Quantum Chromodynamics at the Large Hadron Collider

A (hopefully brief) Introduction

John Roush April 23rd, 2009

Major Goals of QCD Studies

- Greater precision in Standard Model parameters
 - Parton Distribution Functions
 - □ Strong Coupling Constant
- Leading to background reduction in other processes
- New Physics beyond the SM

Challenges of QCD experiments

- Inability to directly observe hadronic decay products
- Breakdown of perturbation theory for low-energy interactions

Total p-p cross section

.

p-p σ_{tot} - Current Limits

P'erez-Peraza et. al., Proton-proton total cross-sections at HE from accelerator data, 2005

p-p σ_{tot} – Measurement Prospects

 TOTEM experiment aims to reduce uncertainty to ~1% at LHC energies

Figure 5. Predictions for total pp cross sections [3], including ISR and cosmic ray data.

S. Lamia, arXiv:hep-ex/0612049v1 21 Dec 2006

Proton Collisions – Hard Scattering

 Best understood strong interactions are high-energy single parton interactions

Proton Collisions - Jets

 Primary background for all other processes

Figure 7.1: Decomposition of the total jet cross section into the partonic processes for $p\bar{p}$ collisions at the Tevatron (left) and pp collisions at the LHC (right). The fractional contributions are shown versus the scaling variable $x_T = 2p_T/\sqrt{s}$.

CMS TDR 8.2, 2006

Estimated cross section by process

Luminosity = 10^{33} cm⁻²s⁻¹

Process	$\sigma(nb) \equiv \#$ of events/sec	events/yr
Total cross-sections	10 ⁸	10 ¹⁵
$W^{\pm} ightarrow e u$	20	$2 imes 10^8$
$Z ightarrow e^+ e^-$	2	$2 imes 10^7$
$t\overline{t}$	0.8	$8 imes 10^6$
$b\overline{b}$	$5 imes \mathbf{10^5}$	5×10^{12}
central jets ($P_T > 10 GeV$)	$2.5 imes10^{6}$	$\textbf{2.4}\times\textbf{10^{13}}$
central jets ($P_T > 100 GeV$)	10 ³	10 ¹⁰
central jets ($P_T > 1000 GeV$)	$1.5 imes10^{-3}$	$1.5 imes10^5$

Parton Distribution Functions

- A dependency (along with α_s) of the cross section for all other LHC processes
 - Weak processes dominated by low momentum (x < ~0.1) distributions
 - □ Dominates uncertainty in high- E_T (> ~2TeV) jet analysis
- Determined from a combination of hadronic scattering processes:
 - Jet and direct photon production best determine gluon distribution
 - Semi-lepton final states best determines quark/antiquark distribution

Tricoli, Parton Densities at the LHC, 2008

Figure 1: MSTW 2008 NLO PDFs at $Q^2 = 10 \text{ GeV}^2$ and $Q^2 = 10^4 \text{ GeV}^2$.

PDF Measurements at the LHC

- New constraints on PDF uncertainties:
 - Inclusive Jet Production
 - Prompt photon production
 - □ W boson rapidity distribution
- New constraints can be used to tighten uncertainties in Monte-Carlo simulations

Heavy Ion Experiments

 Constrains low-momentum regime, particularly gluon distributions

The kinematic regions in x and Q2 explored by nuclear DIS and Drell-Yan experiments, by RHIC experiments, and by experiments in preparation at LHC.

Dainese, Heavy ions and parton saturation from RHIC to LHC, 2008

Strong Coupling Constant

- Used in conjunction with PDFs to estimate cross sections using perturbation theory
- Most cleanly established using processes with completely leptonic final states

B Production

- Exploration of apparent inconsistency between observations and predictions of cross section
 - higher luminosities combined with higher energies yield much greater cross section for b production
- Requires careful jet analysis

CMS estimated b-tagging resolution

 p_{T} > 170 GeV, resolutions are 13% and 6% for p_{T} respectively

Figure 7.8: Relative resolution, (Reconstructed – True) / True, for p_T and pseudorapidity of b tagged jets in CMS.

CMS TDR 8.2, 2006

Higgs Production

- Higgs primarily produced through gluon gluon fusion; improving gluon momentum distribution is a key aspect of QCD analysis
- $H \rightarrow \gamma \gamma$ channel irreducible background reduction

Conclusions

- QCD analyses are the essential groundwork required to understand the detectors and generally reduce backgrounds
- Better understanding of strong interactions constrains physics beyond the standard model

Acknowledgements

- CMS and ATLAS collaborations for their technical design documentation
- Jason St. John, for giving me access to his introductory presentation on jet production

