
Probing methods for Automatic Error Resolution in a
heterogeneous software environment

Antonio Pierro∗, Salvatore Di Guida†, Vincenzo Innocente† and Ilja Kuzborskij∗∗

∗INFN-Bari - Bari University, Via Orabona 4, Bari 70126, Italy
†CERN Geneva 23, CH-1211, Switzerland

∗∗Vilnius University, 3 Universiteto St, LT-01513 Vilnius, Lithuania

Abstract.
We investigate the feasibility to improve the error resolution through automation like natural language-based and statistical

analysis algorithms, in order to detect errors and securityissues, and to convert error messages from encrypted into human-
readable ones in a heterogonous software environment. To reach this goal we study a real case using the data extracted from
PopCon, a package used for the population of CMS Condition Databases, that is embedded into CMS Software framework,
CMSSW, and relies on different underlying applications such as ORACLE, POOL, CORAL in order to perform database
transactions.

Keywords: CMSSW, CORAL, POOL, error detection, google, natural language processing
PACS: 89.20.Ff

INTRODUCTION

In general, the time and energy that physics, engineers and informatics working on both LHC[1] experiments and
Grid services spend on documenting, recreating and attempting to resolve software bugs and reported issues (i.e.
"application problems") can be very large.

For this reason, in this paper we try to study the technical feasibility to use semi-automatic detection of error, and
give to the final user a more readable log, thanks to the support of developers of each software subsystem and the
feedback of other final users. We study this approach in a realcontext and discusses the benefits, the potential pitfalls.

Problem Definition

Before we proceed to problem analysis and solution estimation, let us describe problem cases we have encountered,
while working in the context of CMSSW[2] framework.

First of all we would like to draw your attention to first classof error-generating entities, which basically are major
software packages. We do not feel that description of minor packages or programs is really needed in this case, since it
is very common situation, when error from such source is being propagated to higher abstraction tiers. Main software
units include:

CMSSW framework - the core system; PopCon[3] tool - CMSSW subsystem; POOL & CORAL - external packages,
which CMSSW and its subsystems extensively rely on Oracle DBMS - fundamental database management system of
CMSSW.

Second class of error-generating entities are implicit anddoes not exist in form of software of or another unit. It is
a metadata-dependent error class which can be detected onlyby observation of specific ”points” from time to time.
We call this approach time inconsistency check. These checks can point out such errors like hardware malfunction or
unknown, undetected software failure.

It is very important in out case, to distinguish properties and behavior of every error source in order to perform
complete problem analysis, that is why it is crucial to detail life cycle of error in the context of software entities and
their environment.

• Errors by scripts of CMSSW framework.
From the error generation point of view, the most important feature of CMSSW framework is processing of



python scripts. This task is accomplished by cmsRun module.The framework itself enables a way to log all the
jobs run by it using a module called Framework Job Report. This module can be called either inside the script,
or explicitly using an option of cmsRun (namely,”-j <filename>.xml”). Framework Job Report yields a XML file
with all informati on about an error, labeled by the tag ”FrameworkError”, an exit status (a number) and the type
of error. Besides, an accompanying string with the error output is provided.

• Error by executables built inside the framework.
Some binaries built inside the framework make use of the PopCon, POOL and CORAL libraries. The error-status
of such applications can be monitored using log files (a part of them is already stored into the POPCONLOG
database account) to be parsed every time the application runs. The error messages, indeed, can be modified
when a new version of the software is released: usually, an improvement of the software leads to clearer error
messages, but, in some cases, we can expect that the error message becomes less readable.

• Time inconsistencies.
Usually, a time inconsistency, in our use cases, is related to a hardware failure (network failure or machine
powered off). This can be already detected using the DB back-end provided by so called ”log file tail fetcher”,
the tool, which parses log files and puts timestamp data into the log database. Here a comparison between two
timestamps is now possible. Another example of time inconsistency metadata exportation is quota checking script.
The prime goal of quota checking script is to record information about account quota state. The recording process
is similar to ”log file tail fetcher”. But on the other hand quota checking maintains another feature - it stores along
timestamp of exportation. This gives a possibility to perform time inconsistency test. In general case all automatic
exportation tools or automatic DB populators of should include this feature, so the inconsistency test becomes
possible.

Solution & Goals

Since problem is defined, we can study the goals. The basic solution vision covers all problematic cases mentioned
above and intended mainly for user-side features. Although, some developer features and bonuses will be also taken
into account.

• User-friendly error messages
Among the most important use-cases that could possibly be achieved by error detection system there is one,
that gives user some information about occurred error. Of course this is hardly possible without careful error
detection system maintenance, which can have semi-automated features, like, data mining. As a good option
some automatic notification to developers or administrators can be provided in situation when error detection is
helpless. For instance, if new, unknown yet error occurs, system can queue it for resolution by maintainers.

• Application to heterogeneous software environment
Being a part of larger system, PopCon heavily relies on infrastructure software packages as was mentioned before
in problem definition section. Because of this close integration it is inefficient to monitor erroneous situations
only in a distinct environment like PopCon - errors are oftenpropagated from different sources. Of course
we could expand error detection scope to some extent, but this would proof unreliable practice, since some
packages are constantly changing and modules to these packages are written by different developers, who are very
often unconstrained by some error format standard. As a common solution, population of error detection related
database can be accomplished thanks to general “Wiki” documentation approach used by CMS developers.
All in all, ability to detect and reason errors from different software sources would be very important property of
detection system. This brings resilience in terms of version and software independence to some point.

• Inconsistency notification
Here, we address, generally speaking, second class of error-generating entities, in other words inconsistencies - in
more specific, time inconsistencies. Time inconsistenciesare important in the sense of error prediction. Speaking
of relationships between inconsistencies, time inconsistencies are basically tied to data inconsistencies, because
consistency markers (e.g. timestamps) are commonly placedby data importers. That is why detection of time
inconsistency can tell, for instance, about hardware failure and as a result about failed data transaction.
This type of error can be a warning sign for a user, notifying about some kind of possible data inconsistency or
system instability. On the other hand, this is major error note for a developer or administrator, who maintains the
system.



SOLUTION METHOD OVERVIEW

Though we studied most of functional and non-functional requirements for this experimental system, we are going
describe feasibility of only not relatively easily implemented use-case - natural language processing. Other ones, for
example XML parsing, are not really worth specific interest,since there are many well-working stabile methods for
realizing these requirements. On the other hand natural language processing is not widely used. That is why, we spent
particular attention to this problem in next section.

VALIDATION OF NATURAL LANGUAGE-BASED SIMILARITY CHECK

In this section we describe how we validate and tune algorithms and methods in order to find similar sentences across
multiple text-log files produced by several applications using PopCon.

First of all, we make a research concerning open source projects facing the issue of measuring the semantic similarity
of texts.

The best method that meets our requirements is an experimental module, which uses algorithm for sentence
similarity detection described in [4] using three different methods:string similarity, semantic similarityandword
order similarity.

Thestring similaritymethod pays attention to string-similarity checking, which is important in the case of specific
domain-related tags, e.g. Oracle error messages, which arenot available in word dictionaries or CMSSW signatures,
which are unavailable in both dictionaries and corpora.

Thesemantic similaritymethod gives good results on matching fuzzy, but sense-close sentences, which is the case
of Versionable error resolution.

Theword order similaritymethod provides information about the relationship between words: which words appear
in the sentence, and which words come before or after other words. Both of these semantic and syntactic (in terms of
word order) pieces of information play a role in comprehending the meaning of sentences in versionable errors.

Unfortunately, the Corpus-based method1 used for experimental runs in the paper cited above has several drawbacks
for our purposes. It is not available free of charge and it is not suitable for production purposes at our scale; hundreds of
plain text-log grouped in different sentences, each of themreflects the exception propagation raised by an error along
the stack and each of plain text error can contains over 100 words. Hence, these issues give limitations in terms of
performance because it requires precompilation; besides we didn’t success to get similar sentences since the original
Corpus is suitable for natural language processing and it isnot correlated with our field of interest.

Therefore, we reusedGoogle Similarity Distance[5] web-search engine based approach andNLTK[6] (Natural
Language Toolkit) python package WordNet to customize our algorithm.

The former,Google Similarity Distanceweb-search engine, was used to substitute semantic similarity in order to
take profit by the ability ofGoogle’s Crawlto parse all CERN pages, LaTex sources and "public" development forums
like Oracle-DBA-OCPforum and by doing this parse we get Technical Knowledge Baseinformation for our problem
domain. The latter,NLTK python package uses WordNet to augment semantic word similarity estimation. In more
details, for each comparison of two sentences,(s1,s2), the algorithm yelds a "number of similarity" ranging between
0 and 1; this number will be called "estimation value"; in mathematical form: we define a functionE, on the cartesian
product of the sets of error sentencesAn andAm, where n and m, withn 6= m, are tags for different version of the
software.

E : (s(n)
i ,s(m)

j ) ∈ An×Am 7−→ e= E(s(n)
i ,s(m)

j ) ∈ [0,1]

Since the result of algorithm depends by the contribution ofthe following methods: theSemantic Similarity Methods
in WordNetlike WordNet::Similarity::path, andGoogle Distance, we decided to tune the main algorithm changing the
weight of contribution of these methods. In mathematical form the output result was tuned weighting the methods’
contribution:

E =
n

∑
k=1

wk ∗mk wk ∈ [0,1]
n

∑
k=1

wk = 1

1 Corpus-based method is the study of language as expressed insamples (corpora) or "real world" text.



where

mk ∈ [GoogleDistance,WordNet:: Similarity :: method1, ...,WordNet:: Similarity :: methodn−1]

1: Graphical model validation used to tune the algorithm
for measuring the semantic similarity

In order to establish the validity of the tuning for tracking
straight similar sentence, we report the "estimation value"
result in a plot divided in two parts; in the former, on the
negative x-axis, you can find the comparison between two
sentences which are not Versionable errors (namely, false
Versionable errors), while the positive x-axis contains the
so-called true Versionable errors, i.e. comparisons between
sentences reporting a Versionable error; on the y-axis, fi-
nally, we put the values obtained from the estimation using
the algorithm described above. At a first glance, if the algo-
rithm is well tuned, we expect that the y-axis and a straight
line parallel to the x-axis should divide the diagram into
four parts. One quadrant contains the estiamtion value for
all the true Versionable errors and the opposite one the val-
ues belonging to false Versionable errors. Instead, in case
of "bad tune" (i.e., the algorithm is not able to distinguish
true and false versionable error), is not possible to find a
straight line parallel to x-axis dividing true Versionableer-
rors and false Versionable error sinto two separate sets. The

final result of our test, during the validation of tuning of weight of methods can be summarized in the following plot.
As you can see, only one tuning (namely number 3) suits our procedure to find the validity of the algorithm. The tune
suiting the similarity sentence successfully was obtainedassigning a low-weight toGoogle similarity distancemethod
(about 0.2) and an high-weight to the WordNet::Similarity::path method (about 0.8).

CONCLUSION

In this paper we focused on the possibility to use methods formeasuring the semantic similarity in order to find
Versionable error between error sentences. The result demonstrates that the method is feasible since the application
chosen, PopCon, is well integrated in the contet of a large experiment and of a heterogeneous software environment.
Hence, we are optimistic on the possibility to apply this work to other software packages having the problem of
Versionable error. This kind of error is very common, since,in order to meet the new requirements for one or more LHC
experiments, the software is continuously updated and developed, and new versions of software are made available to
the end-users. Therefore, having the possibility to automate the identification of Versionable errors will allow to save
time during the crucial and decisive phase in prevision of the LHC start-up.

REFERENCES

1. The LHC Project. LHC Design Report, Volume I: the LHC Main Ring. Technical Report CERN-2004-003-V-1, CERN, Geneva,
2004. URL

2. CMS Computing TDR, CERN-LHCC-2005-023, <http://cdsweb.cern.ch/record/838359> 20 June 2005.
3. PopCon (Populator of Condition Objects). First experience in operating the population of the “condition database” for the CMS

experiment. International Conference on Computing in HighEnergy and Nuclear Physics, March 2009
4. Semantic Text Similarity using Corpus-Based Word Similarity and String Similarity; ACM Transactions on Knowledge

Discovery from Data (TKDD) (2008)
5. Rudi L. Cilibrasi and Paul M.B. Vitanyi - The Google Similarity Distance, 30 May 2007
6. Sean Boisen, SemanticBible - Natural Language Processing in Python using NLTK, LinuxFest Northwest 2008


