

Introduction

Trigger Hands-On Advance Tutorial Session

A. Avetisyan, <u>Tulika Bose</u> (Boston University)

On behalf of the Trigger HATS team: Juliette Alimena, Len Apanasevich, Inga Bucinskaite, Darren Puigh, Dylan Rankin, Clint Richardson

August 13th, 2014

LHC

Proton - Proton ~3600 bunch/beam
Protons/bunch ~10¹¹
Beam energy ~6.5 TeV (6.5x10¹² eV)

Luminosity >10³⁴cm⁻²s⁻¹

Beam crossings: LEP, Tevatron & LHC

- LHC: ~3600 bunches (or ~2800 filled bunches)
 - And same length as LEP (27 km)
 - Distance between bunches: 27km/3600=7.5m
 - Distance between bunches in time: 7.5m/c=25ns

Summary of operating conditions: A "good" event (say containing a Higgs decay) + ~25 extra "bad" minimum bias interactions

pp collisions at 14 TeV at 10³⁴ cm⁻²s⁻¹

25 min bias events overlap

- H→ZZ (Z→μμ)
- H→ 4 muons:
 the cleanest
 ("golden")
 signature

And this (not the H though...) repeats every 25 ns...

Physics Selection @ LHC

The Challenge @ LHC

The Challenge

Process	σ (nb)	Production rates (Hz)
Inelastic	~108	~10 ⁹
$b \overline{ar{b}}$	5×10 ⁵	5×10 ⁶
$W \to \ell \nu$	15	100
$Z \rightarrow \ell \ell$	2	20
$t\bar{t}$	1	10
$H(100\mathrm{GeV})$	0.05	0.1
Z'(1TeV)	0.05	0.1
$\widetilde{g}\widetilde{g}$ (1 TeV)	0.05	0.1
$H(500\mathrm{GeV})$	10 ⁻³	10 ⁻²

The Solution

The Trigger

The Challenge

Process	σ (nb)	Production rates (Hz)
Inelastic	~108	~10 ⁹
$b \overline{ar{b}}$	5×10 ⁵	5×10 ⁶
$W \to \ell \nu$	15	100
$Z \rightarrow \ell \ell$	2	20
$t\bar{t}$	1	10
$H(100\mathrm{GeV})$	0.05	0.1
Z'(1TeV)	0.05	0.1
$\widetilde{g}\widetilde{g}$ (1 TeV)	0.05	0.1
$H(500\mathrm{GeV})$	10 ⁻³	10 ⁻²

The Solution

Trigger/DAQ challenges @ LHC

- # of channel $\sim O(10^7)$. $\sim 25-50$ interactions every 25ns
 - Need large number of connections
 - Need information super-highway
- Calorimeter information should correspond to tracker information
 - Need to synchronize detectors to better than 25ns
- Sometimes detector signal/time of flight > 25ns
 - Integrate information from more than one bunch crossing
 - Need to correctly identify bunch crossing
- Can store data at O(100 Hz)
 - Need to reject most events
- Selection is done Online in real-time
 - Cannot go back and recover events
 - Need to monitor selection

Trigger/DAQ Challenges

Challenges:

1 GHz of Input Interactions

Beam-crossing
every 25 ns with ~
25 interactions
produces over 1
MB of data

Archival Storage at about 300 Hz of 1 MB events

Triggering

 Task: inspect detector information and provide a first decision on whether to keep the event or throw it out

The trigger is a function of :

Event data & Apparatus Physics channels & Parameters

- Detector data not (all) promptly available
- Selection function highly complex
- ⇒T(...) is evaluated by successive approximations, the TRIGGER LEVELS

(possibly with zero dead time)

General trigger strategy

Needed: An efficient selection mechanism capable of selecting interesting events

- this is the **TRIGGER**

"Needle in a haystack"

- System should be as inclusive as possible
- Robust
- Redundant
- Need high efficiency for selecting interesting processes for physics:
 - selection should not have biases that affect physics results
 - (understand biases in order to isolate and correct them)
- Need large reduction of rate from unwanted high-rate processes
 - instrumental background
 - high-rate physics processes that are not relevant (min. bias)

This complicated process involves a multi-level trigger system...

Multi-level trigger systems

- L1 trigger:
 - Selects 1 out of 10000 (max. output rate ~100kHz)
- This is NOT enough
 - Typical ATLAS and CMS event size is 1MB
 - 1MB x 100 kHz = 100 GB/s!
- What is the amount of data we can reasonably store these days?
 - O(100) MB/s
- → Additional trigger levels are needed to reduce the fraction of "less interesting" events before writing to permanent storage

Multi-tiered trigger systems

Level-1 trigger: Integral part of all trigger systems – always exists reduces rate to ~50-100kHz.

Upstream: further reduction needed – typically done in 1 or 2 steps

A multi-tiered Trigger System

Traditional 3-tiered system

Pipelined,
Hardware only, coarse readout,
~few us latency

Hardware/Software mix, L1 inputs, ~100 μs latency

CPU farm, access to full event information, *O*(1)s/event

Two-tiered system

Two-level processing:

- Reduce number of building blocks
- Rely on commercial components for processing and communication

Comparison

- Three physical entities
 - Invest in
 - Control logic
 - Specialized processors

- Two physical entities
 - Invest in
 - Bandwidth
 - Commercial processors

Level-1 algorithms

Physics concerns:

- pp collisions produce mainly low pT hadrons with pT ~ 1 GeV
- Interesting physics has particles with large transverse momentum
 - W->ev : M(W) = 80 GeV; pT (e) ~ 30-40 GeV
 - − H(120 GeV) \rightarrow $\gamma\gamma$; pT($\gamma\gamma$) ~ 50-60 GeV

Requirements

- Impose high thresholds
 - Implies distinguishing particles
 - possible for electrons, muons and jets; beyond that need complex algorithms
- Some typical thresholds from 2012:
 - Single muon with pt > 16 GeV
 - Double e/ γ trigger with pT > 17, 8 GeV
 - Single jet with pT > 128 GeV
- Total of 128 physics algorithms possible at L1
 - Candidates' energy, kinematics, quality, correlations...

Particle signatures

ATLAS & CMS Level 1: Only Calorimeter & Muon

Pattern recognition much faster/easier

Simple Algorithms

Small amounts of data

Compare to tracker info

High Occupancy in high granularity tracking detectors

High Level Trigger

HLT Processing

High Level Triggers (> Level 1) are implemented more or less as advanced software algorithms using CMSSW

- Run on standard processor farms with Linux as OS
 - cost effective since Linux is free
 - Different Intel Xeon generations (2008-2012)

HLT filter algorithms are setup in various steps:

- Each HLT trigger path is a sequence of modules
 - Producer: creates/produces a new object
 - eg. unpacking, reconstruction
 - •Filter: makes a true/false [pass/fail] decision
 - •eg. muon $p_T > X \text{ GeV } ?$
- Processing of the trigger path stops once a module returns false

See talks by Juliette and Dylan

HLT Menu

Many algorithms running in parallel

- Logically independent
- Determine
 - trigger decision
 - how to split the events, online and offline (Streams and Primary Datasets – more on this later)

HLT Guidelines

- Strategy/design:
 - Use offline software as much as possible
 - Easy to maintain (software can be easily updated)
 - Uses our best (bug-free) understanding of the detector
 - Optimize for running online (~100 times faster than offline)
 - Run the fastest algorithms first, reject events as early as possible, regional unpacking/reconstruction, reduce combinatorics/pileup
- Boundary conditions:
 - Have access to full event data (full granularity and resolution)
 - Take advantage of regions of interest to speed up reconstruction
 - Limitations:
 - CPU time | See Clint's talk
 - Output selection rate: ~400-1000 Hz See Inga's talk
 - Precision of calibration constants
 - (While keeping physics acceptance as high as possible)

See talks by Dylan and Darren

HLT Requirements

Flexible:

 Working conditions at 14 TeV are difficult to evaluate (prepare for different scenarios)

Robust:

 HLT algorithms should not depend in a critical way on alignment and calibration constants

Inclusive selection:

Rely on inclusive selection to guarantee maximum efficiency to new physics

Fast event rejection:

Event not selected should be rejected as fast as possible (i.e. early on in the processing)

Quasi-offline software:

- Offline software used online should be optimized for performance
- (we need to select events that are "interesting enough")

Trigger Menus

Need to address the following questions:

- What to save permanently on mass storage?
 - Which trigger streams should be created?
 - What is the bandwidth allocated to each stream?
 - (Usually the bandwidth depends on the status of the experiment and its physics priorities)
- What selection criteria to apply?
 - Inclusive triggers (to cover major known or unknown physics channels)
 - Exclusive triggers (to extend the physics potential of certain analyses say bphysics)
 - Prescaled triggers, triggers for calibration & monitoring

General rule:

Trigger tables should be flexible, extensible (to different luminosities for eg.), and allow the discovery of unexpected physics.

- The HLT is responsible for splitting the data into different streams
 - Different purposes
 - Different event content
 - Different rates
- Stream A collects all the data for physics analysis
 - Is further sub-divided into Primary Datasets (PDs)

Alignment,

High Level Trigger @ 13 TeV in 2015

- The higher collision energy leads to a higher cross-section
 - comparing 8 TeV and 13 TeV MC simulation we observe:
 - a factor 1.5 2 for leptons
 - a factor > 4 for jets!
 - assume an average increase by a factor ~ 2
- higher luminosity: ~ 1.4e34 cm-2s-1
 - a factor ~2 higher than the peak luminosity in 2012
- => a factor ~4 increase in the expected HLT rate
- Pileup will be higher too
 - Max. av. Pileup ~40 (compared to ~30 for 2012)
 - HLT rate ~robust against pileup but HLT timing increases linearly with pileup

Bottomline: need to make better use of the available bandwidth, improve online reconstruction, calibration, design smarter and better triggers...

Trigger Coordination

Trigger Coordinators

(Tulika Bose) Roberto Carlin

Deputies

Andrea Bocci, Simone Gennai

Strategy Trigger Evaluation And Monitoring

Roberta Arcidiacono Muriel Vander Donckt

Rates & Prescales:

I. Bucinskaite, L. Apanasevich, TBD

Menu Development and OpenHLT:

Z. Demiragli, H. Gamsizkan

Data & MC Release Validation:

D. Puigh, TBD

Offline DQM:

D. Puigh, TBD

Software Tools Online Release Menu

Martin Grunewald
Andrea Perrotta

Menu Integration & Validation:

J. Alimena, G. Smith

Framework & Tools:

M. Rieger

ConfDB:

V. Daponte, S. Ventura

Field Operations Group

Aram Avetisyan Marina Passaseo

Online Deployment:

TBD

Rate/CPU Monitoring:

C. Richardson, D. Salerno, Y. Yang

Online DQM:

TBD

Calibration/Alignment:

J. Fernandez

POG/PAG Trigger Conveners

TSG Open Positions

FOG:

- Online Deployment:
 - development of software and tools for DAQ2
 - On-call expert training, documentation
- Online DQM
- On-call experts for Run 2

STEAM:

- Rates & Prescales
 - Rate and timing studies for the overall HLT menu
- Validation/DQM
 - Coordinate the validation of new HLT menus, new software releases, and AlCa conditions
 - Maintenance of group software tools