Week 3: Bipolar Transistors Mon 2/10 H&H Labs 4&5 READ p 90-93, 102, 115&6. Last week unfinished? Use make-up! DO NOT DO: Lab 4-7,8; ONLY DO 5-2; optional 4-7. Typical transistor: current gain " β " ~ 100. AC or DO "trans-(re)sistor", an impedance matcher, look into each hole: Look into input, want hi Z_{input}, easy to drive from previous. x100 more than next stage. gives 100x lower Z_{output} ideally: Z_{in} hi, Z_{out} low p96 Measuring Z: dial resistor box to reduce V by x2 Input voltage dynamic range: set by 0.6v V_{BF} forward Si diode Output voltage dynamic range (≡compliance): p140 set by 2 voltage supply rails X-ister switch: when "on", i_{CE} current saturated to get $V_{CE} \rightarrow 0$ Bias Rs set DC operating "sweet" spot, then optimize AC gain. C_{in} & C_{out} block external offsets to preserve DC bias voltages see Worked Exs. & assimilate pp 93 p90-3, 115-6 Next Monday's "must" reading:

Differential amps, FET's (field effect transistors): H&H 124-162

Your transistor circuits...

recognized by where you take your output, where V fixed

p89

Steps in designing a transistor current amp ≡ impedance matcher ...the simplest is EMITTER FOLLOWER (non-inverting *i* amp):

...but temp stability? touch it! linearity? low gain

Design COMMON EMITTER amp: temp stability & hi AC gain, ~100: DC Gain = $-R_C / R_E$, nice! Bypass R_E to get AC gain > $f_{3dB} \sim 100$ Hz (no hum). Intrinsic, dynamic r_e , diode-like = $25\Omega/I_c(mA)$. I_c quiescent = 0.5 mA p102; 115&6 1. Choose IQ text p79 7. Choose C1. $V_{cc} = +20v$ Note that at signal freq To center Vout 2 $R_{in} \approx R_{Th}(bias) || h_{FE}(re+R_3)$ 0.5 MA for IQ = 0.5mA, Rc / R1 220k $R_c = 20k$ <20k $\approx 20 \text{ k} \parallel 100 \times 200$ V_{out} = 10k $\Rightarrow C_1 = 1/2\pi \cdot 50 \cdot 10k$ 5. Choose R_3 for reg'd gain. $G = \frac{R_c}{r_e + (R_E || R_3)}$ 1.6v ∓ 0.33µF 1.0V and 12 = 5012 @ Ic = 0.5mA. 82 20k **R**3 R_E 2k Thus 150 A $100 \approx \frac{20k}{50 \Omega + R_3} ,$ 4. Find R1: R2 ratio to put VB = 1.6v: CZ and R3 = 150.52 (note 20µF $\frac{1.6v}{18.4v} = \frac{R_2}{R_1}, \Rightarrow R_1 = 11.5R_2$ effect of RE negligible) 3. Put VE \$1V, --- then ---Set RTh (bias) & Rin (base) 6. Choose Cz. for temp. stab. Circuit f3dB = 100Hz ⇒ Rin(base) ≈ h_{FE} R_E ≈200k ⇒ R_ε =2k this "filter's" f3dB ≈ 50Hz. so RTH (bizs) \$ 20k. Relevant "R" is R3 + re ⇒ Let R2 = 20k, since $C_2 = \frac{1}{2\pi} f_{3/B}(R_3 + r_e) = 16\mu F.$ $R_1 \gg R_2 \Rightarrow R_{Th(bias)} \approx R_2$ use 20,1F (or 22,4F)

What to remember from Week 2?

Ratios:
$$dB = 10 \log_{10} (P_{out}/P_{in}) = 20 \log_{10} (V_{out}/V_{in})$$
 ..."2" since $P = V^2/R$
20 $dB = x 10$ V ratio
6 $dB = x 2$ V ratio
3 $dB = x0.707$ V ratio = $(1/\sqrt{2}) = \frac{1}{2}$ power point

Frequency domain (radians)
$$\omega_{3dB} = 2\pi f = 1/\tau$$
p39vs time domain (Hz) $f_{3dB} = \omega_{3dB}/2\pi$ p40

Filters

RC

 $\tau = \text{RC}$ time constant for V_{out}/V_{in} to get to 0.63 of asymptote ~k $\Omega \times \mu$ fd = millisec (ms) = "audio" frequencies 10Hz-20k

Rolloff response: 6dB/octave (20dB/decade) = x2 V drop per x2 freq, or 10×10see Bode Plot

Hi (frequency) passC = ac HF short, "bypasses" ac
C = smoothing, "blocks" dcp41Low f pass<math>C = smoothing, "blocks" dc(& 45° phase shift)<math>3dB = down x2 in power(& 45° phase shift)

(Coils are a complement:Inductance $\tau = L/R$ C + L give resonance:Tank (resonant) circuit $\omega = 1/\sqrt{LC}$)

Bode frequency roll-off plot for a low-pass filter: 6 dB/octave = 20 dB/decade = -1 log-log slope x2 for 2 x10 for 10 straight line

p41

RC filters – time domain vs frequency domain L/R ~same 3 dB (0.707=1/ $\sqrt{2}$) inflection point for V_o/V_i vs. 6 dB/octave (x2 for x2 in frequency) = 20 dB/decade rolloff in f x2 for 2 x10 for 10 p39

Do not confuse these frequency-domain pictures with the earlier RC step-response picture, (which speaks in the time-domain).

Figure N2.16: Deceptive similarity between shapes of time- and frequency- plots of RC circuits

Not only do the curves look vaguely similar. To make things worse, details here seem tailor-made to deceive you:

- Step response: in the time RC (time-constant), V_{eap} moves to about 0.6 of the applied step voltage (this is 1 1/e).
- Frequency domain: at f_{3dB}, a frequency determined by RC, the filter's V_{out}/V_{in} is about 0.7 (this is 1/√2)

Default scope etiquette... ask for tutorial if at all in doubt

 V_{in} to channel 1, zero at +2 vertical boxes V_{out} to channel 2, zero at -2 vertical boxes

Trigger: normal, rising slope

Causality \Rightarrow trigger on input Horizontal trace starts at horizontal box 1 Choose time scale to display a couple of cycles

to see precursors not too many, not too few

~ never use "line" or "auto"

DC coupling...except to see DC offset AC inserts a capacitor in the way *"Thou shall not touch trigger once its operational!!!" "Only use 'Auto' in desperation to find the trace."* Use a x10 probe if you need to minimize disturbance to circuit. Compensate the probe adjusting its capacitance using a square wave; it's Fourier transform has all frequencies.