

Detector Design

beam

Generic Design

Cylinders wrapped around the beam pipe From inner to outer . . . Tracking Electromagnetic calorimeter Hadronic calorimeter Magnet* Muon chamber

* location of magnet depends on specific detector design

proportional to the electron energy.

Derived from CMS Detector Slice from CERN

W and Z Particles

We are looking for the mediators of the *weak interaction:*

- •electrically charged W + boson,
- •the negative *W*⁻ boson,
- •the neutral **Z** boson.

Unlike electromagnetic forces carried over long distances by massless photons, the weak force is carried by massive particles which restricts interactions to very tiny distances.

W and Z Particles

The W bosons are responsible for radioactivity by transforming a proton into a neutron, or the reverse.

Z bosons are similarly exchanged but do not change electric charge.

Collisions of sufficient energy can create W and Z or other particles.

W and Z Particles

The W bosons are responsible for radioactivity by transforming a proton into a neutron, or the reverse.

Z bosons are similarly exchanged but do not change electric charge.

Collisions of sufficient energy can create W and Z or other particles.

Higgs Particles

The Higgs boson was discovered by CMS and ATLAS and announced on July 4, 2012.

This long-sought particle is ' part of the "Higgs mechanism" that accounts for other particle having mass.

Because bosons only travel a tiny distance before decaying, CMS does not "see" them directly.

CMS can detect :

- electrons
- muons

photons

CMS can infer:

neutrinos from "missing energy"

W and Z Decays

Goal for today's exercise: Look through event displays to classify whether events came from a W,Z, or H boson and the final state (e.g., muons) Attempt to 'see' the Z, H bosons by making a mass histogram Bonus: Measure the universality of leptons: do we make more electrons than muons?

W and Z Decays

BACKUP

Use new data from the LHC in iSpy to test performance of CMS:

• Can we distinguish W from Z candidates?

• Can we calculate the e/ ratio?

Can we calculate a W+/W- ratio for CMS?

Can we make mass plot of Z candidates?

Today's Task

- Can we find rare $H \rightarrow ZZ$ events?
 - Z \rightarrow e+e-
 - $Z \rightarrow [+ [-$

Can we pick out electrons and/or muons?

How should an event be filtered so we can recognize the correct tracks?

• Can we find some $H \rightarrow [$ [events?

How do we spot photons that leave no track?

Where should we look? What should we see – and not see?

Try some real events

<u>►</u> 🔁 🖬 🔹 🕨	z × ×	× × z	
Tracks (reco.)			
Clusters (Si Pixels)			
Clusters (Si Strips)			
Rec. Hits (Tracking)			
ECAL	?		
Barrel Rec. Hits	V	\triangleright	
Endcap Rec. Hits	1	\triangleright	
Preshower Rec. Hits		\triangleright	
HCAL	?		
Barrel Rec. Hits	1	\triangleright	
Endcap Rec. Hits	1	\triangleright	
Forward Rec. Hits		\triangleright	
Outer Rec. Hits		\triangleright	
Muon	?		
DT Rec. Hits	1		
DT Rec. Segments (4D)	1		
CSC Segments	1		
RPC Rec. Hits	\checkmark		
CSC Rec. Hits (2D)	1		
Physics Objects	?		
Electron Tracks (GSF)	1		
Tracker Muons (Reco)	1		
Stand-alone Muons (Reco)			
Global Muons (Reco)	\checkmark		
Calorimeter Energy Towers		\triangleright	
Jets		\triangleright	
Missing Et (Deco)		Б	

Open iSpy-online with:

- Firefox ver 5 or greater
- Chrome
- Safari

0?

Open iSpy-dvd with:

- Firefox ver 7 or greater

Recording event data

QuarkNet

Keep in Mind . . .

"Science is nothing but developed perception, interpreted intent, common sense rounded out and minutely articulated." *George Santayana*

- Indirect observations and imaginative, critical, logical thinking can lead to reliable and valid inferences.
- Therefore: work together, think (sometimes outside the box), and <u>be critical</u> of each other's results to figure out what is happening.

Form teams of two. Each team analyzes 100 events. Talk with physicists about interpreting events. Pool results.