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Abstract. The Toolkit for Multivariate Analysis (TMVA) provides a ROOT-integrated [2] environment for the processing,
parallel evaluation and application of multivariate classification and - since version 4.0.0 - regression techniques which is
specifically designed for the needs of high-energy physics (HEP) applications. In TMVA, all MVA methods are embedded in
a common framework capable of handling the pre-processing of the data as well as the evaluation of the output, thus allowing
a simple and convenient use and assessment of multivariate techniques.
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INTRODUCTION

In high-energyphysics, with the search for ever smaller signals in ever larger data sets, it has become essential to extract
the maximum of the available information from the data. Multivariate analysis techniques have proven indispensable in
tackling this challenge. The toolkit for multivariate data analysis, TMVA, provides a large set of advanced multivariate
analysis techniques for both classification and regression problems including

• Rectangular cut optimisation (binary splits),
• Projective likelihood estimation,
• Multi-dimensional likelihood estimation (PDE range-search, PDE-Foam[3] and k-NN),
• Linear and nonlinear discriminant analysis (H-Matrix, Fisher, LD, FDA),
• Artificial neural networks (three different multilayer perceptron implementations),
• Support vector machine,
• Boosted/bagged decision trees (supporting both AdaBoost and Gradient Boost),
• Predictive learning via rule ensembles (RuleFit),
• A generic boost classifier, allowing one to boost any of the above classifiers,
• A category classifier, allowing for the use of different methods in different phase space regions.

Aside from a convenient assesment of different multivariate techniques, TMVA provides the user with a variety of data
preprocessing capabilities and auxiliary information about the data, such as correlations between input variables and
a ranking of their discrimination power. Finally, a large range of evaluation and comparison methods assist the user in
choosing the best MVA method for any given analysis.

DATA ANALYSIS WITH TMVA

A complete TMVA analysis consists of two phases: The training phase, where the multivariate methods are trained
through supervised learning, and the application phase, where the chosen methods are applied to the classification or
regression problem in question. An overview of the typical code flow for these two phases is sketched in Fig. 1.
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FIGURE 1. Left: Flow (top to bottom) of a typical TMVA training application. The user script can be a ROOT macro, C++
executable, python script or similar. After creation by the user, the Factory organises the user’s interaction with the TMVAmodules.
First the discriminating variables and - in case of regression - the target variables are registered. Then, selected MVA methods are
booked and configured via a simple option string. The TMVA analysis proceeds by consecutively calling the training, testing and
performance evaluation methods of the Factory. The training results are then written to custom weight files in XML format and the
evaluation histograms are stored in the output file.
Right: Flow (top to bottom) of a typical TMVA analysis application. The selected MVA methods are now used to classify data
of unknown signal and background composition or to predict a regression target. First, a Reader class object is created, which
serves as the interface to the method’s response. Then the discriminating variables and references to locally declared memory
placeholders are registered with the Reader. Finally, the selected MVA methods are booked and fully configured through the weight
files produced during the training phase.

Training, testing and evaluation

The TMVA Factory

In order to allow for an unbiased performance assessment and comparison between different MVA methods in the
training phase, TMVA works in a transparant factory mode. All interactions between the user and the MVA methods
take place via a Factory object, which guarantees that all methods see the same training and testing data with the
same preprocessing applied. Thus every TMVA analysis begins with the instantiation of a Factory object, which
then steers the training, testing and evaluation of the booked methods.

Specification of the input data and the desired MVA methods

TMVA supports both ROOT trees and text files as input data sets for training and testing. The Factory interface
handling the input data is highly flexible - signal and background events can be stored in the same tree or in different
trees, precuts can be applied and individual event weights are as well supported as overall weights for entire trees.



Once the input collections are registered with the Factory, the input variables that will be used by the MVA
methods can be declared. Variable combinations and formulas may be used. The new version of TMVA also supports
the use of “spectator variables”, which do not take part in the analysis, but may be used for further evaluation and
plotting.
All events that are handed to the TMVA Factory are internally copied and split into one training and one test tree

to assure a statistically independent evaluation of the MVA methods based on the test sample. The creation of these
trees can be preceded by a cut based event selection.
Just like the input variables, all MVA methods have to be registered with the Factory. This is done by specifying

the method’s type, a unique identifier and a specific option string which configures the method and selects possible
variable transformations to be applied. TMVA offers a great variety of MVA methods which are highly configurable.
Please consult the official TMVA Users Guide [1] for a detailed description.

Transforming the input variables

FIGURE 2. Each MVA method inherits from MethodBase, which holds a protected member object of type
TransformationHandler. The TransformationHandler consists of a list of objects derived from
VariableTransformBasewhich are the implementations of the particular variable transformations available in TMVA.

TMVA offers an efficient interface for performing variable transformations “on the fly”, when an event is requested
from the central DataSet class (cf. Fig. 2). Variable transformations are booked through the MVA option string,
which means that each method can have its own transformations. Currently TMVA supports:

• variable normalization,
• decorrelation via the square-root of the covariance matrix or via principal component decomposition,
• transformation of the variables into Gaussian distributions (“Gaussianisation”).

Removing linear correlations from the data is most beneficial for simple MVAmethods which do not take into account
variable correlations, for example rectangular cuts or projective likelihood. Complicated non-linear correlations on the
other hand call for more sophisticated classifiers.

Evaluation of the MVA methods

As soon as the training has finished, all MVA methods write their current status information to custom weight files
for later application. They are then tested and evaluated to asses their performance. To guide the user in the selection
process, TMVA computes a variety of benchmark quantities for each method which are either printed to screen or can
be accessed via a graphical user interface. Examples are shown in Fig. 3.
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FIGURE 3. Left: Example for the background rejection versus signal efficiency obtained by cutting on the classifier outputs.
Right: Example plot for the deviation between regression output and target value for MLP.

Application to data

In the application phase, the most performing MVA methods can be selected by the user to classify events in
data samples of unknown composition ot to predict the values of a regression target. TMVA supports the application
of trained methods via a Reader class or via standalone C++ response classes. The Reader is the analogue to
the Factory and is used in a very similar way: Datasets, variables and methods are registered with the Reader
which then takes care of possible variable transformations that were applied during the training phase and steers the
processing of the data. All information required to configure the MVA methods is automatically retrieved from the
weight files after the methods have been registered.
The C++ response classes generated by TMVA are intended for standalone use, they contain the entire information
encoded in the weight files but do neither depend on TMVA or ROOT, nor on any other non-standard library.

SUMMARY

TMVA unifies highly customizable multivariate methods for both classification and regression, powerful data pre-
processing and convenient evaluation in a single framework. The user interface comprised of the Factory and the
Reader places emphasis on clarity and functionality and will hardly exceed a few lines of code in most applications.
TMVA is evolving quickly, the current framework is already compatible with upcoming extensions including classi-
fiers which support multiple classes and automated classifier tuning via cross valiadation.
TMVA is an open source project, the newest version can be obtained from http://tmva.sourceforge.net.
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