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Searching for rare signals

circa 2011

Higgs and new physics cross-sections are small...
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Over huge backgrounds
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. LHC (14 TeV)
To achieve a discovery, huge background reductionrate & TOT
needed © 1
10’
- Example of H—vyy : typically 9 orders of magnitude under the o™
QCD jets background 10°
- Reducible background : jet-jet, photon-jet 10"
- Jets can be mis-identified as photons o
=> can be suppressed by tight photon identification criteria o
- Irreducible background : photon-photon i
- Non-resonant diphoton continuum *
=> Can be discriminated using kinematic properties o
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With experimental challenges

Experimental challenges : @ATLAS
) : 1 1 EXPERIMENT
- Detector calibration 7

Date: 2011-09-14 02:47:14 CEST

- Identification of the tracks / energy deposits
in the sub-detectors

- Particle reconstruction

- Particle identification

- Finding the vertex of hard interaction among
all pile-up vertices

- Discriminate the signal process against all
other background processes

- Multivariate methods can help for that = ‘? =7 %fb%@
= A 4)*@@. )imi!é’lﬁ'(ﬁ N

Collision with 20 pile-up events recorded with
the ATLAS detector



Multi-variate methods: definitions

MultiVariate Analysis :

e Set of statistical analysis methods that simultaneously analyze multiple
measurements (variables) on the object studied

e Variables can be dependent or correlated in various ways

Classification / regression :

* Classification : discriminant analysis to separate classes of events, given already
known results on a training sample

* Regression : analysis which provides an output variable taking into account the
correlations of the input variables

Statistical learning :

* Supervised learning : the multivariate method is trained over a sample where
the result is known (e.g. Monte Carlo simulation of signal and background)

* Unsupervised learning : no prior knowledge is required. The algorithm will
cluster events in an optimal way



Multivariate analyses in HEP

Signal/background discrimination :

— Object reconstruction : discriminate against instrumental background
(electronic noise...)

— Object identification : e.g. electron, bottom quark identification, to improve
the rejection other objects resembling (e.g. jets)

— Discriminating physics process against physics backgrounds. Many examples,
e.g. single top against W+jets, H->WW against WW background...

Improving the energy measurement, via regression. Allows to narrow the
reconstructed mass peak, improve the resolution.

Estimate the sensitivity of the analysis :

— Sensitivity to signal exclusion or discoveries : Likelihood of the data to be
consistent with background only or signal+background hypothesis

— Combination of many channels

=> exclusion limits or discoveries



MVA example from Tevatron

Single top discovery

q. t 7
w* W
b
>/\/\/< (b) ,
q b g

- When published, very controversial

- 36 boosted decision trees used to
discriminate signal from background

- First measurement of the single top
cross-section, today well established

PhysRevLett.98.181802
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No turning back!

Over the past ten years, Multivariate analysis (MVA) methods
gained gradual acceptancein HEP.

In fact, they are now “state of the art”

Some of the most important physics resultsin HEP have come
from the use MVA methods.



MVA use in Higgs Dlscovery

MVA used in every possible analysis

aspect
— Electrons/photons D

— MVA for EM cluster energy

corrections

— Vertexidentification (diphotons)

— b-tagging

— S/B discrimination in all channels
* vy, ZZ24l, (WW, bb, tT)

a.u.

Signal Efficiency

CMS prellmlnary

= I I I =
0.9F =
0.8 =
0.7F =
0.6f -
0-5¢ pr>10GeV: — BDT @ 2011 E
0.4 pr<10 GeV: — BDT ® 2011 |
0.3 —
0.2 Cut Based vs MVA ID -
0.1 —
o PR T SN SN T ST ST SN AN ST SN ST SN (NN SR ST SR T (N ST SR TS S S S N
0 0.05 0.1 0.15 0.2 0.25 0.3
Background Efficiency
00T T T T T T T
- ATLAS Simulation [ Initial calibration -
» f MPV = 124.48 GeV 1
0.05 == H—wt".,' a, = 1.55 GeV ]
C {s=8TeV = WA x
0.04f MPV = 124.93 GeV —
B g.= 139 GeV
0.03F
0.02F
0.01F

116 118 120 122 124 126 128 130 132 134
m,, [GeV]



Event Analysis Techniques

 Examples:

Cut-Based Neural networks Decision trees

= 4

* Characteristics:
— Level of complexity and transparency
— Performance in term of background rejection
— Way of dealing with non-linear correlations
— Robustness while increasing the number of input variables



“Rectangular” cuts

° Simplest multivariate method’ Very intuitive ><N 10: |||||||||||||||||||| [TTTT [T T I T[T T T [TTITT 7711

— AIl HEP analyses are using rectangular
cuts, not always completely optimized

* Rectangular cuts optimization :

— e.g. Grid search,

e Characteristics :
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— Difficult to discriminate signal from
background if non-linear correlations X

— Optimization difficult to handle with high Define the signal region :

number of variables f al <x1<a?2,
b1 <x2 < b2



Cut-based analysis

* Estimate background yield
* Compare to data

Nobsszata_NB

P * Calculate signal acceptance

— 2
Final Bvent Set 0= Novs / (47L)




Decision Trees

* Machine-learning technique, widely used 1n the social
sclences

* Idea: recover events that fail criteria in cut-based analysis



Including events that fail a cut

— Create a tree of cuts

— Divide sample into
“pass” and “fail” sets

— Each node . corresponds
to a cut (branch)

= Start at first “node @p ~ with “training sample” of 1/3 of all
signal and background events

a For each variable, find splitting value with best separation
between two children (mostly signal in one, mostly
background in the other)

a Select vanable and splitting value with best separation to
produce two “branches —9 " with corresponding events,
(F)ailed and (P)assed cut



Trees and leafs

— Create a tree of cuts

— Divide sample into
“pass” and “fail” sets

— Each node . corresponds
to a cut (branch)

£ — A leaf corresponds to an
Leaf end-point
— For each leaf, calculate purity
(from MC):
purity = No/(Ng+Ng)

Repeat recursively on each node
Stop (terminate at leaf) when improvement stops or when too few events left



Decision tree output

Train on signal and background models (MC)
— Stop and create leaf when Ny,~<100

Compute purity value for each leaf

Send data events through tree
— Assign purity value corresponding to the leaf to the event

Result approximates a probability density distribution

| TMVA response for classifier: BDT |
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Normalized

Decision tree output for each
event = leaf purity

Closer to 1 for signal and
closer to O for background

U/O-flow (S,B): (0.0, 0.0)/ (0.0, 0.0)
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BDT response



Measure and Apply

@ Take trained tree and
run on independent
simulated sample,
determine purities.

@ Apply to Data

@ Should see enhanced
separation (signal
right, background left)

@ Could cut on output
and measure, or use
whole distribution to
measure.

e Cuton BDT yields signal enriched sample
e Allows to study top quark properties

(exp.-meas.)/meas.
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Decision Tree Verification

» Use “mystery” ensembles with many different signal assumptions
» Measure signal cross section using decision tree outputs
» Compare measured cross sections to input ones

» Observe linear relation close to unit slope
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Object Kinematics Event Kinematics
pr(jetl) Aplanarity(alljets, W)
pr(jet2) M(W bestl) (“best” top mass)
pr(jet3) M(W tagl) (“b-tagged” top mass)
pr(jetd) Hr(alljets)
pr(bestl) Hy(alljets—best1)
pt (notbestl) Hr (alljets—tagl) .
p1 (notbest2) Hy(alljets, W) Qo Add|ng
pr (tagl) Hr (jet1 jet2) .
pr(untagl) Hr (jetl jet2, W) variables does
p1(untag2) M(alljets)
M(alljets—best1) not degrade
Angular Correlations M(alljets—tagl)
AR(jetl jet2) M(jetl jet2) performance
cos(bestl,lepton)pesttop M(jetl,jet2, W)
cos(best1,notbestl)hesttop My (jetl,jet2) @ [ested shorter
Cos(taglva“jets)alljets MT(W) .
cos(tagl,lepton)psaggedtop Missing Eq lists, lose some
cos(jetl,alljets)alljets pr (alljets—best1) L.
cos(jetl.lepton)bwggedtOp pr(alljets—tagl) SenSItIVIty
cos(jet2,alljets) , )56t pr(jetl, jet2)
cos(jet2,lepton) it appedtop Q(lepton) X n7(untagl) Py Same list used
cos(lepton, Q(lepton) X z)h esttop Vs
cos(lepton,besttopframe)pesttopCMerame Sphericity(alljets, W) fOI’ a” Channels
cos(lepton-btaggedtonrame)btaggedtopCl\'lframe
cos(notbest,alljets) ,))jets
cos(notbest,lepton)hesttop
cos(untagl,alljets),))jets
cos(untagl,lepton)btageedtop E *




Random Forest

e Random Forests is an ensemble method that combines different trees
e Final output is determined by the majority vote of all trees

A Random Forest combines the votes of all trees



Average over
decision trees

— Typically O(100)
Each tree 1s grown using

m variables

— For N total variables, m<<N

Random forest

many

Very fast algorithm

— Even with large number of variables
Very few parameters to adjust

— Typically onl

y m




Random Forest

e Random Forests is an ensemble method that combines different trees
e Final output is determined by the majority vote of all trees
e The idea is, that a sum of weak learners results in a stronger learner

Simple example:

e 3 different trees which are uncorrelated and are correct in 60% of cases
e In order to correctly classify an event, only % trees have to be correct. That
means, the misclassification probability is either 3 wrong or % wrong:
o P= (32) *0.4%* 0.6 + (33) *0.4°*0.6"=0.352
e Therefore the ensemble of trees is better than only one tree even though
their separation power is the same (if uncorrelated)



Boosted Decision Trees

AdaBoost algorithm

@ Recent technique to improve o Adaptive boosting
performance of a weak @ Check which events are
classifier misclassified by T

® Recently used on DTs by @ Derive tree weight o

GLAST and MiniBooNE

@ Basic principal on DT:

e train a tree Ty _ . _
o Tis1 = modify(Tk) | @ Train again to build Ty

@ Boosted result of event i:
T(i) = YoMeree o Ty(i)

n=1

@ Increase weight of
misclassified events




Neural Networks

Example Neural Network Mathematics of Neural Networks

Input Hidden Layer Output

* The activity of the input units represents the raw info that is fed into the network.
* The activity of each hidden unit is determined by the activities of the input units and

the weights on the connections between the input and the hidden units.
* The behavior of the output units depends on the activity of the hidden units and the

weights between the hidden and output units.



D& Neural networks

Input Nodes: One for each variable x;

M, (jet1 jet2) \

M (alljets)
Prlotiior) R
p, (notbest2)
p, (notbest1)
cos(LQx 2) ..,

M (W best)

Outut Node: linear
combination of hidden nodes

f(;) =Z W, nk&:\—&k)

M (W, tag1)
AR (jet1 jet2)
\e

P, (tagl)

B S

Hidden Nodes: Each is a sigmoid
dependent on the input variables

N (X,w,) =

1 +e-2wikxi 0 ]



What method is best?

* The “nofreelunch” theorem tells you that thereis no one
method that is superiorto all others for all problems.

* In general, one can expect neural networks (NN), Boosted
decision trees (BDT) and random forests (RF) to provide
excellent performance over a wide range of problems.

26



The Buzz about Deep Learning

* A lot of excitement about “Deep Learning” Neural
Networks (DNN) in the Machine Learning
community
— Spreading to other areas!

— Some studies already in HEP!

 Multiple non-linear hidden layers to learn very
complicated input-output relationships

 Huge benefits in applications in computer vision
(image processing/ID), speech recognition and
language processing



Deep Learning

Hidden
Nodes

)

Single hidden layer NN
il
7
AEEAN
SN
/7
z2

INPUT HIDDEN QuUTPUT
LAYER LAYER LAYER

A SIMPLE NEURAL NETWORK

Multiple hidden layer NN

Use raw data inputs instead of derived
“intelligent” variables (or use both)

Final learning better than shallow
networks, particularly when inputs are
unprocessed raw variables!

However, need a lot of processing
power (implement in GPUs) time....

28



Deep Neural Networks for HEP

Baldi, Padowski, Whiteson‘ arXiv:1402.4735v2 ‘
Studied two benchmark processes

— Charged Higgs vs ttbar events
— SUSY: Chargino pairs vs WW eventsinto dilepton+MET final state

Significantimprovementin Higgs case, not so dramatic in case of SUSY

Discovery significance

Technique Low-level  High-level Complete Exotic Higgs
NN 2.50 3.10 3.70
DN 4.90 3.60 5.00

SUSY Study

Discovery significance

Technique Low-level High-level Complete

NN 6.50 6.20 6.90
DN 7.50 7.30 7.60

29



Unsupervised Learning

e The most common approach is to find clusters or
hidden patterns or groupings in data

25F
L -

Cogan, Kagan,
Strauss &
SchwarRman
(arXiv:1407.5675) T

http://chem-eng.utoronto.ca/~datamining/Presentations/SOM.pdf

0.0f

* We have not tapped these methodsfor ™ ™ "™ 7
identifying unknown componentsin data,

unsupervised classification, for exploratory data
analysis

e Could be useful in applications for topological
pattern recognition

— Use in Jet-substructure, boosted jet ID 5




Summary

Multivariate methods brought a paradigm shift in HEP analysis
~10 yearsago. Now they are state of the art.

Applications of new ideas/algorithms such as deep learning

should be explored, but the resources involved may not justify
the use in every case.

Well established techniques of the past— neural networks,

Boosted Decision Trees will continue to be the ubiquitous general
purpose MVA methods.



Extra



Resources

PhyStat code repository
https://plone4.fnal.gov:4430/P0/phystat/

PhyStat 2007 conference

Jim Linnemann's collection of statistics links:
http://www.pa.msu.edu/people/linnemann/stat resources.html

Statistical analysis tool R

TMVA (multivariate analysis tools in root)
hitp://tmva.sourceforge.net/

Neural Networks in Hardware
http://neuralnets.web.cern.ch/NeuralNets/nnwinHep.html
Boosted Decision Trees in MiniBoone

htto://ari abs/physics/0508045

Decision Tree Introduction
hitp://www,statsoft.com/textbook/stcart.html

GLAST Decision Trees
http://scipp.ucsc.eduw/~atwood/Talks%20Given/CPAforGLAST.ppt




Background efficiency
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Summary

Neural networks,
simple decision
trees, etc

Random guess

B
’

o/ Boosted decision trees,

bayesian neural networks,
randomforests

hLY

0 Signal efficiency



