Week 3: Bipolar Transistors Mon 2/10 H&H Labs 4&5 READ p 90-93, 102, 115&6. Last week unfinished? Use make-up! DO NOT DO: Lab 4-7,8; ONLY DO 5-2; optional 4-7. Typical transistor: current gain "β" ~ 100. AC or D "trans-(re)sistor", an impedance matcher, look into each hole: Look into input, want hi Z_{input} , easy to drive from previous. x100 more than next stage. gives 100x lower Z_{output} ideally: Z_{in} hi, Z_{out} low p96 Measuring Z: dial resistor box to reduce V by x2 Input voltage dynamic range: set by 0.6v V_{BE} forward Si diode Output voltage dynamic range (≡compliance): p140 set by 2 voltage supply rails X-ister switch: when "on", i_{CE} current saturated to get $V_{CE} \rightarrow 0$ Bias Rs set DC operating "sweet" spot, then optimize AC gain. C_{in} & C_{out} block external offsets to preserve DC bias voltages
see Worked Exs. & assimilate pp 93 behind the particle parameters. 115-6 see Worked Exs. & assimilate pp 93 Next Monday's "must" reading:

Differential amps, FET's (field effect transistors): H&H 124-162

Your transistor circuits...

recognized by where you take your output, where V fixed p89

Steps in designing a transistor current amp ≡ impedance matcher ...the simplest is EMITTER FOLLOWER (non-inverting *i* amp):

...but temp stability? touch it! linearity? low gain

Design COMMON EMITTER amp: temp stability & hi AC gain, ~100: DC Gain = - R_c / R_F , nice! Bypass R_F to get AC gain > f_{3dB} ~100 Hz (no hum). Intrinsic, dynamic r_e, diode-like = $25\Omega/l_c(mA)$. I_c quiescent = 0.5 mA $n102:11596$

7. Choose C₁. Note that at signal
$$
f_{reg}
$$

\n $R_{in} \approx R_{th}$ (has) || $h_{reg}(re+R_{3})$
\n $\approx 2 \text{ ok } 1100 \times 200$
\n $\approx 2 \text{ ok } 1100 \times 200$
\n $\approx 2 \text{ ok } 220 \text{ k}$
\n $\approx 0.33 \text{ m F}$
\n<

What to remember from Week 2?

Rations:
$$
dB = 10 \log_{10} (P_{out}/P_{in}) = 20 \log_{10} (V_{out}/V_{in})
$$
 ..."2" since $P = V^2/R$

\n20 $dB = x 10$ V ratio

\n6 $dB = x 2$ V ratio

\n3 $dB = x0.707$ V ratio = $(1/\sqrt{2}) = \frac{1}{2}$ power point

Frequency domain (radians)
$$
\omega_{3dB} = 2\pi f = 1/\tau
$$
 p39
vs time domain (Hz) $f_{3dB} = \omega_{3dB}/2\pi$ p40

Filters

RC $\tau = RC$ time constant for V_{out}/V_{in} to get to 0.63 of asymptote $-k\Omega \times \mu fd = \text{millisec (ms)} = \text{``audio'' frequencies } 10\text{Hz-}20\text{k}$

Rolloff response: 6dB/octave (20dB/decade) = $x2$ V drop per x2 freq, or 10×10 see Bode Plot

Hi (frequency) pass $C = ac HF short, "bypasses" ac$ p41 Low f pass $C =$ smoothing, "blocks" dc $3dB = down x2$ in power (& 45° phase shift)

(Coils are a complement: Inductance $\tau = L/R$
C + L give resonance: Tank (resonant) circuit $\omega = 1/\sqrt{LC}$) \dot{C} + L give resonance: Tank (resonant) circuit

Bode frequency roll-off plot for a low-pass filter: 6 dB/octave = 20 dB/decade = -1 log-log slope x2 for 2 x10 for 10 straight line

p41

RC filters – time domain *vs* frequency domain L/R ~same 3 dB (0.707=1/ $\sqrt{2}$) inflection point for V_o/V_i *vs.* 6 dB/octave (x2 for x2 in frequency) = 20 dB/decade rolloff in f $x2$ for 2×10 for 10 p39

Do not confuse these *frequency-domain* pictures with the earlier RC step-response picture, (which speaks in the *time-domain*).

Figure N2.16: Deceptive similarity between shapes of time- and frequency- plots of RC circuits

Not only do the curves look vaguely similar. To make things worse, details here seem tailor-made to deceive you:

- Step response: in the time RC (time-constant), V_{cap} moves to about 0.6 of the applied step voltage (this is $1 - 1/e$).
- *Frequency domain:* at f_{3dB}, a frequency determined by RC, the filter's $V_{\text{out}}/V_{\text{in}}$ is about 0.7 (this is $1/\sqrt{2}$)

Default scope etiquette... ask for tutorial if at all in doubt

 V_{in} to channel 1, zero at +2 vertical boxes V_{out} to channel 2, zero at -2 vertical boxes

Causality ⇒ trigger on input Horizontal trace starts at horizontal box 1 to see precursors Choose time scale to display a couple of cycles hot too many, not too few

Trigger: normal, rising slope \sim never use "line" or "auto"

DC coupling...except to see DC offset AC inserts a capacitor in the way *"Thou shall not touch trigger once its operational!!!" "Only use 'Auto' in desperation to find the trace."* Use a x10 probe if you need to minimize disturbance to circuit. Compensate the probe adjusting its capacitance using a square wave; it's Fourier transform has all frequencies.