (GeV)	HLT Rate (Hz)	Total Rate (Hz)			
VBF Double-Jet + E_T	A_ETM30	(40, 60)	0.2 ± 0.0	89.0			
SUSY 2-jet+ E_T	A_ETM30	(80,20,60)	2.0 ± 0.1	90.4			
Acopl. Double-Jet + E_T	A_ETM30	(60, 60)	1.0 ± 0.0	90.4			
Single Isolated e	A_SingleIsoEG12	15	17.1 ± 2.3	107.5			
Single Relaxed e	A_SingleEG15	17	9.6 ± 1.3	109.3			
Double Isolated e	A_DoubleIsoEG8	10	0.2 ± 0.1	109.4			
Double Relaxed e	A_DoubleEG10	12	0.8 ± 0.1	109.9			
Single Isolated γ	A_SingleIsoEG12	30	8.4 ± 0.7	118.1			
Single Relaxed γ	A_SingleEG15	40	2.8 ± 0.2	118.5			
Double Isolated γ	A_DoubleIsoEG8	(20,20)	0.6 ± 0.4	119.0			
Double Relaxed γ	A_DoubleEG10	(20,20)	1.8 ± 0.5	120.1			
High $E_T e$	A_SingleEG15	80	0.5 ± 0.0	120.4			
High $E_T e$	A_SingleEG15	200	0.1 ± 0.0	120.4			
Lifetime b-tag 1-jet	0	180	1.3 ± 0.0	120.5			
Lifetime b-tag 2-jets	0	120	2.1 ± 0.0	121.2			
Lifetime b-tag 3-jets	0	70	1.7 ± 0.0	121.8			
Lifetime b-tag 4-jets	0	40	1.8 ± 0.0	122.6			
Lifetime b -tag H_T	0	470	2.5 ± 0.1	123.1			
Single τ	A_SingleTauJet80	15	0.2 ± 0.0	123.2			
$\tau + \not\!$	A_TauJet30_ETIM30	15	1.8 ± 0.2	124.7			
Double τ (Calo+Pixel)	A_DoubleTauJet40	15	4.9 ± 0.6	129.4			
e + b-jet	A_IsoEG10_Jet20	(10, 35)	0.1 ± 0.0	129.4			
e + jet	A_IsoEG10_Jet30	(12, 40)	11.6 ± 1.2	135.8			
$e + \tau$	A_IsoEG10_TauJet20	(12, 20)	0.2 ± 0.0	135.8			
Prescaled e/γ	See Table 3	3.9	5.0 ± 0.0	140.8			
Prescaled μ	See Table 2.4 3.0 ± 0.0		3.0 ± 0.0	143.8			
Min.Bias	A_MinBias_HTT10	2 <u>—</u>	1.5 ± 0.0	145.3			
Pixel Min.Bias	A_ZeroBias	-	1.5 ± 0.0	146.8			
Zero Bias	A_ZeroBias	_	1.0 ± 0.0	147.8			
	Total HLT rate (Hz) 14						
CMS Trigger Efficiencies

Signal		HLT Single	d HLT	HLT Double			HLT Single Isolat				evel-1)*HLT				
$Z \rightarrow \mu \mu$		98.6		muo	91.2			95.8				98.1		Muons	
$W \rightarrow \mu \nu$		86.9			-			81.4				76.7			
HLT efficiency for benchmark channels															
			Isolate	d Rela	Relaxed		ed	Relaxed							
	Signal process		single	e sin	single		le	double						Electrons	
			electro	n elec	ron	electro	on	electron							
	HLT: $Z \rightarrow ee$		83.3	85	5.2 6		;	64.4							
	HLI: $W \rightarrow e\nu$		62.5		.2	-		-							
		LI: $Z \to ee$ [T: $W \to ev$]	52.1	52	.0	62.6	'	- 03.2							
														Photons	
Signal process				Isolated F		elaxed	Iso	lated	Re	elaxed				1 11010115	
				single		hoton	ac	louble		ouble					
HIT: $H \rightarrow \gamma \gamma (m_H - 120 \text{ GeV})$			-V)	80.5	80.5 7			75.8		75.7					
L1*HLT: $H \rightarrow \gamma \gamma (m_H = 120 \text{ GeV})$) GeV)	78.8	, I	76.8		75.8		75.7					
		/// II										· · · · · · · ·		1.1	
Signal process			sing	single high		Single very hi		h Tot	al			High- E_T E	^E M c	andidates	
			ene	energy EM		energy EM					ppl	y high E_T cut	s, loo	sen-up isolation)	
$Z' \rightarrow ee (M \ge 200 \text{ GeV})$				67		7.0		67	67 93						
$Z' \rightarrow ee (M \ge 500 \text{ GeV})$ $Z' \rightarrow ee (M \ge 1000 \text{ GeV})$			<u></u>	91		69		93							
$Z' \rightarrow ee (M \ge 1000 \text{ GeV})$ $Z' \rightarrow ee (M \ge 2000 \text{ GeV})$			31	90		97		90	,			Good <i>W</i> / <i>Z</i> efficiencies			
\tilde{G} –	$G \rightarrow \gamma \gamma \ (M \ge 2000 \text{ GeV})$			91		97		98	98			for muon	eσ	mma HI T 72	
	11 (2/2		/										, vg	unning 111/1 ()	

Global or Regional

ATLAS e/y trigger

- ATLAS e/g trigger is based on 4×4 "overlapping, sliding windows" of trigger towers
 - Each trigger tower 0.1×0.1 in h×f
 - h pseudo-rapidity, f azimuth
 - ~3500 such towers in each of the EM and hadronic calorimeters
- There are ~3500 such windows
 - Each tower participates in calculations for 16 windows
 - This is a driving factor in the trigger design

-Σ-Σ Hadronic --Σ-calorimeter Electromagnetic calorimeter Trigger towers $(\Delta \eta \times \Delta \phi = 0.1 \times 0.1)$ Electromagnetic **Vertical Sums** isolation < e.m. isolation threshold **Horizontal Sums** ►∑ <--) Hadronic isolation < inner & outer **De-cluster/Rol region:** isolation thresholds local maximum 10

20 Aug 2007

ATLAS LVL1 µ trigger

- ATLAS LVL1 μ trigger is based on coincidences among hits within "window" in layers of RPCs (TGCs). Window size determines p_{τ} threshold.
 - Low p_T trigger use inner 2 layers (3 thresholds)
 - High p_T trigger use outer 2 layers (+ low p_T trigger) (3 thresholds) ⁷⁷