Probing methods for Automatic Error Resolution in a
heterogeneous software environment

Antonio Pierrd, Salvatore Di Guidg Vincenzo Innocenfeand Ilja Kuzborskij*

*INFN-Bari - Bari University, Via Orabona 4, Bari 70126, ltal
TCERN Geneva 23, CH-1211, Switzerland
**Vilnius University, 3 Universiteto St, LT-01513 VilniugHuania

Abstract.

We investigate the feasibility to improve the error resioinithrough automation like natural language-based anidtital
analysis algorithms, in order to detect errors and secigstyes, and to convert error messages from encrypted imauinu
readable ones in a heterogonous software environment.ath this goal we study a real case using the data extracted fro
PopCon, a package used for the population of CMS Conditidaliaaes, that is embedded into CMS Software framework,
CMSSW, and relies on different underlying applicationshsas ORACLE, POOL, CORAL in order to perform database
transactions.

Keywords: CMSSW, CORAL, POOL, error detection, google, natural laaggiprocessing
PACS: 89.20.Ff

INTRODUCTION

In general, the time and energy that physics, engineersrdndmatics working on both LHC[1] experiments and
Grid services spend on documenting, recreating and atieghfu resolve software bugs and reported issues (i.e.
"application problems") can be very large.

For this reason, in this paper we try to study the technicifglity to use semi-automatic detection of error, and
give to the final user a more readable log, thanks to the stigpaevelopers of each software subsystem and the
feedback of other final users. We study this approach in ecoakxt and discusses the benefits, the potential pitfalls.

Problem Definition

Before we proceed to problem analysis and solution estimalit us describe problem cases we have encountered,
while working in the context of CMSSW/[2] framework.

First of all we would like to draw your attention to first clasfserror-generating entities, which basically are major
software packages. We do not feel that description of miagkpges or programs is really needed in this case, since it
is very common situation, when error from such source is@pnopagated to higher abstraction tiers. Main software
units include:

CMSSW framework - the core system; PopCon[3] tool - CMSSWsgatem; POOL & CORAL - external packages,
which CMSSW and its subsystems extensively rely on OraclMBB fundamental database management system of
CMSSW.

Second class of error-generating entities are implicitémes not exist in form of software of or another unit. It is
a metadata-dependent error class which can be detectedywlyservation of specific "points” from time to time.
We call this approach time inconsistency check. These cheamh point out such errors like hardware malfunction or
unknown, undetected software failure.

It is very important in out case, to distinguish propertiesl @ehavior of every error source in order to perform
complete problem analysis, that is why it is crucial to ddif& cycle of error in the context of software entities and
their environment.

- Errors by scripts of CMSSW framework.
From the error generation point of view, the most importaatire of CMSSW framework is processing of

python scripts. This task is accomplished by cmsRun modiie.framework itself enables a way to log all the
jobs run by it using a module called Framework Job Reports Titnbdule can be called either inside the script,
or explicitly using an option of cmsRun (namely,”-j <filenamxml”). Framework Job Report yields a XML file
with all informati on about an error, labeled by the tag "FeamorkError”, an exit status (a number) and the type
of error. Besides, an accompanying string with the erropatit provided.

Error by executables built inside the framework.

Some binaries built inside the framework make use of the Bap2OOL and CORAL libraries. The error-status
of such applications can be monitored using log files (a plith@m is already stored into the POPCONLOG
database account) to be parsed every time the applicatien fiihe error messages, indeed, can be modified
when a new version of the software is released: usually, gmawement of the software leads to clearer error
messages, but, in some cases, we can expect that the ersagad®comes less readable.

Time inconsistencies.

Usually, a time inconsistency, in our use cases, is relaiea hardware failure (network failure or machine
powered off). This can be already detected using the DB lesckprovided by so called "log file tail fetcher”,
the tool, which parses log files and puts timestamp data hddg database. Here a comparison between two
timestamps is now possible. Another example of time ingiascy metadata exportation is quota checking script.
The prime goal of quota checking script is to record infolioratibout account quota state. The recording process
is similar to "log file tail fetcher”. But on the other hand ga@hecking maintains another feature - it stores along
timestamp of exportation. This gives a possibility to paridime inconsistency test. In general case all automatic
exportation tools or automatic DB populators of shouldudd this feature, so the inconsistency test becomes
possible.

Solution & Goals

Since problem is defined, we can study the goals. The basitigolision covers all problematic cases mentioned
above and intended mainly for user-side features. Althpagime developer features and bonuses will be also taken
into account.

User-friendly error messages

Among the most important use-cases that could possibly biexaed by error detection system there is one,
that gives user some information about occurred error. @fsmthis is hardly possible without careful error
detection system maintenance, which can have semi-autdnfeatures, like, data mining. As a good option
some automatic notification to developers or administsatan be provided in situation when error detection is
helpless. For instance, if new, unknown yet error occurstesy can queue it for resolution by maintainers.

Application to heterogeneous software environment

Being a part of larger system, PopCon heavily relies on stftecture software packages as was mentioned before
in problem definition section. Because of this close intignait is inefficient to monitor erroneous situations
only in a distinct environment like PopCon - errors are offgopagated from different sources. Of course
we could expand error detection scope to some extent, baittbuld proof unreliable practice, since some
packages are constantly changing and modules to thesegesciiae written by different developers, who are very
often unconstrained by some error format standard. As a aomsolution, population of error detection related
database can be accomplished thanks to general “Wiki” deatation approach used by CMS developers.

All'in all, ability to detect and reason errors from diffeteoftware sources would be very important property of
detection system. This brings resilience in terms of veraied software independence to some point.

Inconsistency notification

Here, we address, generally speaking, second class ofggnarating entities, in other words inconsistencies - in
more specific, time inconsistencies. Time inconsisteraiesmportant in the sense of error prediction. Speaking
of relationships between inconsistencies, time incoasises are basically tied to data inconsistencies, because
consistency markers (e.g. timestamps) are commonly plageathta importers. That is why detection of time
inconsistency can tell, for instance, about hardwarerfaifund as a result about failed data transaction.

This type of error can be a warning sign for a user, notifyibgut some kind of possible data inconsistency or
system instability. On the other hand, this is major errderor a developer or administrator, who maintains the
system.

SOLUTION METHOD OVERVIEW

Though we studied most of functional and non-functionalifegments for this experimental system, we are going
describe feasibility of only not relatively easily implenied use-case - natural language processing. Other omes, fo
example XML parsing, are not really worth specific intersgice there are many well-working stabile methods for
realizing these requirements. On the other hand naturguige processing is not widely used. That is why, we spent
particular attention to this problem in next section.

VALIDATION OF NATURAL LANGUAGE-BASED SIMILARITY CHECK

In this section we describe how we validate and tune algmstand methods in order to find similar sentences across
multiple text-log files produced by several applicationsigs?opCon.

First of all, we make a research concerning open sourcegisdpcing the issue of measuring the semantic similarity
of texts.

The best method that meets our requirements is an expeammaidule, which uses algorithm for sentence
similarity detection described in [4] using three differ@nethods:string similarity, semantic similarityand word
order similarity.

Thestring similaritymethod pays attention to string-similarity checking, whig important in the case of specific
domain-related tags, e.g. Oracle error messages, whiaioamsailable in word dictionaries or CMSSW signatures,
which are unavailable in both dictionaries and corpora.

Thesemantic similaritymethod gives good results on matching fuzzy, but sense-clestences, which is the case
of Versionable error resolution.

Theword order similaritymethod provides information about the relationship betwaerds: which words appear
in the sentence, and which words come before or after othetsv8oth of these semantic and syntactic (in terms of
word order) pieces of information play a role in comprehagdhe meaning of sentences in versionable errors.

Unfortunately, the Corpus-based methaded for experimental runs in the paper cited above hasa@rawbacks
for our purposes. Itis not available free of charge and ibtsswitable for production purposes at our scale; hundréds o
plain text-log grouped in different sentences, each of theflects the exception propagation raised by an error along
the stack and each of plain text error can contains over 10@svéience, these issues give limitations in terms of
performance because it requires precompilation; besigedign’t success to get similar sentences since the original
Corpus is suitable for natural language processing ananittisorrelated with our field of interest.

Therefore, we reuse@oogle Similarity Distand®] web-search engine based approach BihdK[6] (Natural
Language Toolkit) python package WordNet to customize tgorghm.

The former,Google Similarity Distanc&veb-search engine, was used to substitute semantic signilaiorder to
take profit by the ability ofsoogle’s Crawlto parse all CERN pages, LaTex sources and "public" devetopforums
like Oracle-DBA-OCForum and by doing this parse we get Technical Knowledge BeEsemation for our problem
domain. The latteNLTK python package uses WordNet to augment semantic word sityiéstimation. In more
details, for each comparison of two senten¢es,s,), the algorithm yelds a "number of similarity" ranging beéme
0 and 1, this number will be called "estimation value"; in lreahatical form: we define a functidt on the cartesian
product of the sets of error sentendgsand Ay, where n and m, withn £ m, are tags for different version of the
software.

E:(§".8") € Ax An—e=E(s",5") € [0,1]

Since the result of algorithm depends by the contributictheffollowing methods: th8emantic Similarity Methods
in WordNetlike WordNet::Similarity::path, an@Google Distancewe decided to tune the main algorithm changing the
weight of contribution of these methods. In mathematicatfohe output result was tuned weighting the methods’
contribution:

n n
E:Zwk*n‘k wi € [0,1] Zszl
k=1 k=1

1 Corpus-based method is the study of language as expressathpies (corpora) or "real world" text.

where
my € [GoogleDistancaVordNet: Similarity:: method, ..., WordNet:: Similarity:: methog_4]

In order to establish the validity of the tuning for tracking
straight similar sentence, we report the "estimation value
result in a plot divided in two parts; in the former, on the
negative x-axis, you can find the comparison between two
sentences which are not Versionable errors (namely, false

Versionable errors), while the positive x-axis contains th

Estimation value

. = " - so-called true Versionable errors, i.e. comparisons batwe
___________________________ 4------------ Sentences reporting a Versionable error; on the y-axis, fi-
& o nally, we put the values obtained from the estimation using
= = " the algorithm described above. At a first glance, if the algo-

01

rithm is well tuned, we expect that the y-axis and a straight
line parallel to the x-axis should divide the diagram into
four parts. One quadrant contains the estiamtion value for
] , T all the true Versionable errors and the opposite one the val-
False versionable eror True versionable error ues belonging to false Versionable errors. Instead, in case
of "bad tune” (i.e., the algorithm is not able to distinguish
1: Graphical model validation used to tune the algoriil#@ and false versionable error), is not possible to find a
for measuring the semantic similarity straight line parallel to x-axis dividing true Versionalgle
rors and false Versionable error sinto two separate sets. Th
final result of our test, during the validation of tuning ofiglet of methods can be summarized in the following plot.
As you can see, only one tuning (namely number 3) suits ourgahare to find the validity of the algorithm. The tune
suiting the similarity sentence successfully was obtaassigning a low-weight t&oogle similarity distancenethod
(about 0.2) and an high-weight to the WordNet::Similarfigth method (about 0.8).

CONCLUSION

In this paper we focused on the possibility to use methodsrfeasuring the semantic similarity in order to find
Versionable error between error sentences. The result memades that the method is feasible since the application
chosen, PopCon, is well integrated in the contet of a largerment and of a heterogeneous software environment.
Hence, we are optimistic on the possibility to apply this kvéw other software packages having the problem of
Versionable error. This kind of error is very common, sino@rder to meet the new requirements for one or more LHC
experiments, the software is continuously updated andojeed, and new versions of software are made available to
the end-users. Therefore, having the possibility to autertie identification of Versionable errors will allow to sav
time during the crucial and decisive phase in prevision efithIC start-up.

REFERENCES

1. The LHC Project. LHC Design Report, Volume I: the LHC Maim& Technical Report CERN-2004-003-V-1, CERN, Geneva,
2004. URL

2. CMS Computing TDR, CERN-LHCC-2005-023, <http://cdswebn.ch/record/838359> 20 June 2005.

3. PopCon (Populator of Condition Objects). First experéeim operating the population of the “condition database'ttie CMS
experiment. International Conference on Computing in Higlergy and Nuclear Physics, March 2009

4. Semantic Text Similarity using Corpus-Based Word Siritilaand String Similarity; ACM Transactions on Knowledge
Discovery from Data (TKDD) (2008)

5. Rudi L. Cilibrasi and Paul M.B. Vitanyi - The Google Similtg Distance, 30 May 2007

6. Sean Boisen, SemanticBible - Natural Language Proagssifython using NLTK, LinuxFest Northwest 2008

