LHC Physics GRS PY 898 B8

Lecture #2

Tulika Bose

LHC Experiments

Course Requirements

- Participants will be given seminars/proceedings to review and asked to summarize/discuss in class (50%)
 - Will send an email this week with some suggestions
- Attend BU HEE seminars and submit a 1-page written summary of any ONE of them (20%)
 - Seminars start this week
- Plan to arrange a "mini-conference" at the end of the semester where participants will give a 15-30 minute talk on a LHC subject of their choice (or something they learned during this course) (30%)

Quote (mid 1980's):

"we think we know how to build a high energy, high luminosity hadron collider we don't have the technology to build a detector for it;"

Material:

1) Review article:

D.Froidevaux & P. Sphicas, Annu. Rev. Nucl. Part. Sci. 2006, 56 375-440

2) Technological Challenges for LHC experiments:

http://indico.cern.ch/conferenceDisplay.py?confld=a042937

3) ATLAS Experiment: http://atlas.web.cern.ch/Atlas/index.html

4) CMS Experiment: <u>http://cms.cern.ch/</u>

Experimental Program history

- Series of accelerators with increasing energy and luminosity
- Hadron colliders
 - "broadband" beams of quarks and gluons
 - "search and discovery" and precision measurements
- Electron colliders
 - "narrowband" beams,
 - clean, targeted
 experiments and precision
 measurements

Experimental Program history

- Series of accelerators with increasing energy and luminosity
- Hadron colliders
 - "broadband" beams of quarks and gluons
 - "search and discovery" and precision measurements
- Electron colliders
 - "narrowband" beams,
 - clean, targeted
 experiments and precision
 measurements

- Most interesting physics is due to hard collision of quark(s) or gluon(s)
- That production is central (and rare) and "jet" like
- Remaining "spectators" scatter softly, products are distributed broadly about the beam line and dominate the average track density

Experimental Program history

- Series of accelerators with increasing energy and luminosity
- Hadron colliders
 - "broadband" beams of quarks and gluons
 - "search and discovery" and precision measurements
- Electron colliders
 - "narrowband" beams,
 - clean, targeted
 experiments and precision
 measurements

Hadron Collider History

Machine	C.M.S. Energy	Luminosity	Year	Role	Detector Innovations
ISR	31 GeV	2 x 10 ³²	1970's	Exploratory, IVB search	High rate electronics
SppS	640 GeV	6 x 10 ³⁰	'80 -'88	W, Z, jets	Hermetic and projective calorimeters, magnetic tracking
Tevatron	1.9 TeV	10 ³⁰ -10 ³²	'85 – '10	Top quark	Precision tracking, advanced triggers
LHC	14 TeV	10 ³³ -10 ³⁵	'08 - ?	Higgs,?	Fast detectors, radiation resistances

The Challenge @ LHC

LHC

Proton - Proton Protons/bunch Beam energy Luminosity

3564 bunch/beam 10¹¹ 7 TeV (7x10¹² eV) 10³⁴cm⁻²s⁻¹

Beam crossings: LEP, Tevatron & LHC

- LHC: ~3600 bunches (3564 bunches or 2808 filled bunches)
 - And same length as LEP (27 km)
 - Distance between bunches: 27km/3600=7.5m
 - Distance between bunches in time: 7.5m/c=25ns

pp cross section and min. bias

- # of interactions/crossing:
 - Interactions/s:
 - Lum = 10^{34} cm⁻²s⁻¹= 10^{7} mb⁻¹Hz
 - $\sigma(pp) = ~80 \text{ mb}$
 - Interaction Rate, R = 8x10⁸ Hz!
 - Events/beam crossing:
 - $\Delta t = 25 \text{ ns} = 2.5 \times 10^{-8} \text{ s}$
 - Interactions/crossing=20.0
 - Not all p bunches are full
 - 2808 out of 3564 only
 - Interactions/"active" crossing = 20.0 x 3564/2835 = 25

Summary of operating conditions:

A "good" event (say containing a Higgs decay) + ~25 extra "bad" minimum bias interactions 11

pp collisions at 14 TeV at 10³⁴ cm⁻²s⁻¹

25 min bias events overlap

- H→ZZ
 (Z →μμ)
- H→ 4 muons: the cleanest ("golden") signature

And this (not the H though...) repeats every 25 ns...

Influence on detector design

LHC detectors must:

- Have fast response
 - Avoid integrating over many bunch crossings ("pile-up")
 - Typical response time : 20-50 ns
 - → integrate over 1-2 bunch crossings → pile-up of 25-50 min-bias events → very challenging readout electronics
- Must be highly granular
 - Minimize probability that pile-up particles be in the same detector element as interesting object (e.g. γ from H $\rightarrow \gamma\gamma$ decays)
 - \rightarrow large number of electronic channels (-> large cost)
- Must be radiation resistant:
 - high flux of particles from pp collisions → high radiation environment e.g. in forward calorimeters:
 - up to 10¹⁷ n/cm² in 10 years of LHC operation
 - up to 10⁷ Gy (1 Gy = unit of absorbed energy = 1 Joule/Kg)

Pile-up

• "In-time" pile-up: particles from the same crossing but from a different pp interaction

- Long detector response/pulse shapes:
 - "Out-of-time" pile-up: left-over signals from interactions in previous crossings
 - Need "bunch-crossing identification"

The challenge

- In 25 ns particles travel 7.5 m

It continues with the Physics...

- Can you select the physics process of interest?
 - Separate your favorite signal from the literally billions of collisions that go on each day
- What is the event rate?
 - Drives the data acquisition system
 - How will you calibrate your detector?
 - How will you measure the various detector efficiencies ?

Process	σ (nb)	Production rates (Hz)
Inelastic	~10 ⁸	∼ 10 ⁹
$b\overline{b}$	5×10 ⁵	5×10 ⁶
$W \rightarrow \ell \nu$	15	100
$Z \rightarrow \ell \ell$	2	20
tī	1	10
<i>H</i> (100 GeV)	0.05	0.1
$Z'(1{ m TeV})$	0.05	0.1
$\widetilde{g}\widetilde{g}$ (1 TeV)	0.05	0.1
H(500 GeV)	10 ⁻³	10 ⁻²

10³⁴cm⁻²s⁻¹

- Event rates are determined by
 - Cross section σ (physics)
 - Luminosity $[cm^{-2}s^{-1}] = N_1N_2f / A$
 - N₁N₂= particles/bunch
 - f = crossing frequency
 - A = area of beam at collision
 - $N_{events} = \sigma \int Ldt$
 - Acceptance and efficiency of detectors
- Higher energy: threshold, statistics
- Higher luminosity: statistics

Process	σ (nb)	Production rates (Hz)
Inelastic	~10 ⁸	∼ 10 ⁹
	5×10 ⁵	5×10 ⁶
	15	100
	2	20
	1	10
	0.05	0.1
	0.05	0.1
	0.05	0.1
	10 ⁻³	10 ⁻²

10³⁴cm⁻²s⁻¹

- Experiments in particle physics are based upon three basic measurements.
 - Energy flow and direction: calorimetry
 - Particle identification
 (e,μ,π,Κ,ν...)
 - Particle momentum: tracking in a magnetic field
- Ability to exploit increased energy and luminosity are driven by detector and information handling technology.

• Easy access (cables, maintenance)

- Experiments in particle physics are based upon three basic measurements.
 - Energy flow and direction: calorimetry
 - Particle identification
 (e,μ,π,Κ,ν...)
 - Particle momentum: tracking in a magnetic field
- Ability to exploit increased energy and luminosity are driven by detector and information handling technology.

Very restricted access

- Experiments in particle physics are based upon three basic measurements.
 - Energy flow and direction: calorimetry
 - Particle identification
 (e,μ,π,Κ,ν...)
 - Particle momentum: tracking in a magnetic field
- Ability to exploit increased energy and luminosity are driven by detector and information handling technology.

No single detector does it all... → Create detector systems Let us have a look at interaction of different particles with the same high energy (here 300 GeV) in a big block of iron:

This is the hadronic shower.

large iron block.

nuclei, create some new particles ...

You can also see some muons from hadronic decays.

Here is the general strategy of a current detector to catch almost all particles:

All the detectors are wrapped around the beam pipe and around the collision point: here are a schematic and less schematic cut through ATLAS

Ideal Detectors

An "ideal" particle detector would provide...

- Coverage of full solid angle, no cracks, fine segmentation
- Measurement of momentum and energy
- Detection, tracking, and identification of all particles (mass, charge)
- Fast response: no dead time

However, practical limitations: Technology, Space, Budget, and engineering prevent perfection...

Here is one of them...

And another...

A Toroidal LHC ApparatuS

Growth of Detectors

CMS, 2310 authors, 48 ft high (14.6m)

ATLAS, 20m high

Experiments @ LHC

- ATLAS : A Toroidal LHC Apparatus (pp)
- CMS : Compact Muon Solenoid (pp)
- ALICE : A Large Ion Collider Experiment (Pb-Pb)
- LHCb : LHC b-physics (CP violation in B-meson decays)

Also:

- TOTEM (precision (1%) measurement of total cross section)
- LHCf (study of forward production of π^0 s)
- Moedal (search for magnetic monopoles)

Physics Requirements

Basic principle: need "general-purpose" experiments covering as much of the solid angle (4π) as possible

(we don't know how new physics will manifest itself)

- Very good muon identification and momentum measurement
 - muon spectrometer + central tracker
- Momentum/charge of tracks and secondary vertices
 - Powerful inner tracking systems (silicon + gas-based detectors)
- Energy and positions of electrons and photons
 - High energy resolution electromagnetic calorimetry
- Energy and position of hadrons and jets
 - Excellent hadronic calorimeters
- Hermetic calorimetry
 - good missing E_T resolution
- Affordable detector

The Magnet Choice

Key issue: measuring momenta of charged particles (eg muons) online

Complementary Realization ATLAS Standalone µ momentum measurement; safe for high multiplicities; 3 Air-core toroids (+ central solenoid) Property: σ_p flat with η CMS Measurement of momentum in tracker and B return flux; Iron-core Solenoid Property: muon tracks point back to vertex

Momentum measurement

Consider charged particle moving in a magnetic field

🕐 Sagitta s

$$s = R - R\cos\frac{\theta}{2} \approx R\theta^2 / 8$$

$$p = 0.3BR$$

$$L = R\theta$$

$$s = \frac{0.3BL^2}{8p}$$

Units: Tesla, meter, GeV

Momentum measurement

Resolution on s determines resolution on p

Need high BL² or small ds

$$dp / p = (p / F)ds$$
$$F = 0.3BL^2 / 8$$

- *ds* depends on resolution of tracking devices (technology!)
 - 10 μ (Si) 100 μ (Drift)
- *F* is also determined by state of the art technology: large magnets with high fields (superconducting)
 - 1 4 Tesla
- Large L better than high B, but the volume of the detector grows as L^3
 - 1 few Meters

Magnet Choice

Design goal: measure 1 TeV muons with 10% resolution

ATLAS: ~0.6T over 4.5 m \rightarrow s=0.5mm \rightarrow need σ_s =50 μ m

- Ampere's theorem: $2\pi r B \sim \mu_0 n I \rightarrow n I = 2x 10^7 At$
- With 8 coils, 2x2x30 turns: I=20kA (superC)
- Challenges: mechanics, 1.5GJ if quench, spatial
 & alignment precision over large surface area

CMS: B=4T (E=2.7 GJ)

R=3 m but tracking only over 1.2 m; s=0.22

- $B=\mu_0 nI$; @2168 turns/m \rightarrow I=20kA (SuperC)
- Challenges: 4-layer winding to carry enough I, design of reinforced superC cable

Magnet Choice

Toroid (ATLAS):

- Resolution is flat in eta
- Does not benefit from the beam spot (~20µm @ LHC)
- Needs additional solenoid for internal track measurement (B=2T solenoid)

Solenoid (CMS)

- Bending in transverse plane
 - Benefits from the 20 μ m beam spot
- But 4T => cannot use PM tubes
- Iron core => multiple scattering
- But measurement much better when combined with tracker

Muon System

Muon identification should be easy at L ~ 10^{34} cm⁻² s⁻¹

- Muons can be identified inside jets
 - b-tagging, control efficiency of isolation cuts

Factors that determine performance

- Selection online/rates
 - rate from genuine muons (b,c $\rightarrow \mu X$) is very high;
 - \Rightarrow must make a p_T cut with very high efficiency
 - -- need flexible threshold (p_T in the range 5 75 GeV)
- Pattern Recognition
 - hits can be spoilt by correlated backgrounds (em showers, punchthrough) and uncorrelated ones (neutrons and associated photons)
- Momentum Resolution
 - good chamber resolution (~ 100 μm) and good alignment
 - for low momenta precision comes from inner tracking

ATLAS Muon Detectors

Each detector has 3 stations. Each station consists of 2-4 layers.

Precision chambers

Monitored Drift Tubes ($|\eta| < 2$) with a single wire resolution of 80 µm 1194 chambers, 5500m² Cathode Strip Chambers (2 < $|\eta| < 2.7$) at higher particle fluxes 32 chambers, 27 m²

Trigger chambers

Resistive Plate Chambers ($|\eta| < 1.05$) with a good time resolution of 1 ns 1136 chambers, 3650 m² Thin Gap Chambers (1.05 < $|\eta| < 2.4$) at higher particle fluxes 1584 chambers, 2900 m²

CMS Muon Detectors

Tracking @ LHC

Momentum resolution goal: $\Delta p/p_T = 0.1 p_T$ [TeV] $|\eta| < 2$ (for narrow signals like $H \rightarrow 4\mu$, measure lepton charge upto ~2TeV, match calorimeter resolution...)

Factors that determine performance

- Momentum resolution
- Track finding efficiency occupancy
- Secondary vertex reconstruction

Solutions

- CMS : few, very accurate points
- ATLAS: continuous tracking

pixels (≈10⁴ μm²) occupancy $\approx 10^{-4}$ $\leq 4.10^{6} \text{ h}^{\pm}/\text{cm}^{2}/\text{s}$ Si µ-strip det. (≈10 mm²) occupancy $\approx 1\%$ $\leq 4.10^{5} \text{ h}^{\pm}/\text{cm}^{2}/\text{s}$ Si or Gas detectors. (≈1 cm²) occupancy $\approx 1\%$

Fluence over 10 years

Trackers @ LHC

Pixels: ~ 2.3 m² of silicon sensors, 140 M pixels, 50x300 μ m², r = 4, 10, 13 cm **Si** μ -strips : 60 m² of silicon sensors, 6 M strips, 4 pts, r = 30 - 50 cm **Straws TRT**: 36 straws/track, Xe-CO₂-CF₄ ϕ =4mm, r = 56 - 107 cm

Trackers @ LHC

CMS: Si pixels surrounded by silicon strip detectors Few, very precise and clean measurement layers

Radius ~ 110cm, Length ~ 270cm

Pixels: ~ 1 m² of silicon sensors, 40 M pixels, 150x150 μ m², r = 4, 7, 11 cm **Si** μ -strips : 223 m² of silicon sensors, 10 M strips, 12 pts, r = 20 – 120 cm

Material in the trackers

Calorimetry

Electromagnetic calorimetry:

Energy and position measurement of photons, electrons, positrons e.m. showers thru Bremsstrahlung, pair creation, etc.

$$\frac{\sigma(E)}{E} = \frac{a}{\sqrt{E}} \oplus c$$

a smaller for more samplings (cf. homogeneous calorimeters)

Calorimeter depth determined by radiation length.

$$X_0 = \frac{716.4A}{Z(Z+1)\ln(287/\sqrt{Z})} \quad [g \text{ cm}^{-2}]$$

Granularity determined by Molière radius (lateral shower size)

$$\rho_{M} = 21.2 X_{0} / \varepsilon_{c}$$

Radiation length X₀:

- e loses 63.2% of its energy via bremsstrahlung over distance X_o
- Mean free path of high-energetic photons = 9/7 X_o

Moliere radius p_M:

- Measure for the lateral shower size
- On average, 90% of shower is ٠ contained within cylinder of radius p_M around the shower axis.

Calorimetry

Hadronic Calorimetry

hadrons

Energy resolution scales as for e.m. calorimetry but with *a* typically larger Calorimeter depth determined by interaction length $\lambda_{int} \propto 1/\sigma$

Courser granularity than e.m.

• jets

Some examples of materials:

	<i>X₀</i> [cm]	λ _{int} [cm]
Fe	1.76	16.8
Pb	0.56	17.0
PbWO ₄	0.89	18.0

EM Calorimetry @ LHC

Need excellent EM calorimeter resolution of electron/photons In several scenarios moderate mass narrow states decaying into photons or electrons are expected

SM : intermediate mass $H \rightarrow \gamma\gamma$, $H \rightarrow Z Z^* \rightarrow 4e$ MSSM: $h \rightarrow \gamma\gamma$, $H \rightarrow \gamma\gamma$, $H \rightarrow Z Z^* \rightarrow 4e$

Higgs width is very narrow S/N directly proportional to signal resolution

In all cases the observed width

(cf. signal over background)

will be determined by the instrumental mass resolution. Need :

- good e.m. energy resolution
- good photon angular resolution
- good two-shower separation capability

Hadronic Calorimetry @ LHC

Jet energy resolution

- Limited by jet algorithm, fragmentation, magnetic field and energy pileup at high luminosity
- Can use the width of jet-jet mass distribution as a figure of merit
 - Low p_t jets: W, Z \rightarrow Jet-Jet, e.g. in top decays
 - High p, jets: W', $Z' \rightarrow$ Jet-Jet
- Fine lateral granularity (≤ 0.1) high p, W's, Z's

Missing transverse energy resolution

- Gluino and squark production
 - Forward coverage up to $|\eta| = 5$
 - Hermeticity minimize cracks and dead areas
 - Absence of tails in the energy distribution is more important than a low value for the stochastic term
- Good forward coverage is also required to tag processes initiated vector boson fusion

CMS Calorimeters

σ/E = 3%/E + 0.5%

HCAL

Central Region ($|\eta|<3$) : Brass/Scintillator with WLS fibre readout, projective geometry, granularity $\Delta\eta x \Delta \phi = 0.0875 \times 0.0875$ **Forward Region** (3< $|\eta|<5$): Fe/Quartz Fibre, Cerenkov light $\sigma/E = 100\%/E + 5.0\%$ GeV

ATLAS Calorimeters

ECAL

Accordion Pb/LAr $|\eta| < 3.2, 3 \text{ samplings}$ $S1: \Delta\eta x \Delta \phi = 0.025 \times 0.1$ $S2: \Delta\eta x \Delta \phi = 0.025 \times 0.025$ $S3: \Delta\eta x \Delta \phi = 0.05 \times 0.025$ $\sigma/E = 10\%/E + 0.7\%$

HCAL

Barrel: Fe/Scintillator with WLS fibre readout 3 samplings - $\Delta\eta x \Delta \phi = 0.1 x 0.1$ **Endcap**: Fe/LAr **Forward**: W/LAr 3.1<l η l<4.9 $\Delta\eta x \Delta \phi = 0.2 x 0.2$ $\sigma/E = 50\%/E + 3.0\%$

ATLAS and CMS follow the same principles but differ in realization:

	ATLAS	CMS
Tracker or Inner Detector	Silicon pixels, Silicon strips, Transition Radiation Tracker. 2T magnetic field	Silicon pixels, Silicon strips. 4T magnetic field
Electromagnetic calorimeter	Lead plates as absorbers with liquid argon as the active medium	Lead tungstate (PbWO ₄) crystals both absorb and respond by scintillation
Hadronic calorimeter	Iron absorber with plastic scintillating tiles as detectors in central region, copper and tungsten absorber with liquid argon in forward regions.	Stainless steel and copper absorber with plastic scintillating tiles as detectors
Muon detector	Large air-core toroid magnets with muon chamber form outer part of the whole ATLAS	Muons measured already in the central field, further muon chambers inserted in the magnet return yoke

Overview

```
Tracking (|\eta|<2.5, B=2T) :
```

-- Si pixels and strips

```
-- Transition Radiation Detector (e/\pi separation)
```

```
Calorimetry (|\eta|<5) :
```

- -- EM : Pb-Lar
- -- HAD: Fe-scintillator (central), Cu/W-LAr (fwd)

Muon Spectrometer ($|\eta| < 2.7$) : air-core toroids with muon chambers

Tracking ($|\eta|$ < 2.5, B=4T) : Si pixels and strips

```
Calorimetry (|\eta| < 5) :
```

- -- EM : PbWO4 crystals
- -- HAD: brass-scintillator (central+ end-cap), Fe-Quartz (fwd)

Muon Spectrometer ($|\eta|$ <2.5) : return yoke of solenoid instrumented with muon chambers

ATLAS

CMS

Overview

	ATLAS	CMS
MAGNET (S)	Air-core toroids + solenoid in inner part Calorimeters outside field 4 magnets	Solenoid Calorimeters inside field 1 magnet
TRACKER	Si pixels+ strips TRT \rightarrow particle identification B=2T $\sigma/p_T \sim 5x10^{-4} p_T \oplus 0.01$	Si pixels + strips No particle identification B=4T $\sigma/p_T \sim 1.5 \times 10^{-4} p_T \oplus 0.005$
EM CALO	Pb-liquid argon $\sigma/E \sim 10\%/\sqrt{E}$ uniform longitudinal segmentation	PbWO ₄ crystals $\sigma/E \sim 2-5\%/\sqrt{E}$ no longitudinal segmentation
HAD CALO	Fe-scint. + Cu-liquid argon (10 λ) $\sigma/E \sim 50\%/\sqrt{E \oplus 0.03}$	Brass-scint. (> 5.8 λ +catcher) $\sigma/E \sim 100\%/\sqrt{E \oplus 0.05}$
MUON	Air $\rightarrow \sigma/p_T < 10\%$ at 1 TeV standalone; larger acceptance	Fe $\rightarrow \sigma/p_T \sim 5\%$ at 1 TeV combining with tracker

CMS Trivia/Pictures

CMS Collaboration

Compact Muon Solenoid (CMS)

175 Institutions

The CMS Detector @LHC

- Weighs about 12,500 tons
 - Equal to 40 large airplanes
- Highlights of a few components:
 - -205 m^2 of Silicon sensors (strips and pixels)
 - 93 million micro strips, 66 million pixels
 - 80,000 lead tungstate cyrstals
 - One of the sub-detectors (HCAL) uses brass recovered from Russian artillery shells, weighs 500-tons and uses 80,000 bolts to hold it together.
 - think your 6MP digital camera taking 40 million pictures a second
- Approx 1 Terabyte/sec raw data rate from the CMS detector
 - Recorded data capacity will be equivalent to CDs stacked at the rate of 20 km/year

CMS Detector

And in reality...

March 2007

CMS Caverns

Heavy Lowering

CMS is the first large HEP detector that has been assembled, cabled and tested on the surface and then brought underground

- 13 Heavy Lowerings
- Masses between 400 tons and 1920 tons
- YE1 most difficult: Mass 1430 tons
- Nose of 465 tons out of plane of disk -center of gravity in front of the the plane.

Assembly Hall - SX5

Solenoid

- diameter = 6 m (20 ft)
- Largest one ever built
- stores 2.7 GJ of energy

Solenoid

Successful Insertion 2005...

Muon System

Muon: σ /pt = 1% @ 50GeV to 10% @ 1TeV

Lowering into the cavern...

HCAL

HCAL

- brass for detector came from Russian artillery shells
- electronic signal is made by scintillating plastic
- 4608 "towers"

HB - Feb, 2007

Lowering of YE-1

January, 2008

The last heavy element of CMS is lowered into the collision hall.

The Silicon Strip Tracker, the Silicon Pixels and the endcap ECAL remain to be installed.

CMS Crystal ECAL

76K PbWO₄ crystals for fine electron/photon energy measurements

More crystals (in volume or number) than in all previous HEP experiments combined

Barrel production and installation completed 27 July 2007

Endcap production complete and inserted 1 August 2008 \rightarrow

EM Calorimeter: PbWO₄ crystals, $\sigma/E = 3\%/E + 0.003$, 25X₀

CMS Tracker

- tracker is made from silicon
- inner tracker; 76,000,000 channels
- forward tracker, 45,000,000 channels
- total area: 210 m²

Silicon Strip Tracker, Dec 2007

Installation of the Pixel System, August 2008

A 66 megapixel "camera" ! Makes precise measurements of charged particle impact parameters to tag particles with a small but finite lifetime

Before Closure

CMS Completed! August 25, 2008 - 16 years after its Letter of Intent

Next Class

The Challenge @ LHC

The Challenge

Process	σ (nb)	Production rates (Hz)
Inelastic	~10 ⁸	~10 ⁹
$b\overline{b}$	5×10 ⁵	5×10 ⁶
$W \rightarrow \ell \nu$	15	100
$Z \rightarrow \ell \ell$	2	20
tt	1	10
$H(100{ m GeV})$	0.05	0.1
$Z'(1{ m TeV})$	0.05	0.1
$\widetilde{g}\widetilde{g}$ (1 TeV)	0.05	0.1
<i>H</i> (500 GeV)	10 ⁻³	10 ⁻²

The Solution?