Week 4: FETs & more on Bipolar (NPN) Transistors – 3 terminal devices. Tue Feb 18

H&H L6&7, MUST SKIM P124-165, but ASSIMILATE 134-138,156-162. DO NOT DO 6-2, 6-3; 7-3b) & c), 7-4

... If extra time, go back & do any missed labs

SHOW & TELL:

Heat sinks

Resistors: 1st 2-bands = std ±10% values: 10, 12, 15, 18, 22, 27, 33, 39, 47, 56, 68, 82 How FETs work

Please turn off everything upon leaving for the day (unlike AdLab, where stability critical).

Transistors: for low noise front ends, use Differential Amps *vs.* single-ended... typical transistor current gain $β \sim 100$ ac or dc

= an impedance multiplier/matcher:

emitter follower: impedance is $\beta \times R_E$ emitter resistor p96

 R_E provides negative feedback to stablize gain; warm up xister w/two fingers. common emitter input Z: = $\beta \times R_C$ (collector resistor)

bias your xister "quiescently" to avoid saturation, clipping, distortion, etc. input dynamic range, relative to 0.6 V_{BE} , otherwise xister is not active output voltage compliance and see positive see p140, "Jargon"

= output voltage dynamic range of current source

...limited by the 2 rails, typically ground, and ± 5 , ± 6 , ± 12 , ± 24 vdc (why \pm ?)

 i_S saturation current, R_C limits output current

FET (Field Effect Transistor) "β" > 1000...the front-end that's hidden inside all op amp ICs.

Pretty simple: current amplifier: I_C = Beta • I_B $\int \int T_c = \beta I_B$ \downarrow $\Gamma_{\rm e}$ = $\Gamma_{\rm c}$ + $\Gamma_{\rm B}$ = (1+ β) $\Gamma_{\rm B}$ I_B -Figure N4.2: Transistor as *current*-controlled valve or amplifier Very simple: say nothing of Beta (though assume it's at work) Call V_{BE} constant (at about 0.6 v); call $I_C = I_R$. same AV's V_{+} $\Delta V_{in} = \Delta V_{base}$ $R = \frac{\Delta E}{\Delta T}$ small ΔT_B $\Delta V_{out} = \Delta V_{emitter}$ R_E $large \Delta T_{\epsilon}$ $|v_{-}$... but very different AI's

See P 85 & 90-93

Figure N4.3: How a follower changes impedances

RECIPE FOR COMMON-EMITTER PIE $\begin{bmatrix} R \in \mathbb{R}^N \end{bmatrix}$ and $\begin{bmatrix} R \in \mathbb{R}^N \end{bmatrix}$ and $\begin{bmatrix} V_{out} \end{bmatrix}$

What output current do you want to drive?

- With quiescent $V_{\text{out}} \sim 1v$, need output blocking capacitor?
- ...if not one on the input to next stage

Input dc base bias must be dc stiff, not affected by dc changes.

```
Set the ratio R2/(R1+R2) to give 1.6v.
```
 $R_{IN}C$ must pass relevant frequencies: $\beta \times R_F$ is big, so Z_{in} $\sim R_1 \mid R_2$

Setting DC conditions

- 1. Choose R_C to center V_{out} , given $I_{C(\text{quiescent})}$
- Choose R_E to put V_E somewhere around 1 volt, for temperature $2.$ stability
- 3. Let R_{Th} for the bias divider be about 1/10 (R_{in} transistor, which is $\beta \cdot R_{\rm F}$). As for the follower recently designed, the AC path to ground is to be ignored: the path through R_3 is closed to DC, so invisible to the bias divider.
- 4. Choose R_1 , R_2 to put V_{base} at $(V_R + 0.6V)$. R_{Th} is roughly R_1 , since the divider is so far unbalanced.

Determining AC performance: Gain (what happens to signal)

- $1.$ Choose R_3 (if any) for gain at quiescent point
- $2.$ Choose C_2 for f_{3dB}: the relevant "R" is $R_3 + r_6$
- Choose C_1 as usual; relevant "R" is circuit's Z_{in} , as usual: the $3.$ circuit's AC input impedance, as for the follower: we look through capacitor C_2 , and see R_3 as a path to ground.

In choosing C_1 we need to be generous, since two high-pass filters are at work: those using C_1 and C_2 . So, if we made the mistake of putting the f_{3dB} for each filter precisely at our target f_{3dB} for the *circuit*, we would be disappointed: we would find the circuit's response down 6dB.

P115

Impedances of an amp (or any component)...how to measure? Treat amp as a Thevenin black box: *i.e.* a V_{th} in series with R_{th} . R_{in}: looking "forward," into the input terminal.

R_{out}: looking "backward," into output terminal from next stage.

Measure the open circuit $V_i = V_{th}$.

Add a variable R in series (a substitution box is most convenient)

> Change R until V across it is = $\frac{1}{2}V_{th}$. Then, $R_{th} = R$.

DVM *vs* VOM, for this application DVM...10 MΩ input impedance...a FET input stage hi-Z input, followed by op amp for feedback stability *vs.* VOM...much lower input impedance, 20 kΩ/v...& variable at that! Beware of body resistance, ~1MΩ, *e.g.* don't short out a 10 MΩ instrument by your body fluids!

Common transistor circuits...

recognized by where you take your output, where V fixed p89

Current Amp

Voltage Amp