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Course description

Course name:
Course abbreviation:

Academic Year: 2018/2019
Physics
UAFM/C009A  / 2

Department/Unit / UAFM / C009A
Title Physics

Academic Year 2018/2019

Accredited/Credits Yes, 5 Cred.
Number of hours Lecture 2 [HOD/TYD] Seminar 1 [HOD/TYD]

Occ/max
Summer semester 0 / -

Winter semester 0 / -
0 / -
0 / - 0 / -

Status A Status B Status C
0 / -

Substituted course None
Preclusive courses N/A

Prerequisite

Type of completion

Type of completion

Course credit prior to
Counted into average

Language of instruction
Repeated registration

Semester taught

Examination

Combined

NO
YES

English
NO
Summer semester

N/A

Course objectives:

Introduction into basic principles of physics emphasizing Newtonian mechanics, conservation laws, thermal physics, electricity
and magnetism, waves, geometrical optics, atomic and nuclear physics.

Requirements on student

Content

Introduction into physics and necessary basic mathematics. SI units.
Kinematics of mass points.
Dynamics of mass points and rigid bodies. Newton's laws.
Conservation laws. Energy, linear and rotational momentum.
Gravitation, intensity, potential energy, potential, conservative fields.
Elasticity and fracture. Stress, strain, Hook's law.
Fluids. Hydrostatics and hydrodynamics of ideal liquids. Newton's fluids.
Oscillations and wave motion. Doppler's effect.
Temperature and heat. Thermal expansion. Heat capacity.
Basic thermodynamics.
Electrostatics. Electric charge and field. Coulomb's law. Gauss 's law.
Capacitance. Electric potential.
Electrokinetics. Electric current and resistance. DC circuits.
Magnetism.
Electromagnetism. Lorentz force, Faraday's law.
Basics of Optics. Reflection and refraction, lenses, optical instruments.
Introduction into modern physics. Black body radiation. Photoelectric effect.
     X-Rays.
Introduction into Atomic and nuclear physics.

Prerequisites - other information about course preconditions

not determined

Informally recommended courses N/A
N/ACourses depending on this Course

Min. (B+C) students
YesTimetable

Internship duration 0Optional course Yes
Automat. uzn. záp. před No

Periodicita
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Basic level of algebra, trigonometry and calculus

Competences acquired

The subject widens and deepens the secondary school physics knowledge. Prepares students for further studies. Enables them to
solve simple and more advanced problems.

Fields of study

Guarantors and lecturers

doc. RNDr. Miloš Steinhart, CSc.•  Guarantors:
doc. RNDr. Miloš Steinhart, CSc.•  Lecturer:
RNDr. Petr Janíček, Ph.D., doc. RNDr. Miloš Steinhart, CSc.•  Seminar lecturer:

Literature

Halliday, Resnick, Walker. Fundamentals of Physics.•  Recommended:
Giancoli. Physics for Scientists and Engineers.•  Recommended:

Teaching methods

Monologic (reading, lecture, briefing)
Dialogic (discussion, interview, brainstorming)

Assessment methods

Oral examination
Written examination

Course is included in study programmes:
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Course description

Course name:
Course abbreviation:

Academic Year: 2018/2019
Physics
UAFM/CD09  / 6

Department/Unit / UAFM / CD09
Title Physics

Academic Year 2018/2019

Accredited/Credits Yes, 5 Cred.
Number of hours Lecture 2 [HOD/TYD] Seminar 1 [HOD/TYD]

Occ/max
Summer semester 0 / -

Winter semester 0 / -
0 / -
0 / - 0 / -

Status A Status B Status C
0 / -

Substituted course None
Preclusive courses N/A

Prerequisite

Type of completion

Type of completion

Course credit prior to
Counted into average

Language of instruction
Repeated registration

Semester taught

Examination

Combined

NO
YES

English
NO
Summer semester

N/A

Course objectives:

Introduction into basic principles of physics emphasizing Newtonian mechanics, conservation laws, thermal physics, electricity
and magnetism, waves, geometrical optics, atomic and nuclear physics.

Requirements on student

Content

Introduction into physics and necessary basic mathematics. SI units.
Kinematics of mass points.
Dynamics of mass points and rigid bodies. Newton's laws.
Conservation laws. Energy, linear and rotational momentum.
Gravitation, intensity, potential energy, potential, conservative fields.
Elasticity and fracture. Stress, strain, Hook's law.
Fluids. Hydrostatics and hydrodynamics of ideal liquids. Newton's fluids.
Oscillations and wave motion. Doppler's effect.
Temperature and heat. Thermal expansion. Heat capacity.
Basic thermodynamics.
Electrostatics. Electric charge and field. Coulomb's law. Gauss 's law.
Capacitance. Electric potential.
Electrokinetics. Electric current and resistance. DC circuits.
Magnetism.
Electromagnetism. Lorentz force, Faraday's law.
Basics of Optics. Reflection and refraction, lenses, optical instruments.
Introduction into modern physics. Black body radiation. Photoelectric effect.
     X-Rays.
Introduction into Atomic and nuclear physics.

Prerequisites - other information about course preconditions

not determined

Informally recommended courses N/A
N/ACourses depending on this Course

Min. (B+C) students
YesTimetable

Internship duration 0Optional course Yes
Automat. uzn. záp. před No

Periodicita
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Basic level of algebra, trigonometry and calculus

Competences acquired

The subject widens and deepens the secondary school physics knowledge. Prepares students for further studies. Enables them to
solve simple and more advanced problems.

Fields of study

Guarantors and lecturers

doc. RNDr. Miloš Steinhart, CSc.•  Guarantors:
doc. RNDr. Miloš Steinhart, CSc.•  Lecturer:
RNDr. Petr Janíček, Ph.D., doc. RNDr. Miloš Steinhart, CSc.•  Seminar lecturer:

Literature

Halliday, Resnick, Walker. Fundamentals of Physics.•  Recommended:
Giancoli. Physics for Scientists and Engineers.•  Recommended:

Teaching methods

Monologic (reading, lecture, briefing)
Dialogic (discussion, interview, brainstorming)

Assessment methods

Oral examination
Written examination

Course is included in study programmes:

Study Programme Type of Form of Branch Year Block Status R.year R.Stage St. plan v.

Farmacochemistry
and Medicinal
Materials

Bachelor Full-time Farmacochemistry and
Medicinal Materials

1 2018 volitelné
předměty

C 2 LS2015

Farmacochemistry
and Medicinal
Materials

Bachelor Full-time Farmacochemistry and
Medicinal Materials

1 2018 volitelné
předměty

C 3 LS2013

Farmacochemistry
and Medicinal
Materials

Bachelor Full-time Farmacochemistry and
Medicinal Materials

1 2018 volitelné
předměty

C 3 LS2014

Farmacochemistry
and Medicinal
Materials

Bachelor Full-time Farmacochemistry and
Medicinal Materials

1 2018 volitelné
předměty

C 3 LS2015

Farmacochemistry
and Medicinal
Materials

Bachelor Full-time Farmacochemistry and
Medicinal Materials

1 2018 volitelné
předměty

C 3 LS2016

Farmacochemistry
and Medicinal
Materials

Bachelor Full-time Farmacochemistry and
Medicinal Materials

1 2018 volitelné
předměty

C 3 LS2017

Farmacochemistry
and Medicinal
Materials

Bachelor Full-time Farmacochemistry and
Medicinal Materials

1 2018 volitelné
předměty

C 2 LS2013

Farmacochemistry
and Medicinal
Materials

Bachelor Full-time Farmacochemistry and
Medicinal Materials

1 2018 volitelné
předměty

C 2 LS2018

Farmacochemistry
and Medicinal

Bachelor Full-time Farmacochemistry and
Medicinal Materials

1 2018 volitelné
předměty

C 2 LS2014
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Study Programme Type of Form of Branch Year Block Status R.year R.Stage St. plan v.

Materials

Farmacochemistry
and Medicinal
Materials

Bachelor Full-time Farmacochemistry and
Medicinal Materials

1 2018 volitelné
předměty

C 3 LS2018

Farmacochemistry
and Medicinal
Materials

Bachelor Full-time Farmacochemistry and
Medicinal Materials

1 2018 volitelné
předměty

C 2 LS2016

Farmacochemistry
and Medicinal
Materials

Bachelor Full-time Farmacochemistry and
Medicinal Materials

1 2018 volitelné
předměty

C 2 LS2017

Graphic Arts and
Printing Technology

Bachelor Full-time Graphic Arts and Printing
Technology

1 2018 volitelné
předměty

C 2 LS2017

Graphic Arts and
Printing Technology

Bachelor Full-time Graphic Arts and Printing
Technology

1 2018 volitelné
předměty

C 2 LS2016

Graphic Arts and
Printing Technology

Bachelor Full-time Graphic Arts and Printing
Technology

1 2018 volitelné
předměty

C 3 LS2018

Graphic Arts and
Printing Technology

Bachelor Full-time Graphic Arts and Printing
Technology

1 2018 volitelné
předměty

C 3 LS2013

Graphic Arts and
Printing Technology

Bachelor Full-time Graphic Arts and Printing
Technology

1 2018 volitelné
předměty

C 3 LS2014

Graphic Arts and
Printing Technology

Bachelor Full-time Graphic Arts and Printing
Technology

1 2018 volitelné
předměty

C 3 LS2015

Graphic Arts and
Printing Technology

Bachelor Full-time Graphic Arts and Printing
Technology

1 2018 volitelné
předměty

C 3 LS2016

Graphic Arts and
Printing Technology

Bachelor Full-time Graphic Arts and Printing
Technology

1 2018 volitelné
předměty

C 2 LS2015

Graphic Arts and
Printing Technology

Bachelor Full-time Graphic Arts and Printing
Technology

1 2018 volitelné
předměty

C 2 LS2014

Graphic Arts and
Printing Technology

Bachelor Full-time Graphic Arts and Printing
Technology

1 2018 volitelné
předměty

C 2 LS2013

Graphic Arts and
Printing Technology

Bachelor Full-time Graphic Arts and Printing
Technology

1 2018 volitelné
předměty

C 2 LS2018

Graphic Arts and
Printing Technology

Bachelor Full-time Graphic Arts and Printing
Technology

1 2018 volitelné
předměty

C 3 LS2017

Chemical and Process
Engineering

Bachelor Full-time Economy and Management
of Chemical and Food
Industry

1 2018 volitelné
předměty

C 2 LS2018

Chemical and Process
Engineering

Bachelor Full-time Economy and Management
of Chemical and Food
Industry

1 2018 volitelné
předměty

C 2 LS2016

Chemical and Process
Engineering

Bachelor Full-time Economy and Management
of Chemical and Food
Industry

1 2018 volitelné
předměty

C 2 LS2017

Chemical and Process
Engineering

Bachelor Full-time Economy and Management
of Chemical and Food
Industry

1 2018 volitelné
předměty

C 2 LS2014

Chemical and Process
Engineering

Bachelor Full-time Economy and Management
of Chemical and Food
Industry

1 2018 volitelné
předměty

C 2 LS2015

Chemical and Process
Engineering

Bachelor Full-time Economy and Management
of Chemical and Food
Industry

1 2018 volitelné
předměty

C 2 LS2013

Chemical and Process
Engineering

Bachelor Full-time Environment Protection 1 2018 volitelné
předměty

C LS2013

Chemical and Process
Engineering

Bachelor Full-time Environment Protection 1 2018 volitelné
předměty

C LS2014

Chemical and Process
Engineering

Bachelor Full-time Environment Protection 1 2018 volitelné
předměty

C LS2015

Chemical and Process
Engineering

Bachelor Full-time Environment Protection 1 2018 volitelné
předměty

C LS2016
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Study Programme Type of Form of Branch Year Block Status R.year R.Stage St. plan v.

Chemical and Process
Engineering

Bachelor Full-time Environment Protection 1 2018 volitelné
předměty

C LS2017

Chemical and Process
Engineering

Bachelor Full-time Environment Protection 1 2018 volitelné
předměty

C 2 LS2018

Chemical and Process
Engineering

Bachelor Full-time Environment Protection 1 2018 volitelné
předměty

C 2 LS2013

Chemical and Process
Engineering

Bachelor Full-time Environment Protection 1 2018 volitelné
předměty

C 2 LS2014

Chemical and Process
Engineering

Bachelor Full-time Environment Protection 1 2018 volitelné
předměty

C 2 LS2015

Chemical and Process
Engineering

Bachelor Full-time Environment Protection 1 2018 volitelné
předměty

C LS2018

Chemical and Process
Engineering

Bachelor Full-time Environment Protection 1 2018 volitelné
předměty

C 2 LS2017

Chemical and Process
Engineering

Bachelor Full-time Environment Protection 1 2018 volitelné
předměty

C 2 LS2016

Chemistry and
Technical Chemistry

Bachelor Full-time Chemistry and Technical
Chemistry

1 2018 volitelné
předměty

C 2 LS2013

Chemistry and
Technical Chemistry

Bachelor Full-time Chemistry and Technical
Chemistry

1 2018 volitelné
předměty

C 2 LS2017

Chemistry and
Technical Chemistry

Bachelor Full-time Chemistry and Technical
Chemistry

1 2018 volitelné
předměty

C 2 LS2016

Chemistry and
Technical Chemistry

Bachelor Full-time Chemistry and Technical
Chemistry

1 2018 volitelné
předměty

C 2 LS2015

Chemistry and
Technical Chemistry

Bachelor Full-time Chemistry and Technical
Chemistry

1 2018 volitelné
předměty

C 2 LS2014

Chemistry and
Technical Chemistry

Bachelor Full-time Chemistry and Technical
Chemistry

1 2018 volitelné
předměty

C 2 LS2018

Chemistry and
Technical Chemistry

Bachelor Full-time Chemistry and Technical
Chemistry

1 2018 volitelné
předměty

C 3 LS2017

Chemistry and
Technical Chemistry

Bachelor Full-time Chemistry and Technical
Chemistry

1 2018 volitelné
předměty

C 3 LS2016

Chemistry and
Technical Chemistry

Bachelor Full-time Chemistry and Technical
Chemistry

1 2018 volitelné
předměty

C 3 LS2015

Chemistry and
Technical Chemistry

Bachelor Full-time Chemistry and Technical
Chemistry

1 2018 volitelné
předměty

C 3 LS2014

Chemistry and
Technical Chemistry

Bachelor Full-time Chemistry and Technical
Chemistry

1 2018 volitelné
předměty

C 3 LS2013

Chemistry and
Technical Chemistry

Bachelor Full-time Chemistry and Technical
Chemistry

1 2018 volitelné
předměty

C 3 LS2018

Chemistry and
Technology of
Foodstuffs

Bachelor Full-time Evaluation and Analysis of
Foodstuffs

1 2018 volitelné
předměty

C LS2017

Chemistry and
Technology of
Foodstuffs

Bachelor Full-time Evaluation and Analysis of
Foodstuffs

1 2018 volitelné
předměty

C LS2016

Chemistry and
Technology of
Foodstuffs

Bachelor Full-time Evaluation and Analysis of
Foodstuffs

1 2018 volitelné
předměty

C LS2015

Chemistry and
Technology of
Foodstuffs

Bachelor Full-time Evaluation and Analysis of
Foodstuffs

1 2018 volitelné
předměty

C LS2018

Chemistry and
Technology of
Foodstuffs

Bachelor Full-time Evaluation and Analysis of
Foodstuffs

1 2018 volitelné
předměty

C LS2013

Chemistry and
Technology of
Foodstuffs

Bachelor Full-time Evaluation and Analysis of
Foodstuffs

1 2018 volitelné
předměty

C LS2014

Inorganic and
Polymeric Materials

Bachelor Full-time Inorganic Materials 1 2018 volitelné
předměty

C 2 LS2018
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Study Programme Type of Form of Branch Year Block Status R.year R.Stage St. plan v.

Inorganic and
Polymeric Materials

Bachelor Full-time Inorganic Materials 1 2018 volitelné
předměty

C 2 LS2015

Inorganic and
Polymeric Materials

Bachelor Full-time Inorganic Materials 1 2018 volitelné
předměty

C 2 LS2017

Inorganic and
Polymeric Materials

Bachelor Full-time Inorganic Materials 1 2018 volitelné
předměty

C 2 LS2016

Inorganic and
Polymeric Materials

Bachelor Full-time Inorganic Materials 1 2018 volitelné
předměty

C 3 LS2018

Inorganic and
Polymeric Materials

Bachelor Full-time Inorganic Materials 1 2018 volitelné
předměty

C 3 LS2015

Inorganic and
Polymeric Materials

Bachelor Full-time Inorganic Materials 1 2018 volitelné
předměty

C 3 LS2016

Inorganic and
Polymeric Materials

Bachelor Full-time Inorganic Materials 1 2018 volitelné
předměty

C 3 LS2017

Inorganic and
Polymeric Materials

Bachelor Full-time Polymeric Materials and
Composites

1 2018 volitelné
předměty

C 3 LS2014

Inorganic and
Polymeric Materials

Bachelor Full-time Polymeric Materials and
Composites

1 2018 volitelné
předměty

C 3 LS2015

Inorganic and
Polymeric Materials

Bachelor Full-time Polymeric Materials and
Composites

1 2018 volitelné
předměty

C 3 LS2016

Inorganic and
Polymeric Materials

Bachelor Full-time Polymeric Materials and
Composites

1 2018 volitelné
předměty

C 2 LS2014

Inorganic and
Polymeric Materials

Bachelor Full-time Polymeric Materials and
Composites

1 2018 volitelné
předměty

C 2 LS2016

Inorganic and
Polymeric Materials

Bachelor Full-time Polymeric Materials and
Composites

1 2018 volitelné
předměty

C 3 LS2017

Inorganic and
Polymeric Materials

Bachelor Full-time Polymeric Materials and
Composites

1 2018 volitelné
předměty

C 2 LS2017

Inorganic and
Polymeric Materials

Bachelor Full-time Polymeric Materials and
Composites

1 2018 volitelné
předměty

C 3 LS2018

Inorganic and
Polymeric Materials

Bachelor Full-time Polymeric Materials and
Composites

1 2018 volitelné
předměty

C 2 LS2015

Inorganic and
Polymeric Materials

Bachelor Full-time Polymeric Materials and
Composites

1 2018 volitelné
předměty

C 2 LS2018

Surface Protection of
Building and
Construction
Materials

Bachelor Full-time Surface Protection of
Building and Construction
Materials

1 2018 volitelné
předměty

C 2 LS2016

Surface Protection of
Building and
Construction
Materials

Bachelor Full-time Surface Protection of
Building and Construction
Materials

1 2018 volitelné
předměty

C 2 LS2015

Surface Protection of
Building and
Construction
Materials

Bachelor Full-time Surface Protection of
Building and Construction
Materials

1 2018 volitelné
předměty

C 2 LS2018

Surface Protection of
Building and
Construction
Materials

Bachelor Full-time Surface Protection of
Building and Construction
Materials

1 2018 volitelné
předměty

C 3 LS2018

Surface Protection of
Building and
Construction
Materials

Bachelor Full-time Surface Protection of
Building and Construction
Materials

1 2018 volitelné
předměty

C 3 LS2015

Surface Protection of
Building and
Construction
Materials

Bachelor Full-time Surface Protection of
Building and Construction
Materials

1 2018 volitelné
předměty

C 3 LS2016

Surface Protection of
Building and
Construction

Bachelor Full-time Surface Protection of
Building and Construction
Materials

1 2018 volitelné
předměty

C 2 LS2017
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Study Programme Type of Form of Branch Year Block Status R.year R.Stage St. plan v.

Materials

Surface Protection of
Building and
Construction
Materials

Bachelor Full-time Surface Protection of
Building and Construction
Materials

1 2018 volitelné
předměty

C 3 LS2017
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Physics

1
Introduction into Physics

Doc. Miloš Steinhart, ÚAFM, UPCE
Milos.Steinhart@upce.cz



04. 03. 2020 3

Main Topics

1. Introduction
2. Coordinate system
3. Goniometric functions
4. Scalars and vectors, unit vector
5. Basic vector operations
6. Calculus: Derivatives and integrals
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Introduction into Physics
• Physics is the most basic science that deals with the

structure and behavior of matter (=all around us)
from microscopic to macroscopic dimensions.

• Richard Feynman said 'Physics is the way of
thinking' : The Nature plays chess, we are watching
it and trying to reveal the rules of the game. We can
see directly how various stones move but the reason
why they move a certain way in a certain situation is
a higher level of knowledge.
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The Main SI Units

• meter m – length
• kilogram kg – mass
• second s – time
• ampere A – electric current
• kelvin K – temperature
• mol mol – amount of substance 
• candela cd – illumination



The Main SI Units
The 26th assembly of the general conference for units in 

Versailles 19. 11. 2018 agreed on redefinition of the 
main units by fixing the values of 7 physical constants:

• Frequency of transition 133Cs: f = 9 192 631 770 Hz
• Speed of light in vacuum: c = 299 792 458 m/s
• Planck's constant: h = 6.626 070 15.10-34 J.s
• Elementary charge: qe = 1.602 176 634.10-19 C
• Boltzman's constant: kB = 1.380 649.10-23 J/K
• Avogadro's constant: NA = 6.022 140 76.1023

• Illumination effectivity of monochromatic irradiation
of 540 THz: Kcd = 683 lm/W
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Length - the meter [m]
• Originally: 10-7 part of a quadrant of the

Earth. Due to apparent inconvenience of
this definition an etalon has been introduced
- international meter. Its fundamental
advantage over then existing etalons was
that it was defined in a reproducible way.

• Recently: the meter is defined on the basis
of the speed of the light in vacuum:

c = 299 792 458 ± 1 ms-1
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Mass - the kilogram [kg]

• Originally: the mass if 1 dm3 of water at
certain thermodynamic conditions
(pressure, temperature, content of D2O)

• Long time an etalon - international kilogram
is used. This seems not particularly
consistent with the fact that weighting
belongs in principle among the most precise
measurements.
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Time the second [s]

• Originally: 1/86400 part of the solar day the
1. 1. 1900.

• Recently: on the basis of frequency
measurements of the particular spectral line

133Cs: f = 9 192 631 770 Hz
λ = 32,6 mm
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Electric current - the ampere [A]
• With the help of force between two parallel very

(~∞) long wires through which the current flows.
• If these wires are 1 m apart and the current of 1 A

flows in each of them in the same direction there
is an attractive force between them 2.10-7 N per
one meter of the wire length exists.

• The current of 1 A means that the charge of 1 C
passes in one second. This represents the charge of
6 242 197 253 433 210 000 elementary (electron)
charges.
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Absolute Temperature - Kelvin [K]
• The step is the same as in the case of the Celsius

degree: The interval between the freezing and
boiling points of water is divided into 100 steps.
The relation between the Celsius and Kelvin
(=absolute or thermodynamic) scale is linear

T[K] = 273. 15 + T[°C]
• The Kelvin is defined with the use of the triple

point of water which is 273.16 K
• The temperature is closely related to the kinetic

energy of atoms and molecules in matter.
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Amount of substance - mole
[mol]

• Number of atoms in 0.012 kg of carbon 12C.
• Equal to NA = 6.02214379 1023 particles,

named after Amedeo Avogadro 1776 -
1856)

• Number that allows for convenient transfer
of units from micro-world to our scales
world.
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Luminous Intensity - candela [cd] 

• Candela is a luminous intensity of a
monochromatic source with the frequency
of 540×1012 Hz (yellow-green), the
emittance of which in given direction is
1/683 W into 1 steradian.

• Emittance is the energy emitted over one
second into the unit of a space angle.
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SI multipliers I

• kilo 103 k
• mega 106 M
• giga 109 G
• tera 1012 T
• peta 1015 P
• exa 1018 E
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SI multipliers II

• milli 10-3 m
• micro 10-6 µ
• nano 10-9 n
• pico 10-12 p
• femto 10-15 f
• atto 10-18 a
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Orders of Length in Nature
• radius of neutron 10–15 m
• radius of atom 10–10 m
• typical length of a virus 10–7 m
• thickness of a sheet of paper 10–4 m
• human's finger 10–2 m
• football playground 102 m
• Mount Everest 104 m
• radius of the Earth 107 m
• the distance from the Earth to the Sun 1011 m
• - " - to Alpha Centauri 1016 m
• - " - to the nearest galaxy 1022 m
• - "- to the most distant galaxy 1026 m 
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Orders of Time in Nature
• lifetime of some particles 10–23 s
• half-time of nuclei 10–22 – 1028 s
• flight-time of the light through atom 10–19 s
• - " - a piece of paper 10–13 s
• heart beat 1 s
• a day 104 s
• a year 107 s
• human's life 109 s
• the known history of the humankind 1012 s
• life on the Earth 1016 s
• the expected age of the Universe 1022 s
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Orders of Mass in Nature
• electron 10-30 kg
• proton, neutron 10-27 kg
• molecule of DNA 10–17 kg
• bacteria 10–15 kg
• a flee 10-5 kg
• a man 102 kg
• a ship 108 kg
• the Earth 6 1024 kg
• the Sun 3 1030 kg
• our galaxy 1041 kg
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Gonimetric functions
• cos(α) … the first coordinate of the intersection of 

the oriented angle α with the unit circle
• sin(α) … the second coordinate of the intersection 

of the oriented angle α with the unit circle
• tg(α) = sin(α) / cos(α)
• cotg(α) = cos(α) / sin(α)
• sin2(α) + cos2(α) = 1
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Sum Formulas I
• sin(α+β)  = sin(α)cos(β)  + sin(β)cos(α)
• sin(α-β)   = sin(α)cos(β) – sin(β)cos(α)
• cos(α+β) = cos(α)cos(β) – sin(α)sin(β)
• cos(α-β)  = cos(α)cos(β)  + sin(α)sin(β)
• sin(2α)    = 2 sin(α)cos(α)
• cos(2α)   = cos2(α) – sin2(α)
• sin2(α/2)   = [1 – cos(α)]/2
• cos2(α/2)   = [1 + cos(α)]/2
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Sum Formulas II

• sin(α)+sin(β)  = 2sin((α+β)/2)cos((α-β)/2)
• sin(α)–sin(β)   = 2cos((α+β)/2)sin((α-β)/2)
• cos(α)+cos(β) = 2cos((α+β)/2)cos((α-β)/2)
• cos(α)–cos(β) = –2sin((α+β)/2)sin((α-β)/2)
• Euler's formula :

exp(–iα) = cos(α) – i sin(α)
imaginary unit i … i2 = –1
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Vectors and Scalars
• A scalar quantity has only its magnitude and unit so it

can be expressed as a number e.g. temperature, time,
speed, energy…

• A vector quantity has its magnitude, unit and direction
and it is used when the direction matters e.g. radius
vector, velocity, force, linear momentum, angular
momentum, torque…

Rectangular coordinate syst. 

Each vector can be expressed in 
a basis of three non-coplanar 

vectors
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Vector operations I

…magnitude of a vector

… unit vector and

…direction cosines

… radius vector in 
rectangular coordinates

i, j, k, are unit vectors of the basis

 )zy(x 222 ++== rr 

)cos,cos,(cosr γβα=0


kzjyix
zyxr
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Vector operations II

• null vector ... null length, arbitrary direction

• multiplication by a scalar …

• an opposite vector when k = -1 orientation
changes

• addition of vectors … ci = ai + bi

• subtraction of vectors … di = ai – bi

bac


+=

bad


−=

Take care about the units !!!

),,( 321 kakakaak =
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Vector operations III
• The dot product - the result is a scalar

• The cross product - the result is a vector

Projection of 
one vector 

into the 
direction of 

the other

( )
γcosbac

babababac zzyyxx




=

⋅+⋅+⋅=•=

zyx

zyx

bbb
aaa
kji

bac =×=


γsinbac

babac
babac
babac

xyyxz

zxxzy

yzzyx

 =

−=

−=

−=

Projection of one vector perpendicularly to 
the other one
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Vector operations IV
•The trick in using vectors is that rather complicated
problem is projected into the axes of a conveniently chosen 
coordinate system to obtain components, then many but 
simple manipulations are done with these components and 
the result vector is constructed back from them.
• The dot product is commutative and convenient to test 
perpendicularity of vectors.
• The cross product is anti-commutative and convenient to 
test co-linearity of vectors:

• If two non-zero vectors are not co-linear they define a plane and 
the cross product is perpendicular to this plane so that
vectors                           make a right-handed system.

• If the vectors and are co-linear their cross product is 
always a zero vector.

bacba
 ×=,,

b


a
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Calculus in Physics 
• Derivative of a function of real variable measures its 

sensitivity to the change of the function value to the 
change of variable.

• Geometrically it is a slope of a tangent line to the 
function f in the point with the coordinate x.

• Derivatives of higher order exist. Example :
f(x) = 3x2+3; df/dx = 6x; d2f/dx2=6; d3f/dx3=0

• Derivatives are defined also for functions of more 
variables.
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Main Topics 
• Introduction into mechanics. Kinematics of a 

particle = mass point.
• Straight-line motion

• Constant speed
• Constant acceleration

• Curved line – circular motion
• Constant speed
• Constant acceleration

• Motion in 2D and 3D space  
• Relative motion
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Introduction into Mechanics
• We shall deal with classical mechanics where the objects

• are much larger than are the typical atomic bond distances in matter
• move with a speeds considerably lower than c light in free space

• Kinematics deals with the description of position and 
motion of objects but doesn’t care about the reasons for 
their changes.

• Dynamics deals particularly with these reasons. To reach 
this task, it defines special quantities and takes a special 
care about those of them that conserve.

• The particle = mass point is a simplified object which is 
geometrically infinitely small but has non-zero mass. 
Further we use both words as synonyms. 
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Kinematics I

• The main reason to study and understand kinematics 
is that using easily imaginable and illustrative ideas 
it enables to learn to solve problems which is useful 
in other areas as well. For example:
• The first step is to find the real dimension of the problem 

and employ appropriate coordinate system and quantities.
• The mathematical tools used in kinematics such as 

calculus can be used another fields e.g. the physical 
meaning of integration constants is illustrative and 
obvious.
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Kinematics II
• The position of a particle is described by means of 

the radius vector which begins in the origin of the 
coordinate system and ends in the particle:

• If a body travels a distance s over time period t its 
motion can be attributed the average speed

• If the radius vector changes by       over a period Δt
its motion can be described by the vector of average 
velocity that has obviously a direction.

• The limit of this quantity for Δt→0 gives the 
instantaneous velocity

][),,(),,( 321 mxxxzyxr ==

t
sv =
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rv
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Kinematics III
• The instantaneous velocity is indeed the first 

derivative of the radius vector and it is tangent to 
the trajectory of the particle.

• Since also the velocity can change it time we define 
acceleration:

• Similarly higher-order accelerations are defined.
• However, the first order acceleration is especially 

important since it is the only non-zero acceleration 
if a constant force acts.

]/[ 2
2

2

sm
dt

rd
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Kinematics IV
• Unlike the velocity which is tangent to the 

trajectory the acceleration doesn't have generally 
special geometrical relation to it. But it is useful to 
project the acceleration into two components in the 
direction of the velocity and perpendicular to it:

• This allows to divide motion into translation and 
curvilinear depending whether        is zero or not.

nt
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Kinematics V
• In the previous ρ in the curvature radius. The 

smaller it is the sharper is the curve. For motion on 
a straight line ρ=∞ and              .

• Uniform rectilinear motion ρ=∞ and              . Axis 
e.g. x can be identified with the line of motion and  
we arrive to scalar (1D) problem:

To know the velocity means only to know the slope of the 
time dependence of coordinate. To calculate the position at 
arbitrary time we need to know it at any particular time t0, 
often in the beginning. We call this the boundary conditions. 

0
 =na

0
 =a

vtxtxvdtdx
dt
dxv +=⇒=⇒= 0)(

)( 00 txx ≡
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Kinematics VI
• Uniformly accelerated rectilinear motion:

• Since we integrate twice, two integration constants
x0 and v0 are necessary to define the motion. If they
have the same sing the motion is accelerated if their 
sing is opposite the motion is decelerated.

0taa  =

2
00

0

2
)(

)(

tatvxtx

atvtv
dt
dva

++=

⇒+=⇒=



25. 07.  2018 11

Kinematics VII

• In the case of curvilinear motion the normal component of
acceleration must be nonzero in curves. Since every part of
any curve can be considered as a part of a circle of a certain
radius ρ, conclusions from a simple circular motion are
valid for any curvilinear motion.

• Suppose that a particle moves on a circle with a constant
radius r. Its position can be described by one scalar quantity,
either the distance from a certain point along the
circumference or an angle of the circulant from particular
direction. So, although a circle is a 2D object the circular
motion can be described 1D problem.
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Kinematics VIII

• In the case of uniform circular motion
and the vector of normal component of acceleration is 
centripetal i.e. points always to the centre of the circle.

• If a particle moves with constant speed v along the
circumference its movement is periodical since after the
period T = 2πr/v [s] it passes through the same point.

• Circular motion can alternatively be described by number of
rotations in a unit of time the frequency f = 1/T [s-1=Hz].

• The speed is

.0 constaa nt =∧= 

r
T

r
dt

rd
dt
dsv ωπϕ
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Kinematics IX

• In the case of uniformly accelerated circular motion

• The description still can be
simplified to scalar form using
either circumference or angle
quantities.

• After integration :
• ω(t) = ω0 + ε t
• ϕ(t) = ϕ0 + ω0 t + ε t2/2

• Consider :

.consta
t
=

.. 2

2

constr
dt
dr

dt
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t
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Kinematics X
• The simplification which enabled us

to use scalar description didn't take
into account orientation of the plane
of the motion. If we study bodies that
move in various planes e.g. motion of
several planets we have to use vector
description :

• The basis is the definition of the oriented angle .
It is a normal vector which starts in the origin and
from whose endpoint we see the rotation in counter
-clockwise = positive sense. The orientation of its time
derivatives      ,       and other quantities then develop naturally.
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The scalar ≡ dot product
Let 

Definition I. (components)

Definition II. (projection)

∑
=

=
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Can you proof their equivalence?
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The vector or cross product I
Let c=a.b

Definition (components)

The magnitude |c|

kjijki bac ε=

ϕsinbac


=

Is the surface of a parallelepiped made by a,b.



The vector or cross product II

zyx
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bbb
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The vector c  is perpendicular to the plane 
made by the vectors a and b and they have to 
form a right-turning system.

εijk = {1 (even permutation), -1 (odd), 0 (eq.)}
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Main Items

• Introduction into Dynamics
• Dynamics of translation motion
• Dynamics of rotation motion
• Conservation of linear momentum, angular 

momentum and energy



25. 07.  2018 4

Introduction into Dynamics
• Mechanics would not be complete if it did not 

study also the reasons why bodies start to move, 
accelerate, slow down or what causes their 
trajectories to deviate from a straight line.

• It shows up that if bodies with (constant) mass 
accelerate or move on a curved trajectories some 
force (gradient of energy) has to act on them. 

• It took very long time to arrive to this simple 
conclusion since often the forces are not easily 
visible and/or they can act over a distance.
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Dynamics of Translation Motion

• The main new quantities that appear in 
dynamics of translation motion are the 
mass, the force, the linear momentum, the 
kinetic energy and the power. Since these 
quantities are fundamental in Nature, we 
shall learn deeply step by step about all of 
them.
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The Mass
• By intuition we understand mass as the measure of the 

quantity of matter.
• The unit of mass in the SI system is one kilogram.
• It shows up that the inertia mass is equal with the highest 

precision that can be reached to the gravitational mass. 
This fact eventually led to the formulation of the general 
relativity theory.

• Dynamics shows that mass is a measure of the inertia of 
bodies.

• The heavier the body is, the more effort is needed to 
change its dynamic status e.g. to accelerate it, to slow it 
down or to change the direction of its movement.
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The Force
• Force is the mediator of interactions between particles. Force is the 

reason, why bodies start to move, why they accelerate e.g. when 
falling, why they slow down or change the direction of their movement 
but also why they are in equilibrium.

• The main unit in the SI system is one newton

1N = 1 kg. m / s2

• Force is a typical vector quantity. The total force acting on a body is a 
vector sum of all the acting forces. If the total acting force is zero it 
usually means that there are several non-zero forces acting but they are 
in equilibrium - they compensate.

• Forces between bodies can be long-range or act directly. But that is, in 
fact, also long-range since particles of which they consist repel if they 
are very close. Should their nuclei touch, extreme energies would be 
needed. The question is what 'to touch' really means.
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The Linear Momentum
• The dynamic status of a particle moving on a 

straight line is given by the vector of its linear 
momentum (or simply only momentum)

• This quantity has a direction of the velocity of the 
particle, is directly proportional to its speed as 
well as to its mass and it is conserved: The 
momentum of a particle can change only through 
an interaction of with other particles by the means 
of forces. But as we study in detail later the total
momentum of a system of particles is conserved.

vmp 
=
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The Newton’s Laws
• Isaac Newton 1642-1727 ingeniously summarized 

the knowledge of classical mechanics into three 
laws:
1. The Law of Inertia
2. The Law of Force
3. The Law of Action and Reaction 
These laws have to be modified only beyond the 
classical physics e.g. in micro-world.
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The Law of Inertia
• If the total force acting on a body is zero the 

body is in the rest of moves with a constant
velocity.
• More precisely: If the total force acting on a 

body is zero its linear momentum stays 
constant.

• Special movements such as those with changing 
mass are also taken into account in this 
formulation.
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The Law of Force
• The total force acting on a body is equal to the change of 

its linear momentum in time

• It is often the case (but not generally !) that the mass of the 
body stays constant than simpler equation holds:

• Note that we are dealing with vector equations which are valid for 
each of their components e.g.
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The Law of Action and Reaction
• If the body 1 acts on the body 2 by the force        ,
• and the body 2 acts on the body 1 by the force      , 

then 

• Both forces have equal magnitude but opposite 
orientation.
• BUT each of these forces belongs to a different body so 

they can’t be generally added and thereby cancelled.
• They cancel only if some additional mechanical 

connection exists between the bodies. 

2112 FF
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Time Action of the Force – The 
Impulse

• Let us define the impulse of the force constant 
over the (very short) time interval dt as:

• Then a simple integration of the 2nd newton’s law 
gives:

or for finite time interval Δt:

dtFI
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Space Action of the Force – The 
Mechanical Work

• Let us define the work done by the force constant 
over some (very short) distance      :

• Apparently, work is the effect of a force into the 
direction of the movement. Let this be dx :

• The element of work is then equal to the change of 
a new quantity – the kinetic energy that similarly 
as the linear momentum describes a sort of 
dynamic status of a body and also is conserved.
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Linear Momentum versus Kinetic Energy

• We have encountered two different descriptions of 
dynamical status of a body the linear momentum and the 
kinetic energy. Both depend on its mass and velocity, 
however the kinetic energy depends on the square of 
velocity (which is equal to the square of speed) and so it is 
a scalar quantity. 
• We can easily imagine a system with zero linear momentum but 

nonzero kinetic energy, e.g. two spheres rolling toward each other 
with the same speed or a macroscopic amount of gas (particles).

• Also, linear momentum is connected to motion that is conserved 
while part of kinetic energy can change into the same amount of 
energy of different form but the mechanical part can disappear
only if it appears somewhere else in the system or the original 
linear momentum was zero.
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The Power

• The power is the speed with which the mechanical 
work is done:

• As with speed we can use the average power over 
some time period or the immediate power.

• We can also derive an important formula when a 
constant force acts:

dt
dWP =

vF
dt

rdF
dt
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System of Particles
• So far we have dealt with the mechanics of a mass 

point or a particle. This simplification is convenient to 
introduce basic quantities of dynamics but can be also 
useful to solve certain real-life problems.

• More general system can be considered as a system of 
particles which may interact in some way.

• What has to be counted in is of course a crucial thing. 
For example: A free falling body hits the ground then 
stays at rest. What happened to its momentum which 
'disappeared' yet it should have been conserved?
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The center of Mass I
• The whole system of particles can be represented 

by the center of mass    , where the whole mass of 
the system could be concentrated

• This definition holds in components. This can be 
used if the dimension of a problem is less than 3 :                                         

,                       ,         
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*The center of Mass II
• It comes from integration of the equation for the 

total linear momentum :
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The center of Mass III
• The center of mass :

• Doesn't depend on the choice of the coordinate system. But 
a good choice can simplify considerably its calculation.

• It is in the intersection of the elements of symmetry. This 
helps us to choose the coordinate system.

• For the bodies with rotation symmetry the Papp's theorem
can be used : 
The path of the center of mass times surface = volume.

• If the body consists from parts the center of mass can be 
found from their centers of mass    and masses  mi.

• This is in fact rearrangement of the terms in the definition 
formula.  

ir
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The center of Mass IV

• Let's move the origin to the center of mass :

• Then :
• This equation can be used to prove important 

properties of the center of mass : Rotation of a 
body around an arbitrary axis passing through 
the center of mass and translation of this center 
are mutually independent quantities.
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The First Impulse Law I 

• The sum of forces acting on an i-th point particle 
can be decomposed into the sum of internal forces 
which stem from the interactions of the particles 
which are part of the system and the sum of 
external forces. According to the second Newton's 
law :
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The First Impulse Law II

• The total linear momentum of the system is 
the sum of all linear moments :

• Then :
! E
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The First Impulse Law III
• The time change of the total linear momentum is 

the sum of the external forces.
• In other words the total linear momentum can be 

influenced only by external forces.
• This is an important consequence of the law of 

action and reaction. Due to this the sum of all 
internal forces is equal to zero :
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The scalar ≡ dot product
Let 

Definition I. (components)

Definition II. (projection)
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Can you proof their equivalence?
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The Center of Mass I
• Where is the center of mass of four little spheres of mass 1, 2, 

3 and 4 kg laying on a straight line always 1 m apart?
• The straight line is apparently an axis of symmetry so we 

coincide it with one axis e.g. x. Then we chose the origin 
conveniently in the center of one of the spheres e.g. the first :

The center of mass lies in the center of the third sphere. We
can test that it will stay there even if we change the origin.
A good choice of a the coordinate system doesn't change the
position of the center of mass makes calculations easier!
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The Center of Mass II
• Where is the center of mass of four little spheres of mass 1, 2, 

3 and 4 kg laying in the corners of a square with the side 1m ?
• Now the system has a plane of symmetry so we know the 

center of mass lies in this plane as well and calculate its two 
coordinates. We coincide the with two sides of the square so 
one of the spheres lies in the origin. So the coordinates of the 
spheres are e.g.: 1:[0,0], 2:[1,0], 3:[0,1] a 4:[1,1]. Then the 
center of mass is [0.6, 0.7] :
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The Center of Mass III
• Where is the center of mass of four little spheres of mass 1, 2, 

3 and 4 kg laying in some corners of a cube with the side 1m ?
• Mějme nyní koule o hmotnosti 1, 2, 3 a 4 kg v některých 

rozích krychle o straně 1 m. Kde je těžiště tohoto systému?
• Now the problem is 3D but it is still convenient to define a 

special coordinate system so the coordinates of the spheres are 
e.g. : 1:[0,0,0], 2:[1,0,0], 3:[0,1,0] a 4:[0,0,1]. Then the center 
of mass is [0.2, 0.3, 0.4] :

Due to the choice of coordinate system the calculation was
very simple.
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The C. of M. IV Papp's Theorem
• Where is the center of mass of half of the circular disk the 

radius of which was a?
• The body has a plane of symmetry and a two-fold axis which 

we coincide with the axis x and on this axis the center of mass 
should lie. The axis y will be the straight line of the cut of the 
original disk. Its center is also the origin.

• If we rotate our body one turn along the axis y we get a sphere.
• If desired coordinate is xT then according to the Papp's theorem: 
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The Center of Mass V
• Calculating the same using integrals is considerably harder, 

even if we use the best possible system of polar coordinates :

• Of course, integration allows to calculate problems with much 
lower symmetry than the Papp's theorem needs. 
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Main Topics
• Closer to the reality : 

• System of particles
• Rigid body
• Angular momentum, torque 
• Dynamics of rotation motion
• The second impulse theorem
• Centre of gravity, moment of inertia, Steiner's law
• Translation and rotation effect of a force
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Angular momentum -conservation 
laws

• From dynamics of a particle it follows that if the resulting 
force is zero the linear momentum and kinetic energy of the 
particle is conserve.

• Translation motion can be considered as rotation around the 
origin and it is possible to define its – angular momentum :

• This quantity is also conserved. It is conserved also in the 
case of non-zero force if it is central as it is e.g. in the case 
of planetary movement.
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Dynamics of Rotation Motion I
• A force can change both the translation and 

the rotation motion of bodies. In the latter 
case it is important how the force acts.
• Let's have a horizontal rod that can rotate 

around horizontal axis perpendicular to one end 
of the rod. In the distance r from the axis there 
is a mass point m.

• In the distance ρ we act by a force F to 
compensate the weight of the mass point so the 
rod is in equilibrium.
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Dynamics of Rotation Motion II
• Since the weight acts down the vertical

component of our force has to be equal to it : 
Fk = Fsin(α).

• It can be proved experimentally that :
• The weight of the mass point G = mg bodu is 

supported in the axis and by our force: G = F0 + Fk .
• Distribution of the forces is indirectly proportional 

to the distance of the supporting forces :
F0 r = Fk (ρ - r) .

• So : G r = Fk ρ
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Dynamics of Rotation Motion III
• It can be seen that the rotation effect of a 

force depends on the distance from the axis 
where it acts and also on its direction related 
to the direction from the axis - to the point 
where the force acts.

• Totally the rotation effect of a force is given 
by its torque :

The origin is in the intersection of the axis 
and the plane of rotation.
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Dynamics of Rotation Motion IV
• Let a constant torque act on a particle. Then 

using the second Newton's law we can write:

• The torque is equal the time derivative of the 
angular momentum.

• This is the most general formulation of the 
second Newton's law for the rotation motion.

dtbddtprdrFrT dt
pd

 

=×=×=×= )(



25. 07.  2016 9

Dynamics of Rotation Motion V

• In the case the body has constant mass and geometry
(distribution of the mass) it is convenient to define 
the moment of inertia (related to a particular axis): 

J = Σ mi r2
i

and to write :

• The meaning of this can be illustrated similarly as 
before :

ε


JT =
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Dynamics of Rotation Motion VI
• A mass body m, lays on a rod at the distance r

from the rotation axis which is this time vertical :
• The force F lays in horizontal plane and acts in the 

distance ρ from this axis under an angle α with the rod.
Using the previous :

Fk ρ = F sin(α) ρ = r m a = r2 m ε .
• If we put more mass points on the rod then after taking 

out the angular acceleration, which is the same for all 
the points, we find out the particularly the product mi r2

i
is additive :

∑=++= 2
222111 ...)sin( iirmamramrF ερα
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The Second Impulse Law I 

• If we have a system of particles we can 
consider rotation effect of the force acting 
on the i-th particle with respect to arbitrary 
fixed point O :

E
i

I
i

E
i

I
iii

i TTFFrT
dt
bd 
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The Second Impulse Law II
• The total rotation momentum is the vector 

sum of rotation momentum of all the 
particles related to the same fixed point O :

• When summing over the whole system we can 
employ the law of action and reaction.

∑∑ ×==
i

iii
i

i vmrbB 
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The Second Impulse Law III

• Then the time change of the rotation 
momentum is equal to the resulting torque 
due to external forces related to the same 
fixed point O for all the points:

E

i

E
i

i i

E
i

I
i TTTT

dt
Bd 
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Consequences of the Impulse Laws

• If the sum of external forces is zero then the 
total linear momentum is constant.

• If the sum of torques of external forces is 
zero then the total angular momentum is 
constant.

• External forces have both translation and 
rotation effect according the way they act 
related to the centre of gravity of the body
(or of the system of particles).
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Example – Collision of Bodies I
• Central collision – bodies are spherical, they are no external forces. .
• Before the collision the bodies have masses mi, and velocities vi. 
• After the collision they have velocities ui.
• According to the first impulse law the total linear momentum is conserved :

• Collisions exist between two limits – totally inelastic where the bodies move 
together after the collision u1 = u2 = u, part of energy changes to non-mechanical :

• Totally elastic – also the kinetic energy is conserved :                                           
21
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Collision of Bodies II

after diving the equations 

we arrive to the solution

)()(
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Motion with changing mass. 
Rocket Motion I

• Let's assume a body with the mass m and velocity 
collides nonelactically with a body dm and     :

dt
dmvF

dt
dmvuFam

dt
vdm

dt
dmvu

dt
vdm

dt
PdF

vmdmuvdvdmmPPPd

rel
EE

E

AP
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Rocket Motion II
• The linear momentum of a body can change as a 

response to an external force or by receiving or 
emitting mass with certain non-zero relative 
velocity.

• We can assume linear movement :

m
dmvdtt

m
Fdv

dt
dmvuFma

dt
dvm

rel

E

E
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Rigid Body I
• In the previous parts when we introduced 

quantities important for rotations e.g. torque we 
needed fictive bodies like rigid rods with 
negligible mass which would transfer force and 
torque.

• This is an important category of bodies called 
rigid bodies. They are not deformed by acting of 
forces.
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Rigid Body II
• In reality it means that deformations which are 

always present for real bodies can be neglected
from the standpoint of the current problem.

• For these bodies it is easy to decompose action of 
an external force to the translation and rotation
effect. This further depends on some supplement 
conditions.

• For these bodies the moment of inertia doesn't 
change and has unambiguous meaning.
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Rigid Body III
• Neither the translation nor rotation effect on 

rigid body changes if :
• into any arbitrary point we introduce two forces 

with the same magnitude but opposite
orientation

• we shift any acting force on the straight line of 
its action

• ⇒ on any straight line we place two forces with 
the same magnitude but opposite orientation
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Rigid Body IV

• The effect of force which acts in the straight 
line passing through the centre of mass is 
purely translational

• The effect of two forces with the same 
magnitude but opposite orientation acting in 
two arbitrary parallel straight lines is purely 
rotational

• One force can’t have purely rotational effect
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Rigid Body V
Steiner's Law I

• For rigid bodies an important quantity is the 
moment of inertia is :

J = Σ mi r2
i

• From the properties of the centre of mass the 
Steiner's law follows:

• Here Jt is the moment of inertia related to the axis 
passing through the centre of mass and Ja is the 
moment of inertia related to an axis parallel to it 
passing in the distance a. 

2maJJ ta +=
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Rigid Body VI
Steiner's Law II

• The radius vector of i-th point can be expressed 
using its radius vector in the system where the 
origin is the centre of mass : 

• So :

The term in the middle must be zero.
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Rigid Body VII
Steiner's Law III

• It can be readily seen that the moment of 
inertia related to the axis passing through 
the center of gravity is the smallest of the all 
parallel axes.

• If the sum of all torques acting on a rigid 
body is zero, the body uniformly rotates 
along the axis passing through the center of 
mass or remains at rest. 
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Rigid Body VIII
Statics

• If the sum of all forces acting on a rigid 
body is zero, the body moves uniformly
along the straight line or remains at rest. 

• Statics studies the conditions at which 
bodies remain at rest. Generally all forces
and all torques (= all their components) 
must be compensated
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Rigid Body IX
Kinetic energy

• From the above we see that the total kinetic 
energy of a rigid body generally has a 
translation and rotation components :

2
2
12

2
1 ωJmvEk +=
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Rigid Body X
Translation and Rotation

• The corresponding general formulas for dynamics 
of translation and rotation motion are :

• If neither mass nor its geometry changes it makes 
sense to use the moment of inertia : J = Σ mi r2

i

then relations can be simplified.

dt
bdFrT

dt
pdF

prLbvmp






=×≡=

×=≡=



25. 07.  2016 29

Rigid Body XI
mass ~ moment of inertia

• The formulas for the rotation motion have the 
moment of inertia at the place corresponding to mass
in the formulas for the translation motion :
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The scalar ≡ dot product
Let 

Definition I. (components)

Definition II. (projection)

∑
=

=
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iibac

ϕcosbac


=

Can you proof their equivalence?
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The vector or cross product I
Let c=a.b

Definition (components)

The magnitude |c|

kjijki bac ε=

ϕsinbac


=

Is the surface of a parallelepiped made by a,b.



The vector or cross product II

zyx

zyx

zyx

bbb
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uuu

c




=

The vector c  is perpendicular to the plane 
made by the vectors a and b and they have to 
form a right-turning system.

εijk = {1 (even permutation), -1 (odd), 0 (eq.)}

^



Two weights on a pulley I
Let's have two bodies hanging from a cylindrical pulley of
the mass m3 and radius r. The body on the left has a mass m1

and the one on the right m2 (<m1). How the system moves?
Apparently the acceleration of body m1 is a in the downward
direction let's find this acceleration.
For the forces t1 and t2 which act on the circumference of the
pulley we can write :

εJrtt
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Two weights on a pulley II
If the influence of the pulley could be neglected then :
J ≈ 0 ⇒ t1 = t2 ⇒

if not then :
21
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Two weights on a pulley III
After he substitution : 

and reorganizing :

2
3

21

21

mmm

mma
++

−
=

22
3

22

2
3

221
amt

r
armt

r
Jtt +=+=+=
ε



Two weights on a pulley IV
The same result can be obtained from the conservation of the
energy: let's assume that the body m1 moves down during Δt by Δh
The loss of its potential energy must be equal the gain of the kinetic
of the whole system (both bodies and the pulley) and the gain of the
potential energy of the second body : 

Finally, we derive by time and rearrange :
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The moment of inertia of a thin rod
• Let's calculate the moment of inertia of a thin homogeneous rod 

with the cross section S, length L and density ρ related to the 
axis perpendicular to the rod, intersecting it at its end :   

• Taking the second axis parallel to the previous axis but 
intersecting it in the center of mass we can verify Steiner's law: 
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The moment of inertia of a cylinder
• To calculate the J of homogeneous cylinder with the length 

L and radius R and density ρ we use conveniently the polar 
coordinates :   

• Note that the central angle doesn’t have to be necessarily 2π
but arbitrary. So, for instance, for the J of a quarter of a cake 
along the axis passing through its tip the same formula can 
be used. Only now the mass is just one quarter of that of the 
original cake.
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Motion with changing Mass I
• 75 kg/s of sand with zero component of horizontal 

velocity falls on a conveyor belt running horizontally 
with the speed of 2.2 m/s.
What force is necessary to keep the belt moving?
What power must the motor that drives the belt have?
We start from the equation for motion with changing 

mass :   

dt
dmv

dt
dmv

dt
dmvumaF =−−=−−= )0(0)(



Motion with changing Mass II
• The force necessary to keep the belt moving 

with constant speed is then : 2.2*75 = 165 N. 
• The power necessary :

Interestingly, just half of this power goes to the 
increase of the kinetic energy of the sand.

^

W
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dmvFvP 3632 ===



Motion with changing Mass III

• A fully loaded rocket with the mass of 21000 kg of 
which 15000 kg is fuel is starting from the Earth 
directly up. 190 kg of the burned fuel with the 
speed of 2800 m/s leaves it every second.

What is the thrust of the motors?
What is the final force minus the force of gravity at 

the moment of start and just before the fuel is 
burned up?

How long it takes the fuel to burn up?
What us the final speed of the rocket?



Motion with changing Mass IV
The thrust :

The initial and end force :

N
dt
dmvFT
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Motion with changing Mass V
We neglect the air resistance and suppose that during 

the 79 s flight of the rocket the free fall acceleration 
g is constant. Then :

After substituting for the final time and mass the final 
speed is v = 2730 m/s.
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Motion with changing Mass VI
The rocket hasn't reached even the first cosmic speed 

so if it hadn't got another stage it would eventually 
fall back to the Earth.

The assumption about the free fall acceleration is OK 
since at the height of 100 km it is only 1.5% less 
than on the Earth. 

But the resistance of the air can't be neglected taking 
into account the speeds involved.

^



Two special cases of an elastic 
collision I

1) m1 = m2, v2 = 0 →
u1 = 0, u2 = v1

Particles change their velocities. Should the collision 
have occurred in a black-box and we can't distinguish 
the particles, we don't have any means to find out 
whether the particles had collided or not.

2) 2m1 = m2, v2 = 0 →
u1 = -v1/3, u2 = 2v1/3 

We can easily verify that :
u1 + v1 = u2 + v2

^
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Main Topics
• Kepler's Laws
• Newton's Law of Universal Gravitation

• G. Field General / Near the Earth's Surface
• Planetary Motion

• Conservative Fields
• Potential Energy and Potential
• The Relation of Intensity and Potential
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Introduction into Gravitation
• We encounter the first long-range force - the force of 

gravitation. It is connected to an important property of 
nature - the mass. Bodies that have mass effect each other 
(act on each other by force) without touching each other.

• The celestial mechanics works on the basis of the 
gravitational force.

• The laws of gravitation are a generalization of 
astronomical observations, which are typical kinematic and 
took ages.

• The exact description of gravitation was started by very 
accurate measurements of Tycho Brahe (1545-1601) were 
summarized into three laws of planetary motion by 
Johannes Kepler (1571-1630).
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Kepler's Laws
1. Planets move around the 

Sun on elliptical (almost 
circular) trajectories. The 
Sun is in their common 
focal point.

2. The areal velocity of any 
planet in any point of its 
trajectory is constant:

3. Comparing the motion 
parameters of two 
different planets:

S1 S2

a

2
vrw


 ×
=



06. 04.  2021 6

Newton's Law of Universal Gravitation
• The three Kepler's laws were

further generalized into one law
of gravitation by Isaac Newton:
Any two mass-points act on
each other by attractive force
acting along their join. The
force is proportional to each of
the masses and indirectly
proportional to the square of
their distance:

• Here F12 is the force acting on m2, whose position is due
to the existence of m1 in the origin.

• The reaction of this force acts on the mass m1.

m1 x

y
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m2
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Newton's G. Law – notes I 

• The '-' sign means that the force is always attractive.
• κ = 6.67 10-11 Nm2kg-2 … is the universal gravitational 

constant
• Any two mass-points attract each other but the forces 

between bodies of common masses ~kg are almost 
negligible thereby difficult to sense or measure.

• If more masses act of each other the principle of 
superposition holds ≡ the force between any two mass 
points doesn't depend on distribution of any other 
masses, even if it was between them.
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• The areal velocity is defined as :
• Apparently it is proportional to the 

angular momentum :

So the conservation of the areal velocity is 
equivalent the conservation of the angular 
momentum –> the force of gravity is central.

S1 S2

Newton's G. Law – notes II
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• Gravitational field can be roughly imagined as 
'information' that mass-bodies transmit to their 
surroundings and that may change the properties 
of space/vacuum.

• this information includes their size and position 
• spreads with the speed of light in vacuum
• Other mass-points are sensitive to this information 

a force acts on them
• Generally – if particle is a source of a certain kind 

of field it is also sensitive to this particular field.  

Newton's G. Law – notes III
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Gravitational field – intensity

• Gravitational field is a vector field so it can 
be fully characterized by three components 
of some vector. This could be the force 
acting on some testing mass m.

• It is more convenient to divide this force by 
the testing mass and get the gravitational 
intensity    which is an unequivocal property 
of gravitational field.  
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Gravitational field – intensity II
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• e.g. in the case of point mass

• The intensity is a force that would act on unit mass
• So, it is independent on the test mass
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• Gravitational field close to the surface of the Earth is 
characterized by intensity which we call the gravitational 
acceleration.

• After corrections of the gravitational acceleration ag = 9.83 
ms-2 for various effects, mainly the rotation of the Earth we 
get the measurable free-fall acceleration. Its average value 
is g = 9.81 ms-2.

Gravitational intensity close to 
the Earth surface I

00
21 )( rar

R
MrE g
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• Minor changes of the free fall acceleration due to mass 
inhomogeneities of the surface layers of the Earth can be 
used e.g. for geological exploration.

•
• The product κM present in the gravitational formulas cause 

that masses can be evaluated only relatively to each other. 
To evaluate masses in common mass units kg, κ must be 
measured in laboratory e.g. using Cavendish scales. That 
is, in fact, also relative measurement but using the proper 
mass etalon.

Gravitational intensity close to 
the Earth surface II
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Satellite Motion I
• Generally two bodies rotate around their common center of 

gravity.
• If the satellite is considerably lighter than the central body 

the center of gravity can be identified with the center of the 
central body. In this case the satellite rotates around the 
central body.

• For simplicity let us suppose that the orbit is circular, then
the centripetal force is accomplished by gravitation:

2

2

r
mM

r
mv κ

=



06. 04.  2021 15

• From this relation we can for instance deduce the 
orbiting speed :

• If both masses are comparable the common center 
of mass is somewhere on their join and both 
masses rotate around it. So even the 'central' body 
moves due to the rotation of its satellite. 

• Using this principles tidal forces or search for exo-
planets can be explained.

Satellite Motion II

r
Mv κ=
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1st Cosmic speed
• 1st Cosmic speed of a body (a planet) is the 

orbiting speed just above the surface of this body.
• This motion is only possible if the body doesn't have an 

atmosphere. Otherwise the satellite would be slowed 
down and probably burn.

• In the case of Earth this speed is only theoretical.
• The trajectory of horizontal throw with this speed 

would copy exactly the surface.

16.7 −=== skmaRv gR
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Work in the gravitational field – potential 
energy I.

• Let us calculate the work that has to be done to move mass 
point m in the gravitational field of mass M should it be 
moved from point A to point B.

• Since the attractive force depends only on the distance it is 
distance what matters so we move from rA to rB

Work done by external agent can be identified with the 
change of potential energy
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• Since the work is the difference of potential energy any convenient 
calibration constant can be added the potential energy.

• Often this calibration is used:  c=0 so EP=0 in the infinity
• Near the surface of the Earth EP=0 in some convenient point, 

where h=0. Then

Work in the gravitational field – potential 
energy II.
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Potential of the Gravitational field φ I

Calibration when c=0 is sometimes called the absolute 
calibration.

Potential is potential energy of a unit mass
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Conservative Fields
• Gravitation field is an example of a conservative 

field. Another common conservative field in the 
electrostatic field. Their definition is:
• The total work needed to move a body along any 

closed trajectory is zero. 
• From this it follows that the work necessary to move 

a body from a point A to a point B doesn't depend on 
the path but it must depend on some scalar property
in these points. This property is the potential energy.

W(A->B) = EP(B) - EP(A)
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• W(A->B) = EP(B) - EP(A)=mφ(B)-mφ(A)
• It is necessary to understand the difference between 

potential, which is the property of the field at some point, 
and potential energy, which is the property of a mass body 
at this particular point of the field.

• Since potential is the property of the field it can be used to 
describe the field alternatively to the intensity. This has 
several advantages :
• it is a scalar function
• the superposition principle leads to simple arithmetic 

operations

Potential of the Gravitational field φ II
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• If the potential or potential energy can be used alternatively to 
describe the field we have to know relations between them:

The relation of potential and potential energy
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The Gradient

• The gradient of a scalar function is a vector that has
1. Direction of the fastest growth of the function in the given point
2. Magnitude given by the increase of the function in unit distance in 

this direction from the given point. :

• The gradient is the 3D version of the differential :

• The properties of the gradient stem from the fact that the dot product is 
maximal when the factors          and                                    are parallel.ld

 ))(( rgrad ϕ



06. 04.  2021 24

Example of 2D Calculation of a Gradient
Let's have a function of two variables:

What is the change of h in the point (1, 2) in the direction toward (4,3)?
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Why had the Columbia crushed?
Conserving the total energy

The total energy of the satellite :

When the satellite needs to approach a planet (to land) it has to decrease its 
potential energy using motors but until it reaches the resistance of the upper 
atmosphere, as its height decreases its speed increases. In some period of 
the flight, until the satellite can fly as an airplane it has to lower its kinetic 
energy and its surface has to withstand extreme temperatures. It must be  
covered by a layer of special materials which must not be damaged…

pk EEEW ∆+∆=∆=∆
If there is no work done on the system its the total energy is conserved.



The scalar ≡ dot product
Let 

Definition I. (components)

Definition II. (projection)
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The vector or cross product I
Let c=a.b

Definition (components)

The magnitude |c|
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Is the surface of a parallelepiped made by a,b.



The vector or cross product II
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The vector c  is perpendicular to the plane 
made by the vectors a and b and they have to 
form a right-turning system.

εijk = {1 (even permutation), -1 (odd), 0 (eq.)}
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Main Topics
• Introduction
• Atomic hypotheses 

• Long range forces between atoms and molecules
• Introduction into elasticity and fracture

• Stress
• Strain
• Stress/strain diagram
• Hook's law
• Perpendicular deformation, Poisson's constant
• Tensors of stress and strain
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Introduction
• On our path to describe the Nature we started from 

the simplest object a mass point, then we 
proceeded to a general system of mass points and 
then to rigid bodies. At each of these steps we 
revealed new properties of matter. 

• However, every kid who performed an experiment 
pulling a chewing gum out of his mouth knows 
that bodies can be deformed and can even break. 

• The description of these effects is complicated and 
even at its easiest level needs some knowledge on 
the micro-world interactions.
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Atomic hypotheses I
• Richard Feynman – one of the greatest physicists of the 

20th century and the author of famous textbook 'Feynman 
Lectures on Physics' says that if we could leave only one 
sentence to the following generations it should be: "All 
things are made of atoms – little particles that move around 
in perpetual motion, attracting each other when they are a 
little distance apart, but repelling upon being squeezed into 
one another". 

• The most convenient unit to measure atoms and bonds 
between them is the non-SI unit angström 1Ǻ = 10-10 m
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• If we enlarge an apple about 108 times to the size of the 
Earth the atoms would have the size of apples.

6 .10-2.108 m = 6 .106 m 
~ 6 Ǻ.108 = ~ 6 .10-10 .108  m = ~ 6 cm  

It interesting that even at this magnification
• the atomic core would be too small to be visible by eyes
• the surface of the Earth would be 60 times too small to not reach 

the closest star
• In the vicinity of the astronomical observatory in HK there 

is a planetary model of the Sun's planetary system 1:109.

Atomic hypotheses II
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Long range forces I
Cherchez le puits (de potential)

• Building blocks of matter –atoms or 
molecules act mutually by long-range forces 
which have the following properties:
• at macroscopic distances they are negligible
• at shorter distances they are attractive
• at even shorter distances they become repulsive
• at least one equilibrium distance exists where 

the attractive and repulsive forces compensate
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• Acting of long-range forces in micro-world can 
be illustrated by a simplified potential well:
• With its help many properties can be explained e.g.:

• the existence of condensed matter
• elastic behavior of matter
• thermal expansion

• near its minimum the well can be approximated by a 
parabola

Long range forces II
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• Interaction of molecules is often modeled 
by Lenard-Jones potential 6-12

• ε is the depth of the potential well
• r0 is the equilibrium distance
• repulsive forces should be exponential but this model 

enables easier evaluation of interaction integrals with 
acceptable accuracy

])(2)[(),;( 612
0 00

−− −= r
r

r
rrr εεϕ

*Long range forces III
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• Interaction of atoms is often modeled by 
Morse potential

• ε is the depth of the potential well
• r0 is the equilibrium distance
• a limits the reach of the interaction
• Enables to find easily the stationary states and the 

application of anharmonic interaction an improvement 
reflecting the fact that matter can be easier stretched 
than compressed

)(exp]2)([exp),,;( 000 rrarrarar −−−= εεϕ

*Long range forces VI
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Elasticity I
• After the description of the long-range forces acting 

between constituent particles of matter, it is clear that the 
model of a rigid body, that is in many cases a reasonable 
approximation, strictly doesn't work.

• If external force acts on a body, its shape changes so it 
corresponds the equilibrium of external and internal forces.

• The response to a change of the external forces is also a 
change of the internal forces which try to oppose them. 
The result is a new equilibrium corresponding to the 
current state of stress..
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• Our potential well model works for large number of 
materials. But it is an oversimplification so materials 
with very exotic properties do exist.

• We can nevertheless accept that very small 
deformations are elastic, which means that after 
disappearance of the external force the body returns to 
its original shape.

• To make the description as simple as possible we 
introduce convenient quantities :

Elasticity II
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Mechanical stress I
• Experiment shows that for the deformation 

effect the force has to be related to the 
surface on which it acts. The appropriate 
quality is mechanical stress, shortly stress

• The SI unit of mechanical stress is 1 Pascal 
[Pa]=Nm-2. Hydrostatic pressure is a 
special case of stress.

S
F

dS
Fd

∆
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• The response of materials to external force may be 
complicated but even for the most simple ones 
(highly symmetric, homogeneous and isotropic) it 
is different at least in the normal and tangent
direction. Therefore, it makes sense to decompose
generally acting stress to normal and tangent
components :

dS
dFn

n =σ
dS
dFt

t ==τσ

Mechanical stress II
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Deformation - Strain
• The response of materials to external force is 

always proportional to the undeformed dimension. 
Fro this reason it is convenient to define strain as 
relative deformation. So we define relative
• prolongation
•
• shear deformation dx

dy
• compression

0l
dl

=ε

dy
dx

=γ

0V
dV

−

v



19. 05. 2020 16

Stress - Strain Diagram

1
2

3

4

Limits of
1. Proportionality - Hooke
2. Elasticity
3. Yield strength
4. Tensile strength

Stress
σ [Pa]

Strain ε
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• The stress - strain dependence is usually 
depicted as this diagram. It has the following 
regions and limits:
• proportionality ... here Hooke's law holds   <  σH
• elasticity ... returns to original shape <  σE
• plasticity ... rest deformation remains
• yield ... considerable change of behavior 
• strength ... fracture of material               <  σP

Stress - Strain Dependence
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Stress - Strain Dependence

σ

ε

creep
breaking strength

elastic
plastic

Hooke's law

σE
σH

σp
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Hooke's law I
• For very small (literally infinitely small) 

deformations this holds :

Quantities E, G and K are Young's modules, 
they are a measure the ability to resist the 
particular deformation and usually are large 
~1010 Pa.  

V
dVKp

G
E

−=

=
=

γτ
εσ
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• The moduli are called :
• E …Young's modulus in prolongation
• G … Young's modulus in shear
• K … modulus of volume elasticity

• Often their reciprocal values are used. They 
are called compliances and are typically 
small. 

Hooke's law II
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• Longitudinal deformation is accompanied by 
transversal deformation

• E.g. longitudinal prolongation Δl of a stick l0

is  always accompanied by shortening Δa of any 
transversal dimension a :

• In Hooke's region the relative transversal 
shortening η is proportional to the longitudinal 
stress and also strain. :

nk
a

aa
a

a ση 1

,

=
−

=
∆−

=

( ) ( )aallal ∆−⋅∆+→⋅ 00( )ll ∆+

← →

Hooke's law III
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• The transversal change is characterized by another 
material parameterν or m :

• Poisson constant : m = ε/η
• Poisson number (ratio): ν = 1/m = η/ε

Large poisson number means relatively large
transversal deformation

nn mEm
Ekk σενεεση 11

11 =====

Hooke's law IV



19. 05. 2020 23

• Longitudinal, transversal and shear deformations 
are not independent :  

where m is Poisson's constant and ν Poisson's 
number, defined above

• For the quotient of volume compressibility it 
holds :

KEmE
m

pV
V 1)21(3)2(31
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Hooke's law V
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Deformation of un-isotropic 
materials I

• In general case both stress and strain have 
to be expressed as symmetric tensors of the 
second order τ and ε.
• τij is j-th component of stress acting on the 

surface element perpendicular to the axis i.
• εpq is deformation of the surface element 

perpendicular to the axis p in the direction of 
axis q.
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• Then the generalized Hooke's law is written as :
τij = Cijpq εpq

• Cijpq in the 36 independent elastic coefficients.
• Any symmetry in the material means also symmetry in  

C and decrease of the number of independent material 
parameters.

• The most trivial symmetry is in exchange the couples ij
and pq. This decreases the number of independent 
parameters to 21. This corresponds to the least 
symmetric triclinic system.

• Amorphous or symmetric polycrystallic materials 
behave as isotropic and have only two elastic 
parameters E nd G.

Deformation of un-isotropic 
materials II
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Main Topics
• Introduction into mechanics of fluids
• Hydrostatics (fluids at rest)

• Pascal's principle
• Buoyancy and Archimedes' law

• Hydrodynamics (fluids in motion)
• Conservation laws

• Equation of continuity
• Conservation of momentum
• Bernoulli's law
• Bernoulli's principle – hydrodynamic paradox

• Newton fluids – viscosity
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Intro into mechanics of fluids I
• Fluids is a common name for liquids and gases.

• In common they have almost zero shear modulus. So 
they easily accept shape of container they are confined 
in.

• Liquids are almost incompressible – they have almost 
infinite compression modulus.

• They can be separated relatively more easily.
• In most cases the effects due to atomic structure are 

negligible so fluids can be considered to continuous 
matter, called continuum.
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• Looking at elastic parameters fluids are 
defined the following way :
• Liquids … K very big, G small
• Gases    ... K given by the EOS, G small

• We start with simplification the ideal liquid 
with K=infinity, G=0
which are incompressible and flow ideally 

Intro into mechanics of fluids II
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• Hydrostatics deals with fluids at rest = in 
equilibrium regardless how long it took to reach it. 

• Although the prefix 'hydro' indicates dealing with 
water the traditional name hydrostatics covers 
study of any fluid at rest. 

• We consider ideal liquid moreover homogeneous 
and isotropic .

• It is convenient to characterize fluids by densities
which are physical quantities related to unit 
volume.

Hydrostatics of ideal liquids I



27. 05. 2020 7

• The most common and important are :
• density ρ is the mass of unit volume: 

ρ = m/V, [ρ] = kg m-3

• density of acting forces     that is the force per 
unit volume
objemu : , [f] = N m-3

• pressure can be considered as density of 
pressure energy : [p] = N/m2 = J/m3

dV
Ff



=

f


Hydrostatics of ideal liquids II
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Elementary equation of 
hydrostatics I 

• The stress tensor for the ideal liquid can be 
simplified employing the Pascal's principle :

τij= -pδij. 
δij is Cronecker's delta that can reach two values : 
δij=1 for i=j and δij=0 for i≠j.

• p = F/S [Pa] is the pressure – normal stress.
• It can be shown that the elementary equation for 

the equilibrium of an element of continuum holds:

0=+
∂
∂

j
i

ij f
x
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• After inserting the stress tensor :

• The force acts in the direction of the largest 
increase of pressure or the largest increase of 
pressure is in the direction of the acting force.

• Especially, if the force is caused by a 
conservative field which has potential, such 
as gravitation :

fpgradf
x
p

j
j


=⇔=+

∂
∂

− 0

ϕρ gradf −=


Elementary eq. of hydrostatics II 
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• We obtain : 
• And finally after integration :
• From this equation it can be seen that the points 

with the same pressure lay on the equipotential
surfaces and pressure increases with the decrease 
of potential as well as with the increase of density.

ϕρddp −=
ϕρ gradpgrad −=

Elementary eq. of hydrostatics III 
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• All interfaces of fluids, including their level, which 
is the interface between liquid and atmosphere, are 
equipotential surfaces. Therefore : 
• Water level is not strictly horizontal :
• It bends near the walls of the dish
• It copies the surface of the Earth but it is influenced by 

the its rotation, minor changes of potential due to 
inhomogenities of mass but also tidal effects – the 
common influence of the Moon and the Sun

• In non-inertial system, e.g. in rotating dish, it is 
perpendicular to the resulting force at any point.

Elementary eq. of hydrostatics IV
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Pascal's principle – Pressure I
• Since in any point the tangent component of stress is 

always zero only the normal stress component = pressure 
is present and it is isotropic :
• The measured pressure at any point of submerged little sphere is 

isotropic or the sphere would move by itself.
• Explanation of any hydrostatic property of fluids or its use is based 

on this. E.g. Hydraulics :  
If we connect two cylinders with pistons of different size and can 
neglect pressure caused by the liquid itself then pressure is equal 
anywhere in the system and on the pistons the forces are 
proportional to the cross section of the pistons

F1/S1 = p1 = p2 = F2/S2
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• Near to the Earth surface
• the gravitation potential at some height z above 

some zero reference point is
ϕ = gz

• the z axis is vertical and grows upwards
• If we allow the dependence of density on z 

(compressibility) then : gz
dz
dp )(ρ−=

Pressure near the Earth surface
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• The density of incompressible liquids is constant :

• The integration leads to linear decrease of pressure 
with height :

• For practical reasons e.g. by divers the same 
relation expressed as linear growth of pressure 
with depth from the level :

gdzdp ρ−=

gzpzp ρ−= 0)(

ghbhp ρ+= 0)(

Pressure of incompressible liquid near 
the Earth surface behaves linearly
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• Let's have isothermic column of ideal gas obeying 
the i.g. EOS or Boyle-Marriot law :

• Then :

• This differential equation of the first order can be 
solved by integration after separation of variables : 

pg
pdz

dp

0

0ρ−=

0

0

00
00 p

p
Vp

m
pV
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0

0
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gzpzp ρ
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Pressure of ideal gas near the Earth 
surface behaves exponentially
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Buoyancy, Archimedes' Law I
• The body immersed into fluid is lifted by a 

buoyant force equal to the weight of the fluid
displaced by the body.

• Buoyant force is the result of forces exerted by 
pressure of the fluid which wants to get 'back' to 
volume from which it was displaced and where it 
wants at least theoretically* to return. 

• Since pressure growths with depth the resulting 
force points upwards.

• *Situations when a body is immersed or liquid is poured over the body 
conceptually differs because in the former case the liquid really used to 
be in the volume where the immersed body is now while in the latter 
case this is not so. Archimedes' law holds in both cases anyway!
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• Archimedes' law 
• is connected to the growth of pressure with 

depth
• can be derived using a body of a special shape
• or more generally as an equilibrium of volume

and surface forces. This doesn't need constant 
density or incompressibility and works even 
through several interfaces of non-miscible 
fluids.

Archimedes' Law II
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• Let us have a cylinder of height h and cross 
section S immersed in ideal liquid of density
ρ0 :
• Pressure forces acting on cylinder jacket cancel.
• Only forces on the top and bottom surface don't 

compensate and the resulting force is : 
F = Shρ0g.

• But this is exactly equal to the weight of the 
displaced liquid.

Archimedes' Law III
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• In liquid at rest i.e. in equilibrium let's consider a 
body of the same liquid of any shape, perhaps 
separated from the rest by imaginary membrane.
• This body has mass and its weight points down.
• On each surface element of this body some pressure 

acts causing a 'pressure force'.
• Since the body is in equilibrium the sum of these 

pressure forces must exactly compensate the weight : it 
points up and has the same magnitude.

• If a body of the same shape was filled with material 
with higher or lower density the buoyant force remains
and the weight would be either higher or lower.

Archimedes' Law IV
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Introduction in hydrodynamics
• Hydrodynamics belongs among the most 

complex fields of classical physics.
• The name hydrodynamics is used more 

generally for fluid dynamics of any fluid.
• Using the conservation laws some simple 

conclusions can be derived for slow flow of 
ideal liquids.

• Later we include viscosity and deal with 
simply behaving Newton's liquids.
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Laminar flow

• Fluids in laminar motion can be described using:
• Trajectories, on which particles move in time. By a 

particle we mean some very small yet microscopically 
large volume.

• Streamlines, curves tangent to the velocity of flow in 
any point. Streamlines may form a stream pipe through 
the walls of which the fluid can't flow and the walls are 
made of the same fluid.
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Conservation laws

• For the flow of ideal liquids we can employ 
conservation of :
• Quantity of matter – equation of continuity
• Linear momentum
• Energy – Bernoulli's equation
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Equation of continuity
• Consider a stream pipe of any shape. If the liquid 

is incompressible and doesn't accumulate 
anywhere the volume that flows through any cross 
section per unit time i.e. the volume rate is equal. 

• Lets consider two cross sections S1 with the 
velocity is v1 and cross section S2 and velocity v2 :

S1v1 = Q1 = Q2 = S2v2
• For compressible liquids the mass rate is constant :

S1v1ρ1 = S2v2ρ2
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Conservation of l. momentum

• A volume element in a streamline pipe can
change its direction only if an impulse exists
allowing the corresponding change of linear momentum:

• Above that surroundings of the streamline pipe must 
support also the difference of pressure forces. 

• Changing flow rate in a hose leads to new equilibrium.

ρ
ρ
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• Bernoulli's equation expresses the 
conservation of (the density) of energy : 

• It is often used in forms with quantities of 
different dimensions, for instance, length :

.
2

2

konst
V
Epghv
==++ ρρ

.
2

2

konst
g
ph

g
v

=++
ρ

Conservation of energy
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Conservation of energy 
Bernoulli's equation I

• Lets consider a piece of a streamline pipe the 
boundary surfaces of which can be described by 
speed vi, pressure pi, height hi and cross section Si.

• By acting of pressure forces a volume ∆V moves 
from the second boundary to the first within some 
time period ∆t .

• The pressure forces acting on the boundaries are
Fi = Si pi.

• Work, done by these forces (over ∆t) is equal to 
the increase of the total energy of the volume ∆V.
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• Therefore :

• After substitution if the energies :

• And employing the equation of continuity :
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Bernoulli's equation II
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• Finally after rearranging and dividing by ∆V
(which relates the terms to the unit volume) :

• Daniel Bernoulli 1700-1783, Swiss
• The total energy of fluid in motion has three

components : pressure, kinetic and potential. 
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Bernoulli's equation III
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The use of Bernoulli's E.
Flow through a small hole I

• Bernoulli's equation can be used to solve many 
practical problems. 

• Often some of its six terms cancel or can be 
neglected which simplifies the solution.

• Consider a liquid in wide dish with a small hole in 
the depth h under the level.

• In general Bernoulli's equation we can do several 
simplifications :
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• Both pressures are atmospheric : p1= p2.
• The depth is the difference of vertical 

coordinates : h = z1 – z2
• The velocity v1 can be neglected. 

• After cancelling ρ and rearranging :
This is Torricheli formula and had been known 
about a century before Bernoulli.. 
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The use of Bernoulli's E. 
Flow through a small hole II
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• If the speed v1 can't be neglected we use the 
equation of continuity v1 = v2S2/S1 :

• From a little more complicated BE we get :

(this has naturally meaning only if S1 > S2)
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The use of Bernoulli's E. 
Flow through a small hole III
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The use of Bernoulli's E. 
hydrodynamic paradox

• Considering two points with the same height from 
the Bernoulli's equation we easily see that in the 
point where the velocity is higher the pressure
must be lower = Bernoulli's principle

• Many effects and inventions are based on this 
effect : from slamming of doors in draught to 
flying of airplanes.

• It is mainly useful to measure speed of the flow. 
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• Lets immerge two pipes into the moving liquid 
so that their ends are in the same height. The end 
of the first pipe is parallel to the flow the end of 
the other is normal so that v2 = 0.

• In the ith pipe the liquid reaches the height zi,
corresponding to the pressure pi = ρgzi at its end

• it contains only the difference of the heights zi.
• it is used to measure of fluid in a pipe

)(2
2 1212
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1 zzgvgzvgz −=⇒=+ ρρρ

The use of Bernoulli's E. 
Pitot's pipe
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• Venturi's pipe (funnel) :
• a funnel shape pipe is immersed into the 

horizontal stream. Perpendicularly two pipes 
are connected one in a place with cross section 
S1, the other S2.

• In the ith pipe the liquid reaches the height zi,
corresponding to the pressure pi = ρgzi at its 
end

2211

2
2

2

2
1

1 22
vSvSvgzvgz =∧+=+

ρρρρ

The use of Bernoulli's E. 
Venturi's pipe I
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• From both equations :

• For the speed v1 and volume rate Q we get :
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Viscous Liquids
Newton's Liquids I

• In motion neighboring layers influence each other 
by shear stress which depends on the mutual speed 
and viscosity of the liquid.

• Consider horizontal flow in the direction of x-axis. 
Then according the Newton's law the shear stress 
acting in the direction of the flow is :

γηγηηηητσ ≡==≡==
dt
d

dydt
dx

dy
dvDx
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• dynamic viscosity η – measure of the resistance 
to the flow [η] = kg m-1s-1 = Nm-2s = Pa s

• older unit is Poise [P]=gcm-1s-1=0.1 Pa s
• The reciprocal quantity is tekutost:
ϕ = 1/η

• often viscosity is related to the density is used; 
kinematic viscosity (nju) ν = η/ρ

• D – the perpendicular gradient of speed is equal to 
the time derivative (change) of the shear strain.γ

Newton's Liquids II
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• For better illustration of meaning of viscosity lets 
consider cylindrical dish with cylindrical stirrer 
and Newton's law in the form :

• Should the stirrer rotate always with the same 
frequency then higher shear moment and thereby 
higher power of the motor is needed for liquid 
with higher viscosity.

• The same is if for one particular liquid we need to 
increase the frequency of stirring.

dy
dvητ =

Newton's Liquids III
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• Dynamic and kinematic viscosity of some 
selected liquids : 

η (eta) [Pa s] ν (nju) [m2/s]
• ETOH 1.2 10-3 1.51 10-6

• mercury 1.5 10-3 1.16 10-7

• petrol 2.9 10-4 4.27 10-7

• oil 2.6 10-2 2.79 10-4

• water 1.005 10-3 8.04 10-7

Newton's Liquids IV
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• Viscosity : 
• decreases volume rate of liquid at given 

conditions
• causes velocity distribution in the cross section 

of a pipe, close to zero near the pipe surface and 
maximum in the middle.

• We show that in the pipe of circular cross 
section the velocity distribution is parabolic.

Newton's Liquids V
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• Consider a cylinder with radius y coaxial 
with the pipe in laminar floating liquid :
• pressure acts on its caps (p1 > 0, p2 < 0)
• friction of the surrounding layers acts on its 

jacket.
• should this cylinder move in uniform motion all 

the forces must be in equilibrium :

02)( 21
2 =∆+−

dy
dvlyppy ηππ

Newton's Liquids VI
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Calculation of the volume rate of viscous liquid

r

Direction of the motion of liquid

F1 F2

Ft

2y
p1 p2
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• Suppose that p1 > p2 so the liquid flows in the 
direction of growth of x-coordinate.

• The sign + would mean that the friction force 
would have the direction of the velocity.

• Since the first term is positive the friction force 
must be negative and the velocity decreases in 
the direction from the axis of symmetry.

Newton's Liquids VIII
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• After substitution ∆p = p1 – p2 : 

• And integration :
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Newton's Liquids IX
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• If the pipe has radius r we get the value of the 
integration constant k from the boundary 
condition v(r) = 0 :

• and we get parabolic velocity profile : 
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Newton's Liquids X
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• Important and easier measurable quantity is the volume 
rate. The whole cross section we can divide to thin 
circles with radius y in which the velocity is constant :

• The total volume rate is obtained by integration:

• This is the well known Hagen-Poiseuille equation.
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Newton's Liquids XI
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Velocity profile in a pipe of circular cross section
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Viscosity measurements – fall of a sphere in liquid

grG ρπ 3

3
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Forces: weight, buoyancy, internal friction

The sphere accelerates until the three acting forces cancel: 
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• Stokes' law :
• A internal friction force    F = 6πrvη

acts on a sphere with radius r moving with 
small velocity v in liquid with viscosity η.

• After equilibrium is reached the sphere with 
density ρ in liquid with density ρ0 will move 
with velocity vt :
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Newton's Liquids XIV
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• Laminar flow
• the friction force is proportional to the velocity
• the velocity is proportional to r2

• mean velocity of flow from the H-P equation 
<v>=Qv/S is also proportional to r2 and 
pressure gradient

• Beyond Stokes' law :
• The friction force is often proportional to v2 :

Fd = CdSv2

where Cd is a parameter depending on the shape

Newton's Liquids XV
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• Reynolds' number is used to estimate whether the 
flow is still laminar :

• it holds for a sphere with radius r, with the velocity v
• or fluid moving with mean velocity <v> in a pipe of 

radius r :
• kinematic viscosity is present in the denominator of the 

second term  
• For R >1000 the flow is considered turbulent
• When R –> 0 (r small and/or ν big) liquids 

behave very non-standard way.

νη
ρ vrvrR ==

Newton's Liquids XVI
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Mains Topics
• Oscillations 

• general, periodic, harmonic, damped, un-damped
• Harmonic oscillations

• equation of motion and its solutions
• time dependence of displacement, speed, acceleration, 

potential and kinetic energy
• adding oscillations, damped and forced oscillations

• Waves – general and harmonic waves
• description, periodicity in space and time, transport of 

energy
• standing waves, interference, Doppler's effect
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Introduction – oscillations and waves I
• Studies of oscillatory or vibration motion 

have to be added to the previously studied 
translation and circular movements.
• their existence stems from the elastic character of 

interactions between particles of matter
• they are widely spread in Nature
• Oscillation energy is an important type of energy
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Intro – oscillations and waves II
• Generally oscillation of particle is movement that is 

limited in space.
Wave is spreading of vibration movement in space
that carries energy but not mass

• Should the mass particle oscillate the following 
items must exist :
• equilibrium position where forces don’t act on the particle
• restoring forces – try to return the particle to the e.p.
• the equilibrium must be stable
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Type of oscillations I
• Character of oscillations, the precise time dependence 

of the displacement is given by :
• the character of restoring forces - their actual dependence on 

the displacement. The force field is often conservative and the 
forces follow from the potential. 

• possible existence of dissipative forces.
• An important subset are periodic oscillations, where the 

time dependence of displacement repeats periodically.
• An important subset of periodic osc. are harmonic 

oscillations where the time dependence of displacement 
can be expressed using a harmonic = goniometric
function of time.
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• Undamped periodic and also harmonic 
oscillations can exist only if there are no
losses of mechanical energy present. 

• If dissipative forces are present the 
mechanical energy decreases and eventually 
the movement stops. This is typical for 
damped oscillations.

Type of oscillations II
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• Strictly speaking all real oscillations should 
be damped. 

• Undamped oscillations still are important 
since:
• damping can be small or negligible 
• losses of energy can be restored convenient way

Type of oscillations III
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• Harmonic oscillations are very important since:
• the special restoring forces they need do exist.
• any periodic oscillation can be expressed as Fourier 

series of harmonic oscillations
• any general oscillation can be expressed as Fourier 

integral of harmonic oscillations
• Since both addition and integration are linear operations 

many properties of harmonic oscillations are valid more 
generally

Type of oscillations IV
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Simple (undamped) harmonic motion I

• Let's consider the following simple situation :
• a particle can move only on a straight line which 

we coincide with the x-axis
• the equilibrium position is chosen as the origin
• the restoring force is directly proportional to the 

displacement
kxxF −=)(
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• At first we find work necessary to reach the 
displacement x moving from the origin :
• since the restoring force depends on the current 

displacement χ we have to integrate :

• this result is symmetric: To reach some displacement x
either negative of positive we have to supply positive 
work

• and it corresponds to parabolic potential well

2
)()(

2

0

kxdkxWxE
x

p === ∫ χχ

Simple harmonic motion II
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• This type of restoring force can exist in any field 
e.g. in gravitational or electrostatic which have 
potential and the potential well can be 
approximated by parabola at least for small
oscillations.

• This restoring force may correspond to Hook's 
behavior. In this case the proportionality 
parameter k is proportional to the appropriate 
Young modulus and it is called the spring 
constant.

Simple harmonic motion III
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• If we substitute for force from the Newton's 
2nd law we get the equation of motion, 
particularly differential equation of the 
second order with missing first order :

• We guess the form of the solution and find 
its parameters :

kxxmF −== 

)sin()( 0 ϕω += txtx

Simple harmonic motion IV
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• Let's calculate its (first and) second time 
derivative and substitute it to the original 
equation :

• From which we get : 

)()(2 tkxtxm −=− ω

)cos()( 0 ϕωω += txtx

)()sin()( 2
0

2 txtxtx ωϕωω −=+−=

m
k

=ω

Simple harmonic motion V



21. 04. 2021 15

• the time dependence of the displacement is :

• angular frequency ω describes its periodicity, 
similarly as for circular motion. The oscillation 
can be considered as projection of constant 
circular motion to a straight line. So we can 
analogically define the frequency f and period T :

T
f ππω 22 ==

)sin()sin()( 00 ϕϕω +=+= txtxtx m
k

Simple harmonic motion VI
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• Since the formula for the displacement is a 
result of two integrations is contains two 
integration parameters :
• the amplitude x0, which is the maximal possible 

displacement and 
• the phase ϕ, which allows for describing 

oscillations with any displacement at zero time 
in the beginning

• the integration parameters can be obtained from 
the boundary conditions.

Simple harmonic motion VII
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• Let's examine the time dependence of 
displacement, speed and acceleration :

)sin()sin()( 00 ϕϕω +=+= txtxtx m
k

)cos()cos()()( 00 ϕϕωω +=+== txtxtxtv m
k

m
k

)sin()sin()()( 0
2

0 ϕϕωω +−=+−== txtxtxta m
k

m
k

Simple harmonic motion VIII
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• All these quantities are harmonic with the 
same angular frequency but different 
amplitude and phase :
• The speed advances the displacement by the 

quarter of the period. It has a maximum in the 
equilibrium point for zero displacement. 

• The acceleration goes against the displacement 
which exactly corresponds to the behaviour of 
the restoring force. 

Simple harmonic motion IX
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• Let's examine the time-dependence of 
energy. It has apparently two components :
• Kinetic Ek, since the oscillating particle moves 

with some time-dependent speed and
• Potential Ep, since work has to be done to reach 

certain displacement and it is conserved since 
we neglect the energy losses in this case.

Simple harmonic motion X
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• Let's substitute for the ω in the Ek :

)(sin
22

)( 22
0

2

ϕω +== txkkxxEp

)(cos
22

)( 22
0

2
2

ϕωω +== txmxmxEk
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2
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0 ϕω += txkxEk

Simple harmonic motion XI



21. 04. 2021 21

• Then for the total energy we get :

• Using the identity we get :

)](sin)([cos
2

)()()(

222
0 ϕωϕω +++

=+=

ttxk
tEtEtE pk

.
22
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0 konstxmxktE o ===

ω

1cossin 22 =+ αα

Simple harmonic motion XII
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• Let's sum the important properties we have found :
• the kinetic energy is in-phase with the absolute value of 

the speed. So it doesn't depend on its direction.
• the potential energy is in-phase with the absolute value 

of the displacement. Again, doesn't depend on its 
direction.

• the total energy doesn't depend on time - during one 
oscillation the kinetic energy is gradually changing into 
the potential energy and back.

Simple harmonic motion XIII
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• The total energy of oscillating system is given by 
the boundary conditions and it is conserved.
• For instance: We pull the particle to a certain starting  

displacement which will then be the amplitude. We 
have to do some work to accomplish this and thereby 
we give the oscillator the starting total energy.

• Or we can kick the particle, which was at rest, to give it 
some momentum and kinetic energy which will also be 
the starting total energy of the oscillator.

• We can combine these methods and the starting total 
energy can have both kinetic and potential component.

Simple harmonic motion XIV
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Examples: Physical pendulum I

• Physical pendulum is any extended body that 
swings back and forth usually in gravitational 
field.

• The exception is a torsion pendulum that doesn't 
need the force of gravity.

• Let's have a rigid body that can rotate (at least to 
some extent) around horizontal axis which is at 
nonzero distance a from its center of mass.

• The equilibrium position is when the mass centre 
is bellow the axis.
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• Angular frequency of the pendulum ω is :

here G is the weight and J the moment of inertia
• In the numerator we have 'elastic' properties which 

boost the motion and in the denominator are 
'inertial' properties that try to slow it down.

• Penduli are used to measure time or the force of 
gravity.

J
Ga

=ω

Physical pendulum II
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A simple (mathematical) 
pendulum

• A special case of physical pendulum is the (simple) 
mathematical pendulum which has all its mass m
concentrated in distance l from the axis of rotation 
ona lightweight cord.

• We can use formula for physical pendulum into which 
we insert : a = l, G = mg, J = m l2.

• For the angular frequency ω and period T we get :

g
lT

l
g

ml
mgl

J
Ga

T
ππω 2;2

2 =====
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• A reduced length λ is being used for the physical 
pendulum. It is equal to the length of 
mathematical pendulum with the same period :

ma
J

gGa
JT =⇒== µµπ2

Physical pendulum III
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Interference of oscillations I
• If more restoring forces act the particle can move in 

several oscillations at the same time.
• In general the total oscillation is the superposition

of the individual oscillations and the displacement is 
the superposition of individual displacements.

• Often we are interested under what conditions
would the resulting oscillation be periodic or even 
harmonic.

• Let's now consider just two interfering oscillations. 
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• It is interesting that even if the interfering 
oscillations are harmonic the result motion 
is generally aperiodic. Especially:
• If one frequency is a rational factor of the other 

the result oscillation is periodic.
• Only if the frequencies are equal the result 

oscillation is harmonic.
• Let's look at several special and important 

cases of interference of harmonic
oscillations.

Interference of oscillations II
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• If both interfering oscillations have the 
same frequency they can differ only in the 
amplitude and phase. Their superposition:
• has again the same frequency as each oscilation
• its amplitude and phase can be calculated using 

two dimensional vectors or complex numbers.

Superposition of linear oscillations I
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Superposition of linear oscillations II
• We can prove this statement for two

oscillations which we can then generalize 
for more oscillations.

• Let our oscillations be described by tha 
parameters x10, ϕ1 a x20, ϕ2. then :

• cosines can be cosiny decomposed by well 
know formulas, reorganized and assembled 
back again :

)cos()cos()( 220110 ϕωϕω +++= txtxtx
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Superposition of linear oscillations III

•
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Superposition of linear oscillations IV

• The result oscillation have the angle frequency ω,
the same as the original oscillations, the same as 
superposition, amplitude x120 and phase ϕ. 

• The amplitude and phase are the results of these of 
the original oscillations.

• Since each oscillation is described by two 
parameters we use two-dimensional mathematical 
apparatus, either using special 2D vectors – the 
phasors or complex numbers. 

• We illustrate the phasor approach : 
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Superposition of linear oscillations V

• From the previous we see that the first 
component of the result oscillation is the sum 
of the first components of the original 
oscillations :

and similarly the second one :

• The corresponds exactly to the sum of vectors. 

220110120 coscoscos ϕϕϕ xxx +=

220110120 sinsinsin ϕϕϕ xxx +=
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Superposition of linear oscillations VI

• Quite an interesting situation is when the 
oscillations have near angular frequencies. 
For simplicity we can assume the same
amplitude and phase :

ttx

txtxtx
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Superposition of linear oscillations VII

• The result oscillation :
• has angle frequency equal to the average

frequency of the original oscillations, all these 
frequencies are comparable

• has the amplitude modulated by the difference
of the original frequencies, which is typically 
low. This appearing and fading of tone is called 
beats in acoustic.
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Waves I
• Imagine a long straight row of bound oscillators – mass points with 

a special property that each of them can perform oscillations around 
its equilibrium position. The bonds between them can be described 
using e.g. by Young modules E a G. If one of these oscillators is 
pulled from its equilibrium position and released it starts to oscillate 
and these oscillations spread through the row successively in both 
directions. This motion of displacement in both space and time is 
called a wave.

• According the character of the bonds the wave motion can be :
• transversal – with the displacement perpendicular to the direction of the wave 

motion – needs nonzero shear modulus
• longitudinal – with the displacement in the direction of the wave motion 
• a superposition of both
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Waves II
• Since each oscillator oscillates around its equilibrium mass

doesn't spread trough the space while energy does – typical 
property of waves

• For simplicity we deal with a special harmonic wave where 
the displacement spreads by the speed c from the origin along 
the x-axis and it is a harmonic function of both the coordinate
x and the time t :

• the displacement has both the transversal and longitudinal component 
but from now we consider just the magnitude u(x,t)

• the sign “-” holds for the positive part of the x-axis
• the displacement in the point x is the same as was in the origin before 

the time τ = x/c it took the wave to reach the point x

)(cos),( 0 C
Xtutxu 

 ω=
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Waves III

• The displacement of any wave is a solution 
of the general Laplace equation :

• so do also our harmonic waves spreading in the 
space of harmonic oscillators 

2
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Waves IV

• We can easily illustrate the periodicity in 
both time and space :

here λ = cT is the wavelength the distance to 
which the wave gets during one period T. So T
describes the periodicity in time and λ in 
space. 

)(2cos)(2cos),( 00 λ
ππ x

T
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c
xt

T
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Waves V

• Using the definition of λ the following holds :

• In spectroscopy the inverse wavelength that is 
number of waves per the unit of length is being 
used :

it is apparently the space analog of the frequency.

λλλ fc
f
ccT =⇒=⇒=

λ
σ 1
=
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Waves VI
• The space-analog of the angular frequency is 

the wave number :

employing k we get very compact equation :

• We can further write:

c
k ω

λ
π
==

2
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Waves VII

• In the 3D space we can use the wave vector 

to describe fully a plane wave including the 
direction of its spread where the unit vector      

points. Then for the displacement at some 
point    we write :

0
2 kk
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The Speed of Waves I
• Let's have a wave running e.g. in a string. 

• The maximum of amplitude is a 'hill' the top of 
which is moving with a speed c c. 

• An element of length at the top moves on a path 
that can be approximated by a piece of a circle.

• The forces on this piece must add to make the 
centripetal force to allow this movement.
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The Speed of Waves II

• We assume a small angle which we substitute 
by parameters of the circle and the mass of the 
element we express using the linear density 
(density per the unit of length) µ :

So : 
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The Speed of Waves III
• Similarly as in the formulas for the angle 

frequency, in the formula the speed of waves :
• quantities related to elastic properties of space where 

waves move matter are in the numerator
• in the denominator are the inertia properties.

• The formula for the speed in continuum is:
• Here K is the module of volume elasticity and γ

the coefficient of compressibility defined earlier :

ρ
Kc =

V
dV
dpK −

==
γ
1
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The Energy of Waves I
• The wave motion are successive oscillations of 

single oscillators along the direction of spreading.
• It can be expected that both the kinetic and potential 

energies will spread.
• As in the case of oscillations the mean kinetic and mean 

potential energies are the same and thereby each is half
of the total energy.

• The mean kinetic energy per the unit of length is :
2

0
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4
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The Energy of Waves II
• This energy is carried together with the potential 

energy through an element of length with speed c
so by time derivative we obtain the carried power : 

• The power depends on
• parameters of the medium µ and c
• properties of the wave ω2 and u0

2
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Composition of Waves I
• When composing waves the principle of 

superposition holds as well as in the case 
for oscillations.

• Expressed mathematically we use vector
sum or in special cases normal sum.

• For two waves both transversal or both 
longitudinal spreading along the x-axis : 

),(),(),( 21 txutxutxu +=
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Composition of Waves II
• For the character of the resulting waves 

similar rules hold as for oscillations, but :
• waves have generally four parameters e.g. the 

amplitude, the angular frequency, the wave 
number and the phase. If we further assume the 
same phase :

)cos()cos(),( 22201110 xktuxktutxu −+−= ωω
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Composition of Waves III
• If in a certain medium the speed of waves doesn't 

depend on frequency the number of independent
parameters reduces to two. Then the rules for 
composition of waves are exactly the same as for 
oscillations.

• In real media the speed of waves generally depends
on frequency. This effect is called dispersion. In 
optics, for instance, it is the reason for color 
aberration of lenses. 
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Composition of Waves IV

• If harmonic waves have the same speed but 
different amplitude and angle frequency the 
resulting composed wave is generally
aperiodic. 

• But depending on the relation of their angle 
frequencies it can also be periodic and even 
harmonic.
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Composition of Waves V

• An important and frequent case occurs when 
the waves have the same angle frequency. 
Then :
• In each point oscillations of the same frequency 

add.
• The resulting oscillation has the same frequency 

and a certain amplitude and phase.
• For simplicity we further assume the same unit 

amplitude for both waves.
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Composition of Waves VI

• The result wave is modulated by a term that 
depends on the mutual phase shift.

• The extremes are the most important
• constructive – both waves are exactly in-phase and 

their amplitudes add so if they are the same the result 
wave is twice the original amplitude

• destructive – both waves are exactly out-of-phase and 
their amplitudes subtract so if they are the same their 
amplitudes cancel
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Standing waves I

• A special case appears when the wave is 
composed with its own reflection on some 
obstacle

• The phase shift describes that
• depending on the obstacle the phase can change 
• the obstacle can be in various distances
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Standing waves II
• At suitable conditions the result wave is stable in 

time – a standing wave. Then it is a function of the 
space (coordinate) only. It has :

• antinodes – places with maximum amplitude
• nodes– places with zero amplitude

• Function of all mechanical musical instruments is 
based on standing waves due to constructive 
interference of a wave and its reflection.
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Standing waves III
• The conditions for the existence of standing waves 

are fulfilled by the natural or resonant frequencies 
the lowest of them is the fundamental frequency the 
higher are its integer multiples – higher harmonics. 

• The relative intensities of harmonics make the color
of the sound of the instrument. The differences exist 
exit for many reasons. For instance they are nodes at 
both ends of a string but one node and one antinode 
in the case of a flute.
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Composition of Waves VII

• More waves with specially related angular 
frequencies can add to form a wave of a 
special shape. This is called the Fourier 
analysis :

• So e.g. a saw-saw tooth pulse is obtained by :
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Doppler Effect I
• When we hear an ambulance moving through nearby 

streets we know that the frequency of its siren shifts
and from our experience we recognize when it 
approaches us, when it leaves or even whether it has 
stopped.

• Let's study this in detail. We describe the motion of : 
• the source of (sound) waves by the velocity v
• the receiver of  waves by the velocity u
• the medium which waves spread by the velocity w
• Assume that the speed of waves c is more than u, v, w, but 

much less than the speed of light in vacuum.
• The velocities are positive when in the direction of +x axis.
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Doppler Effect II
• At first suppose that the source as well as the 

medium are at rest (v = w = 0) near the origin and 
the receiver is at the right of the origin moving 
away by a velocity u > 0.

• The frequency which the receiver hears (the pitch) 
depends on the number of waves that pass him per 
second. See the conveyor belt Modern Times by 
Charles Chaplin!
• if he was also at rest :

0
0 λ

cf =
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Doppler Effect III
• if the receiver moves, waves pass him not with the 

velocity c but the relative velocity c - u. So using 
the previous :

• if the receiver moves away (u > 0) the frequency 
is lower, if he approaches if is higher.
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Doppler Effect IV
• let now the medium and the receiver be at rest. The 

receiver is at the right but at some distance from the 
origin. And the source is close to the origin and moves 
right v>0 so it approaches the receiver. 

• during one period T0 the source sends one wavelength
• at the moment he is sending the end of the wave he is at 

the distance T0v from the point where he started to send 
its beginning.  The beginning got into the distance T0c
so the new wavelength is squeezed into T0(c-v). So:

• for the source moving away from the receiver v<0 the 
frequency is lower, if it approached him v>0 the 
frequency would be higher. 
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Doppler Effect V
• if only the medium moves uniformly w<>0 , its 

velocity simply adds to the speed of the waves 
and if u=v=0 the frequency doesn't change :

• if however also the receiver moves w<>0, 
u<>0, v=0, then the motion of medium makes
change :
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Doppler Effect VI
• Similarly if the medium and the source move 

w<>0, u=0, v<>0 : 

• Now we are ready to write general formula 
valid for any situation :
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Doppler Effect VII
• A possible disadvantage of our notation is that from the 

sigh of u it is not clear whether the receiver moves 
away or approaches.

• It is necessary to look for the relative velocity u - v but 
that is in accord with the real situation.

• Our notation is however consistent with the standard 
use of sighs for velocities and mainly the formulas are 
unambiguous. 

• Note that if the source and the a receiver approach each 
other the frequency increases but it matters who moves 
and who is at rest. This asymmetry is not due to the 
notation but it is real: If the source moves the waves are 
deformed in space while if it is at rest they are not.
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Doppler Effect VIII
• Finally let's assume medium at rest and the 

speeds of the source or the receiver negligible
compared to the speed of waves. Then :

• this relation is already symmetric. 
• v – u is the relative speed, positive for approaching
• this works also for electromagnetic waves (light)
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The Speed of Sound in a Spring I
• Let's have a string with a length l = 1 m, mass m = 4 

g stretched by a force F = 10 N. 
• What is the speed of sound in the string and at which 

frequencies will the string play?
• The linear density of the string is je μ = 4 10-3 kg/m 

so the speed of the sound is :

• The frequencies can be found from the formula :
λfc =

1502500 −=== msFc
µ

^



The Speed of Sound in a Spring II
• The wavelengths will be those at which there is a 

constructive interference of waves running in both 
direction when standing waves form. 

• Waves in string must have nodes on both ends.
• Different situation would be e.g. in the case of a flute 

which is opened at one end. There is a node at one and 
an antinode at the other end.



The Speed of Sound in a Spring III
• The fundamental frequency corresponds to the longest

such wave. The other tones are integer multiplies of this 
frequency - the (higher) harmonics :

• For our string :
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The Speed of Sound in Water I
• By means of small explosions the speed of waves 

in the sea water was found to be c = 1.43 103 m/s.
• What is the compressed of water in the greatest 

depth on the Earth?
• From the density of the sea water ρ = 1.03 103 kg 

m-3 and the speed of sound the modulus of 
compressibility K is : 

GPacKKc 1.22 ==⇒= ρ
ρ



The Speed of Sound in Water II
• The compressibility factor then is : 

• and relative compression:

• The relative compression at the ambient pressure 105 Pa
tthen is 5 10-5 . At the bottom of the Mariana trench at the 
pressure ~108 Pa, it is roughly 5%. Water is not an ideal 
liquid. If it was the sound would spread in it with infinite 
speed!
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The physical pendulum I
Let's have physical pendulum the mass centre of 

which is in the distance a under the horizontal axis 
of rotation.

If we displace the pendulum by a small angle φ, a 
restoring torque appears.

The equation of motion is: 

ϕεϕϕ JJGaT ==−= sin)(



The physical pendulum II
For small swings we can suppose sin(φ) ≈ φ [rad] and 

solution of a simplified equation:

are harmonic oscillations:

with the angular frequency :
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A simple pendulum
After substituting a = l, G = mg a J = ml2 in the 

formula for the physical pendulum we get:

And for the period :
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The Time and Space Periodicity
From the periodicity of the function cos we can easily 

show that in the time which is an integer multiple of 
the period mT before or after some time t1 the 
displacement is the same. So the displacement in the 
times t1 and t2 = t1 + mT is the same:

The same is true for coordinates x1 and x2 = x1 + nλ,
where n it an integer :
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The Mean Kinetic Energy of Waves I
The kinetic energy of an element of the length dx of the 

wave depends on the speed of oscillations. If u is the 
displacement then :

Then the mean kinetic energy per the unit of length is 
obtained by the integration :
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The Mean Kinetic Energy of Waves II
By decomposition using the formula

we get two more simple integrals and the second of 
them is zero :
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The Mean Kinetic Energy of Waves III
We can prove that the second integral is really zero :

In the one but last step we have substituted for the 
wave number k=2π/λ and then used the periodicity of 
the function sin.
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Mains Topics
• Oscillations 

• general, periodic, harmonic, damped, un-damped
• Harmonic oscillations

• equation of motion and its solutions
• time dependence of displacement, speed, acceleration, 

potential and kinetic energy
• adding oscillations, damped and forced oscillations

• Waves – general and harmonic waves
• description, periodicity in space and time, transport of 

energy
• standing waves, interference, Doppler's effect



21. 04. 2021 4

Introduction – oscillations and waves I
• Studies of oscillatory or vibration motion 

have to be added to the previously studied 
translation and circular movements.
• their existence stems from the elastic character of 

interactions between particles of matter
• they are widely spread in Nature
• Oscillation energy is an important type of energy
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Intro – oscillations and waves II
• Generally oscillation of particle is movement that is 

limited in space.
Wave is spreading of vibration movement in space
that carries energy but not mass

• Should the mass particle oscillate the following 
items must exist :
• equilibrium position where forces don’t act on the particle
• restoring forces – try to return the particle to the e.p.
• the equilibrium must be stable
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Type of oscillations I
• Character of oscillations, the precise time dependence 

of the displacement is given by :
• the character of restoring forces - their actual dependence on 

the displacement. The force field is often conservative and the 
forces follow from the potential. 

• possible existence of dissipative forces.
• An important subset are periodic oscillations, where the 

time dependence of displacement repeats periodically.
• An important subset of periodic osc. are harmonic 

oscillations where the time dependence of displacement 
can be expressed using a harmonic = goniometric
function of time.
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• Undamped periodic and also harmonic 
oscillations can exist only if there are no
losses of mechanical energy present. 

• If dissipative forces are present the 
mechanical energy decreases and eventually 
the movement stops. This is typical for 
damped oscillations.

Type of oscillations II
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• Strictly speaking all real oscillations should 
be damped. 

• Undamped oscillations still are important 
since:
• damping can be small or negligible 
• losses of energy can be restored convenient way

Type of oscillations III
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• Harmonic oscillations are very important since:
• the special restoring forces they need do exist.
• any periodic oscillation can be expressed as Fourier 

series of harmonic oscillations
• any general oscillation can be expressed as Fourier 

integral of harmonic oscillations
• Since both addition and integration are linear operations 

many properties of harmonic oscillations are valid more 
generally

Type of oscillations IV
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Simple (undamped) harmonic motion I

• Let's consider the following simple situation :
• a particle can move only on a straight line which 

we coincide with the x-axis
• the equilibrium position is chosen as the origin
• the restoring force is directly proportional to the 

displacement
kxxF −=)(
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• At first we find work necessary to reach the 
displacement x moving from the origin :
• since the restoring force depends on the current 

displacement χ we have to integrate :

• this result is symmetric: To reach some displacement x
either negative of positive we have to supply positive 
work

• and it corresponds to parabolic potential well

2
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2
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kxdkxWxE
x

p === ∫ χχ

Simple harmonic motion II
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• This type of restoring force can exist in any field 
e.g. in gravitational or electrostatic which have 
potential and the potential well can be 
approximated by parabola at least for small
oscillations.

• This restoring force may correspond to Hook's 
behavior. In this case the proportionality 
parameter k is proportional to the appropriate 
Young modulus and it is called the spring 
constant.

Simple harmonic motion III
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• If we substitute for force from the Newton's 
2nd law we get the equation of motion, 
particularly differential equation of the 
second order with missing first order :

• We guess the form of the solution and find 
its parameters :

kxxmF −== 

)sin()( 0 ϕω += txtx

Simple harmonic motion IV
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• Let's calculate its (first and) second time 
derivative and substitute it to the original 
equation :

• From which we get : 

)()(2 tkxtxm −=− ω
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Simple harmonic motion V
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• the time dependence of the displacement is :

• angular frequency ω describes its periodicity, 
similarly as for circular motion. The oscillation 
can be considered as projection of constant 
circular motion to a straight line. So we can 
analogically define the frequency f and period T :

T
f ππω 22 ==

)sin()sin()( 00 ϕϕω +=+= txtxtx m
k

Simple harmonic motion VI
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• Since the formula for the displacement is a 
result of two integrations is contains two 
integration parameters :
• the amplitude x0, which is the maximal possible 

displacement and 
• the phase ϕ, which allows for describing 

oscillations with any displacement at zero time 
in the beginning

• the integration parameters can be obtained from 
the boundary conditions.

Simple harmonic motion VII



21. 04. 2021 17

• Let's examine the time dependence of 
displacement, speed and acceleration :
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Simple harmonic motion VIII
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• All these quantities are harmonic with the 
same angular frequency but different 
amplitude and phase :
• The speed advances the displacement by the 

quarter of the period. It has a maximum in the 
equilibrium point for zero displacement. 

• The acceleration goes against the displacement 
which exactly corresponds to the behaviour of 
the restoring force. 

Simple harmonic motion IX
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• Let's examine the time-dependence of 
energy. It has apparently two components :
• Kinetic Ek, since the oscillating particle moves 

with some time-dependent speed and
• Potential Ep, since work has to be done to reach 

certain displacement and it is conserved since 
we neglect the energy losses in this case.

Simple harmonic motion X
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• Let's substitute for the ω in the Ek :
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Simple harmonic motion XI
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• Then for the total energy we get :

• Using the identity we get :
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Simple harmonic motion XII
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• Let's sum the important properties we have found :
• the kinetic energy is in-phase with the absolute value of 

the speed. So it doesn't depend on its direction.
• the potential energy is in-phase with the absolute value 

of the displacement. Again, doesn't depend on its 
direction.

• the total energy doesn't depend on time - during one 
oscillation the kinetic energy is gradually changing into 
the potential energy and back.

Simple harmonic motion XIII
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• The total energy of oscillating system is given by 
the boundary conditions and it is conserved.
• For instance: We pull the particle to a certain starting  

displacement which will then be the amplitude. We 
have to do some work to accomplish this and thereby 
we give the oscillator the starting total energy.

• Or we can kick the particle, which was at rest, to give it 
some momentum and kinetic energy which will also be 
the starting total energy of the oscillator.

• We can combine these methods and the starting total 
energy can have both kinetic and potential component.

Simple harmonic motion XIV



21. 04. 2021 24

Examples: Physical pendulum I

• Physical pendulum is any extended body that 
swings back and forth usually in gravitational 
field.

• The exception is a torsion pendulum that doesn't 
need the force of gravity.

• Let's have a rigid body that can rotate (at least to 
some extent) around horizontal axis which is at 
nonzero distance a from its center of mass.

• The equilibrium position is when the mass centre 
is bellow the axis.
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• Angular frequency of the pendulum ω is :

here G is the weight and J the moment of inertia
• In the numerator we have 'elastic' properties which 

boost the motion and in the denominator are 
'inertial' properties that try to slow it down.

• Penduli are used to measure time or the force of 
gravity.

J
Ga

=ω

Physical pendulum II
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A simple (mathematical) 
pendulum

• A special case of physical pendulum is the (simple) 
mathematical pendulum which has all its mass m
concentrated in distance l from the axis of rotation 
ona lightweight cord.

• We can use formula for physical pendulum into which 
we insert : a = l, G = mg, J = m l2.

• For the angular frequency ω and period T we get :

g
lT

l
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J
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• A reduced length λ is being used for the physical 
pendulum. It is equal to the length of 
mathematical pendulum with the same period :

ma
J

gGa
JT =⇒== µµπ2

Physical pendulum III
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Interference of oscillations I
• If more restoring forces act the particle can move in 

several oscillations at the same time.
• In general the total oscillation is the superposition

of the individual oscillations and the displacement is 
the superposition of individual displacements.

• Often we are interested under what conditions
would the resulting oscillation be periodic or even 
harmonic.

• Let's now consider just two interfering oscillations. 
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• It is interesting that even if the interfering 
oscillations are harmonic the result motion 
is generally aperiodic. Especially:
• If one frequency is a rational factor of the other 

the result oscillation is periodic.
• Only if the frequencies are equal the result 

oscillation is harmonic.
• Let's look at several special and important 

cases of interference of harmonic
oscillations.

Interference of oscillations II
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• If both interfering oscillations have the 
same frequency they can differ only in the 
amplitude and phase. Their superposition:
• has again the same frequency as each oscilation
• its amplitude and phase can be calculated using 

two dimensional vectors or complex numbers.

Superposition of linear oscillations I
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Superposition of linear oscillations II
• We can prove this statement for two

oscillations which we can then generalize 
for more oscillations.

• Let our oscillations be described by tha 
parameters x10, ϕ1 a x20, ϕ2. then :

• cosines can be cosiny decomposed by well 
know formulas, reorganized and assembled 
back again :

)cos()cos()( 220110 ϕωϕω +++= txtxtx
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Superposition of linear oscillations III

•
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Superposition of linear oscillations IV

• The result oscillation have the angle frequency ω,
the same as the original oscillations, the same as 
superposition, amplitude x120 and phase ϕ. 

• The amplitude and phase are the results of these of 
the original oscillations.

• Since each oscillation is described by two 
parameters we use two-dimensional mathematical 
apparatus, either using special 2D vectors – the 
phasors or complex numbers. 

• We illustrate the phasor approach : 
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Superposition of linear oscillations V

• From the previous we see that the first 
component of the result oscillation is the sum 
of the first components of the original 
oscillations :

and similarly the second one :

• The corresponds exactly to the sum of vectors. 

220110120 coscoscos ϕϕϕ xxx +=

220110120 sinsinsin ϕϕϕ xxx +=
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Superposition of linear oscillations VI

• Quite an interesting situation is when the 
oscillations have near angular frequencies. 
For simplicity we can assume the same
amplitude and phase :
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Superposition of linear oscillations VII

• The result oscillation :
• has angle frequency equal to the average

frequency of the original oscillations, all these 
frequencies are comparable

• has the amplitude modulated by the difference
of the original frequencies, which is typically 
low. This appearing and fading of tone is called 
beats in acoustic.
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Waves I
• Imagine a long straight row of bound oscillators – mass points with 

a special property that each of them can perform oscillations around 
its equilibrium position. The bonds between them can be described 
using e.g. by Young modules E a G. If one of these oscillators is 
pulled from its equilibrium position and released it starts to oscillate 
and these oscillations spread through the row successively in both 
directions. This motion of displacement in both space and time is 
called a wave.

• According the character of the bonds the wave motion can be :
• transversal – with the displacement perpendicular to the direction of the wave 

motion – needs nonzero shear modulus
• longitudinal – with the displacement in the direction of the wave motion 
• a superposition of both
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Waves II
• Since each oscillator oscillates around its equilibrium mass

doesn't spread trough the space while energy does – typical 
property of waves

• For simplicity we deal with a special harmonic wave where 
the displacement spreads by the speed c from the origin along 
the x-axis and it is a harmonic function of both the coordinate
x and the time t :

• the displacement has both the transversal and longitudinal component 
but from now we consider just the magnitude u(x,t)

• the sign “-” holds for the positive part of the x-axis
• the displacement in the point x is the same as was in the origin before 

the time τ = x/c it took the wave to reach the point x

)(cos),( 0 C
Xtutxu 

 ω=
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Waves III

• The displacement of any wave is a solution 
of the general Laplace equation :

• so do also our harmonic waves spreading in the 
space of harmonic oscillators 

2

2

22

2 1
t
u

cx
u

∂
∂

=
∂
∂



21. 04. 2021 40

Waves IV

• We can easily illustrate the periodicity in 
both time and space :

here λ = cT is the wavelength the distance to 
which the wave gets during one period T. So T
describes the periodicity in time and λ in 
space. 
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Waves V

• Using the definition of λ the following holds :

• In spectroscopy the inverse wavelength that is 
number of waves per the unit of length is being 
used :

it is apparently the space analog of the frequency.

λλλ fc
f
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Waves VI
• The space-analog of the angular frequency is 

the wave number :

employing k we get very compact equation :

• We can further write:
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Waves VII

• In the 3D space we can use the wave vector 

to describe fully a plane wave including the 
direction of its spread where the unit vector      

points. Then for the displacement at some 
point    we write :
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The Speed of Waves I
• Let's have a wave running e.g. in a string. 

• The maximum of amplitude is a 'hill' the top of 
which is moving with a speed c c. 

• An element of length at the top moves on a path 
that can be approximated by a piece of a circle.

• The forces on this piece must add to make the 
centripetal force to allow this movement.
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The Speed of Waves II

• We assume a small angle which we substitute 
by parameters of the circle and the mass of the 
element we express using the linear density 
(density per the unit of length) µ :

So : 
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The Speed of Waves III
• Similarly as in the formulas for the angle 

frequency, in the formula the speed of waves :
• quantities related to elastic properties of space where 

waves move matter are in the numerator
• in the denominator are the inertia properties.

• The formula for the speed in continuum is:
• Here K is the module of volume elasticity and γ

the coefficient of compressibility defined earlier :

ρ
Kc =

V
dV
dpK −

==
γ
1



21. 04. 2021 47

The Energy of Waves I
• The wave motion are successive oscillations of 

single oscillators along the direction of spreading.
• It can be expected that both the kinetic and potential 

energies will spread.
• As in the case of oscillations the mean kinetic and mean 

potential energies are the same and thereby each is half
of the total energy.

• The mean kinetic energy per the unit of length is :
2
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The Energy of Waves II
• This energy is carried together with the potential 

energy through an element of length with speed c
so by time derivative we obtain the carried power : 

• The power depends on
• parameters of the medium µ and c
• properties of the wave ω2 and u0
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Composition of Waves I
• When composing waves the principle of 

superposition holds as well as in the case 
for oscillations.

• Expressed mathematically we use vector
sum or in special cases normal sum.

• For two waves both transversal or both 
longitudinal spreading along the x-axis : 

),(),(),( 21 txutxutxu +=
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Composition of Waves II
• For the character of the resulting waves 

similar rules hold as for oscillations, but :
• waves have generally four parameters e.g. the 

amplitude, the angular frequency, the wave 
number and the phase. If we further assume the 
same phase :

)cos()cos(),( 22201110 xktuxktutxu −+−= ωω
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Composition of Waves III
• If in a certain medium the speed of waves doesn't 

depend on frequency the number of independent
parameters reduces to two. Then the rules for 
composition of waves are exactly the same as for 
oscillations.

• In real media the speed of waves generally depends
on frequency. This effect is called dispersion. In 
optics, for instance, it is the reason for color 
aberration of lenses. 
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Composition of Waves IV

• If harmonic waves have the same speed but 
different amplitude and angle frequency the 
resulting composed wave is generally
aperiodic. 

• But depending on the relation of their angle 
frequencies it can also be periodic and even 
harmonic.
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Composition of Waves V

• An important and frequent case occurs when 
the waves have the same angle frequency. 
Then :
• In each point oscillations of the same frequency 

add.
• The resulting oscillation has the same frequency 

and a certain amplitude and phase.
• For simplicity we further assume the same unit 

amplitude for both waves.
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Composition of Waves VI

• The result wave is modulated by a term that 
depends on the mutual phase shift.

• The extremes are the most important
• constructive – both waves are exactly in-phase and 

their amplitudes add so if they are the same the result 
wave is twice the original amplitude

• destructive – both waves are exactly out-of-phase and 
their amplitudes subtract so if they are the same their 
amplitudes cancel
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Standing waves I

• A special case appears when the wave is 
composed with its own reflection on some 
obstacle

• The phase shift describes that
• depending on the obstacle the phase can change 
• the obstacle can be in various distances
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Standing waves II
• At suitable conditions the result wave is stable in 

time – a standing wave. Then it is a function of the 
space (coordinate) only. It has :

• antinodes – places with maximum amplitude
• nodes– places with zero amplitude

• Function of all mechanical musical instruments is 
based on standing waves due to constructive 
interference of a wave and its reflection.
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Standing waves III
• The conditions for the existence of standing waves 

are fulfilled by the natural or resonant frequencies 
the lowest of them is the fundamental frequency the 
higher are its integer multiples – higher harmonics. 

• The relative intensities of harmonics make the color
of the sound of the instrument. The differences exist 
exit for many reasons. For instance they are nodes at 
both ends of a string but one node and one antinode 
in the case of a flute.
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Composition of Waves VII

• More waves with specially related angular 
frequencies can add to form a wave of a 
special shape. This is called the Fourier 
analysis :

• So e.g. a saw-saw tooth pulse is obtained by :
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Doppler Effect I
• When we hear an ambulance moving through nearby 

streets we know that the frequency of its siren shifts
and from our experience we recognize when it 
approaches us, when it leaves or even whether it has 
stopped.

• Let's study this in detail. We describe the motion of : 
• the source of (sound) waves by the velocity v
• the receiver of  waves by the velocity u
• the medium which waves spread by the velocity w
• Assume that the speed of waves c is more than u, v, w, but 

much less than the speed of light in vacuum.
• The velocities are positive when in the direction of +x axis.
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Doppler Effect II
• At first suppose that the source as well as the 

medium are at rest (v = w = 0) near the origin and 
the receiver is at the right of the origin moving 
away by a velocity u > 0.

• The frequency which the receiver hears (the pitch) 
depends on the number of waves that pass him per 
second. See the conveyor belt Modern Times by 
Charles Chaplin!
• if he was also at rest :

0
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Doppler Effect III
• if the receiver moves, waves pass him not with the 

velocity c but the relative velocity c - u. So using 
the previous :

• if the receiver moves away (u > 0) the frequency 
is lower, if he approaches if is higher.
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Doppler Effect IV
• let now the medium and the receiver be at rest. The 

receiver is at the right but at some distance from the 
origin. And the source is close to the origin and moves 
right v>0 so it approaches the receiver. 

• during one period T0 the source sends one wavelength
• at the moment he is sending the end of the wave he is at 

the distance T0v from the point where he started to send 
its beginning.  The beginning got into the distance T0c
so the new wavelength is squeezed into T0(c-v). So:

• for the source moving away from the receiver v<0 the 
frequency is lower, if it approached him v>0 the 
frequency would be higher. 
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Doppler Effect V
• if only the medium moves uniformly w<>0 , its 

velocity simply adds to the speed of the waves 
and if u=v=0 the frequency doesn't change :

• if however also the receiver moves w<>0, 
u<>0, v=0, then the motion of medium makes
change :
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Doppler Effect VI
• Similarly if the medium and the source move 

w<>0, u=0, v<>0 : 

• Now we are ready to write general formula 
valid for any situation :
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Doppler Effect VII
• A possible disadvantage of our notation is that from the 

sigh of u it is not clear whether the receiver moves 
away or approaches.

• It is necessary to look for the relative velocity u - v but 
that is in accord with the real situation.

• Our notation is however consistent with the standard 
use of sighs for velocities and mainly the formulas are 
unambiguous. 

• Note that if the source and the a receiver approach each 
other the frequency increases but it matters who moves 
and who is at rest. This asymmetry is not due to the 
notation but it is real: If the source moves the waves are 
deformed in space while if it is at rest they are not.



21. 04. 2021 66

Doppler Effect VIII
• Finally let's assume medium at rest and the 

speeds of the source or the receiver negligible
compared to the speed of waves. Then :

• this relation is already symmetric. 
• v – u is the relative speed, positive for approaching
• this works also for electromagnetic waves (light)
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The Speed of Sound in a Spring I
• Let's have a string with a length l = 1 m, mass m = 4 

g stretched by a force F = 10 N. 
• What is the speed of sound in the string and at which 

frequencies will the string play?
• The linear density of the string is je μ = 4 10-3 kg/m 

so the speed of the sound is :

• The frequencies can be found from the formula :
λfc =

1502500 −=== msFc
µ

^



The Speed of Sound in a Spring II
• The wavelengths will be those at which there is a 

constructive interference of waves running in both 
direction when standing waves form. 

• Waves in string must have nodes on both ends.
• Different situation would be e.g. in the case of a flute 

which is opened at one end. There is a node at one and 
an antinode at the other end.



The Speed of Sound in a Spring III
• The fundamental frequency corresponds to the longest

such wave. The other tones are integer multiplies of this 
frequency - the (higher) harmonics :

• For our string :
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The Speed of Sound in Water I
• By means of small explosions the speed of waves 

in the sea water was found to be c = 1.43 103 m/s.
• What is the compressed of water in the greatest 

depth on the Earth?
• From the density of the sea water ρ = 1.03 103 kg 

m-3 and the speed of sound the modulus of 
compressibility K is : 

GPacKKc 1.22 ==⇒= ρ
ρ



The Speed of Sound in Water II
• The compressibility factor then is : 

• and relative compression:

• The relative compression at the ambient pressure 105 Pa
tthen is 5 10-5 . At the bottom of the Mariana trench at the 
pressure ~108 Pa, it is roughly 5%. Water is not an ideal 
liquid. If it was the sound would spread in it with infinite 
speed!
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The physical pendulum I
Let's have physical pendulum the mass centre of 

which is in the distance a under the horizontal axis 
of rotation.

If we displace the pendulum by a small angle φ, a 
restoring torque appears.

The equation of motion is: 

ϕεϕϕ JJGaT ==−= sin)(



The physical pendulum II
For small swings we can suppose sin(φ) ≈ φ [rad] and 

solution of a simplified equation:

are harmonic oscillations:

with the angular frequency :
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A simple pendulum
After substituting a = l, G = mg a J = ml2 in the 

formula for the physical pendulum we get:

And for the period :
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The Time and Space Periodicity
From the periodicity of the function cos we can easily 

show that in the time which is an integer multiple of 
the period mT before or after some time t1 the 
displacement is the same. So the displacement in the 
times t1 and t2 = t1 + mT is the same:

The same is true for coordinates x1 and x2 = x1 + nλ,
where n it an integer :
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The Mean Kinetic Energy of Waves I
The kinetic energy of an element of the length dx of the 

wave depends on the speed of oscillations. If u is the 
displacement then :

Then the mean kinetic energy per the unit of length is 
obtained by the integration :
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The Mean Kinetic Energy of Waves II
By decomposition using the formula

we get two more simple integrals and the second of 
them is zero :
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The Mean Kinetic Energy of Waves III
We can prove that the second integral is really zero :

In the one but last step we have substituted for the 
wave number k=2π/λ and then used the periodicity of 
the function sin.
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Main Items
• Introduction into thermal physics - heat and 

temperature
• Thermic and Thermodynamics 

• Units of temperature
• Thermal expansion of solids, liquids and gases
• Thermal expansion and expansibility of gases
• Absolute temperature scale
• Measurements of temperature
• Calorimetry – heat capacity, specific and heat
• Heat conduction
• Principles of thermodynamics
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Introduction into Thermal Physics I
• Thermic deals mainly with the definitions of 

temperature scale, temperature measurements, 
thermal effects e.g. expansion, calorimetry and 
heat transfer.

• Thermodynamics deals mainly with the transfer of 
heat energy into other forms and its wider 
theoretical background. 

• Temperature represents the thermal status of a 
system tightly connected with its internal energy.

• Heat is special type of energy which flows when 
bodies of different temperature are in thermal 
contact.   
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• The access to thermal physics can be :
• Phenomenological – only macroscopically 

measurable quantities are used without dealing 
with the microscopic structure. Even this way 
very general conclusions can be made.

• Atomistic – effects are explained on the basis of 
the existence of atomic structure and 
microscopic particles. Measurable quantities 
are evaluated by statistical averaging of 
microscopic properties.

Introduction into Thermal Physics II
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Temperature Units I
• Most of macroscopic parameters such as the size, 

density or conductivity to name just some of them  
depend on temperature.

• Those for which this dependence is simple and 
possibly close to linear can be used to measure 
temperature.

• Let's assume such a measurement can be done and 
the property is y(t). Then we can define the empiric 
temperature scale the following way : 
• Certain value y(0) can be attributed the zero temperature
• Other value y(n) can be attributed temperature n degrees. 
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• Into the dependence in which the zero point 
is already included :
we insert the second point :
and find the scaling factor : 

so finally :
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Temperature Units II
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• The temperature in using this scale can be 
found :

• In the Celsius scale :
• 0° (degrees) is the temp. of freezing of water
• 100° is the temperature of boiling of water

both at the ambient pressure 1.01325 105 Pa
• The temperature interval is divided evenly
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Temperature Units III
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• Several temperature scales were defined in history 
and some e.g. the Fahrenheit's are used even now 
mainly in developing countries and USA. Freezing 
point of water is attributed 32 °F and boiling point 
of water 212 °F so the conversion formulas are :

or
• Let's assume temperature can be measured. We 

shall use the Celsius scale and call the appropriate 
step Kelvin. Further details of temperature 
measurements we discuss later.

325
9 += CF tt

Temperature Units IV
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Thermal Expansion
• Microscopically the thermal expansion can 

be explained by the asymmetry of the 
potential well farther from the equilibrium 
point.
• at nonzero absolute temperature particles can be 

at any distance which meets the energy
conditions.

• since the repulsion slope is steeper than the 
attractive the mean distance of particles grows
with temperature. This mean distance is in fact 
measured macroscopically.
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• Let's have a rod with a certain length l0 at some reference 
temperature, usually 0° or 20° C. at small temperature 
difference the prolongation is proportional to
• temperature
• the original length l0 :

• The relative prolongation (=strain) is proportional to the 
temperature :

or 

• α [K-1] is the coefficient of linear thermal expansion.
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• For higher precision or in wider temperature 
interval quadratic term has to be added :

α1 [K-1] is the linear and
α2 [K-2] the quadratic coefficient of linear 
thermal expansion.

)1()( 2
210 ttltl αα ++=

Thermal Expansion of Solids II



28. 05.  2021 13

• Cu: α1 = 16.7 10-6 K-1, α2 = 0.9 10-9 K-2

• steel: α1 = 12 10-6 K-1

• glass (Pyrex): α1 = 3 10-6 K-1

• glass : α1 = 9 10-6 K-1

• quartz : α1 = 0.5 10-6 K-1

• special alloy Ni(36)Fe : α1 = 0.9 10-6 K-1

• The order of α1, describing the main effect, is
• for metals 10-5 K-1

• for non-metals e.g. ceramic 10-6 K-1

Thermal Expansion of Solids III
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• Let's compare thermal expansion :

with Hook's law :

Obviously temperature load can lead to (large) 
mechanical stress. This fact has to be taken into 
account when constructing machines or buildings :
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• Thermal expansion of volume :
• For typical values of α their higher powers are 

negligible so the coefficient of volume thermal 
expansion β is approximately three times the 
coefficient of linear thermal expansion α.

• A cavity expands the same way as if it was 
filled with the material of the walls.
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Thermal Expansion of Solids V
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• If the mass doesn't change then the change of 
density with temperature is :
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Thermal Expansion of Solids VI



28. 05.  2021 17

• The temperature expansion of liquids is two
orders of magnitude larger an effect and the 
behavior is more complicated. If we used 
the same approach as in the case of solids :

• However, coefficient of volume thermal 
expansion β (t) depends on the temperature 
even in the first approximation , so this 
approach doesn't work.

))(1()( 0 ttVtV β+=

Thermal Expansion of Liquids I
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• More accurate description of thermal expansion 
needs using the cubic polynomial :

a b c
Hg: 0 7.8   10-9 1.82 10-4

EtOH:   7.3 10-9 1.85 10-6 7.45 10-4

H2O:    -6.8 10-8 8.51 10-6 -6.43 10-5

)1()( 23
0 +++= ctbtatVtV

Thermal Expansion of Liquids II
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• expansion of mercury is small but almost linear
• expansion of ethanol is large but non-linear
• water exhibits anomalous behavior since its 

highest density is at 4° C. Thanks to this fine 
feature life probably exists on the Earth.

• for β(t) and the density ρ we may use formulas :
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• At constant pressure gasses follow the Gay-
Lusac law (1802-1808) :

• Interestingly for most of diluted gasses the 
thermal expansion coefficient is the same :
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Thermal Expansion of Gases I
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• At constant volume a law analogous to the 
Gay-Lusac law holds :

• For most of diluted gasses the thermal 
expansion coefficient is again :
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The Absolute Temperature Scale I 
• The fact that thermal coefficients of expansion and 

expansibility are the same means all isobars and 
isochors are straight lines which intersect the t-
axis at the value –273.15° C. 

• If the zero of the new scale is set at  –273.15° C
and the step is left the same then all linear
dependencies become direct proportionalities.

• This is how the absolute scale is defined. 
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• The unit in the absolute temperature scale is 
1 Kelvin [K].

• Be aware that the sometimes used term 
'degrees Kelvin' is wrong.

• In the absolute scale equations for isochoric 
and isobaric effect simplify to :
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The Absolute Temperature Scale II 
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• Since isochors and isobars pass through the 
origin only one calibration point is needed. 

• As a convention a triple point of water, the 
point where water exists in all three states 
of matter exists :
TT = 273.16 K ≈ 0.01° C

The Absolute Temperature Scale III 
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Zeroth Law of Thermodynamics

• Measurements of temperature is based on the zero principle of 
thermodynamics :
• If two systems are placed into a thermal contact, they reach 

sooner or later, the state of thermal equilibrium.
• If system A is in thermal equilibrium with system B and also 

with system C, then it can be assumed that systems B and C 
must be in thermal equilibrium without putting them in 
thermal contact.

• The thermal equilibrium of A with B and A with C can be 
verified at different time or in different place. One verification 
may be called calibration the other measurement. 
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Measurements of Temperature I

• The zero principle and some convenient thermal 
effect can be used for temperature measurements. 
The effect should mainly :
• be easy to perform
• be sensitive
• be linear or close to linear
• not influence the measured temperature significantly

• These requirements can't be all matched at the 
same time so some compromise is made 
depending on the situation.
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• A typical example are liquid thermometers :
• the expansion of the container is negligible
• mercury behavior is close to linear but the tube 

must be very thin to enhance the sensitivity.
• ethanol thermometers are not so linear but they 

are more sensitive and less dangerous if they 
break.

Measurements of Temperature II
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• The most accurate and most linear but not easy to use is 
the constant-volume gas thermometer :
• A bulb filled with diluted gas is connected to two glass pipes joint 

in their lower part by an u-shape flexible hose filled with mercury.
• Before the measurement mercury in the pipe next to the bulb 

reaches a certain reference mark. When temperature in the bulb 
changes e.g. increases, gas in the bulb expands. This shifts the 
level of mercury down and the rightmost pipe has to be lifted to 
place the mercury level back to keep the volume in the container 
constant.

• Temperature at constant volume is proportional to the pressure 
which can be easily measured from the difference of levels in both 
glass tubes.

Measurements of Temperature III
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Calorimetry I
• It two bodies with different temperatures come 

into thermal contacts :
• according to zeroth principle of  thermodynamics 

heat flows between them until they reach thermal 
equilibrium and be at the same temperature.

• During this process the originally warmer body 
looses energy, the colder receives it and the total 
energy is conserved.
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• Heat necessary to worm up a body one Kelvin is 
called its heat capacity [J K-1].

• For homogeneous materials it makes sense to 
relate if further to unit of mass. Then it is called 
specific heat [J kg-1 K-1].

• Specific heat is the ability to accumulate heat 
energy and it is deeply connected with the 
structure of the matter and generally depends on 
temperature.

Calorimetry I
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• Materials exist in several phases (states).
• A certain change of phase occurs at 

particular temperature and is connected with 
exchange of latent heat [J/kg] which is 
energy that is needed or released for the 
change of 1 kg of matter. The example is 
heat of fusion or heat of vaporization.

Calorimetry II
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• Heat exchanges e.g. measurements of 
specific or latent heats are studied in 
calorimeters. They
• are well thermally isolated containers
• their heat capacity must be known or 

found by a special measurement -
calibration

Calorimetry III
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• In the calorimeter with heat capacity K, let's 
have m2 of matter with specific heat c2 and 
temperature t2.

• Let's add m1 of matter with specific heat c1 and 
temperature t1 (e.g.>t2). 

• Assume the final temperature is t. The energy is 
conserved. So the energy lost by the added 
warmer matter was gained by the calorimeter 
and the matter it originally contained:

))(()( 222111 ttcmKttcm −+=−

Calorimetry IV
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Heat Conduction I
• The ability to conduct heat depends on

• the area of contact
• temperature gradient
• thickness of the conducting layer
• heat conductivity k [W m-1 K-1] of material

• The power = transferred heat per second is : 
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• Geometric and material parameters can be 
included in new parameter - heat resistance R. 

• Then properties of composed layers can be 
calculated using analogy with electric circuits 
using the same mathematical tools.

• Let's have a sandwich of two materials and assume 
the temperature of their interface is Tx . The heat 
transfer through both must be the same (eq. of 
continuity) :
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Heat Conduction II
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• From equation :

• It follows :

• And so :

• Where : R12 = R1 + R2 so heat resistance 
adds as for serial combination of resistors
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Heat Conduction III
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• This analogy can be generalized for sandwich of 
more layers.

• This analogy with serial combinations of resistors 
stems from the fact that the power transferred 
through each layer must be the same as is the case 
of current in each serially connected resistors.

• If we changed the succession of the layers the 
temperatures at the interfaces would change but the 
total heat resistance as well as the transferred 
power would remain the same.

Heat Conduction IV
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• Thermodynamics deals with changes 
thermal energy from or to other types.

• We deal with a system which is a certain 
way separated from the environment :
• closed system doesn't exchange particles
• isolated system doesn't exchange heat

• We deal with systems in equilibrium.

Introduction into Thermodynamics I
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• The state of a system (in equilibrium) is 
described by parameters which are divided 
to extensive or intensive. 
• If A is an intensive parameter it's not dependent 

on the size of the system :

Intensive parameters are e.g. pressure, 
temperature and all specific and molar
quantities.

.lim konstA
V

=
∞→

Introduction into Thermodynamics II
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• If a parameter B is extensive then :

Extensive parameters are e.g. volume, internal 
energy, and all thermodynamic potentials 
entropy, enthalpy, Gibbs and Helmholtz free 
energy.

.limlim konst
V
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Introduction into Thermodynamics III
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• In a system processes take place. They can :
• start from some initial state and finish in some 

end state or they can be loops. 
• be either reversible or irreversible. In fact all 

real processes are irreversible. Reversible 
processes would have to proceed very slowly so 
that the system is (almost) in equilibrium all the 
time and these processes can proceed in both 
directions. 

Introduction into Thermodynamics IV
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1st law of thermodynamics I

• Energy can be input into the system in the 
form of : 
• Heat. Heat dQ input into the system is 

considered  positive.
• Work. Work dA done on the system is 

considered positive.
• For the volume work done on the system it can 

be shown that :
pdVpSdxFdxdA −=−=−=
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• 1st law of thermodynamic says that the 
energy of a system is conserved :

• Energy input into the system in the form of  
mechanical work A or as heat Q leads to the 
increase of the internal energy U.

• While and depend on the path their sum  
dU does not. It is a thermodynamic potential. 

dUQdAd =+

AdQd

1st law of thermodynamics II



28. 05.  2021 44

• Experiment shows that processes have their 
natural direction leading to higher stability 
of the system. They would never proceed in 
reverse direction even if the law of energy
conservation would not be violated.

• That means that other quantities and rules
must exist which describe this fact.

2nd law of thermodynamics I
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• R. Clausius : heat can't flow from a colder 
body to a warmer one without the input of 
work.

• W. Thompson: A process that would change 
continuously heat taken from one 
thermostat to mechanical work without 
compensation - giving part of heat to a 
colder body, doesn't exist. That would be a 
perpetum mobile of the second kind.

2nd law of thermodynamics II
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• Both formulations are equivalent :
• A process that could violate the R.C. could also 

remove compensation so W.T. would not hold.
• A process that could violate W.T. could pump 

heat from a thermostat, change it to work and 
then e.g. by friction to heat that could flow to 
warmer thermostat. So also R.C. would not 
hold.

2nd law of thermodynamics III
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Entropy I
• It can be shown that for the reversibly exchanged 

heat the ratio      state variable. If we imagine a 
loop divided into many small Carnot cycles :

• The last term is called the Clausius' integral for 
reversible processes.
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• Using the analogy with definition of conservative 
fields it is easy to show that the change of the ratio       
doesn't depend on path so it is a thermodynamic 
potential - state function - entropy :

• The entropy S is a state function which describes 
the direction or reversibility of processes.
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Irreversible Heat Engine
• The effectivity of irreversible process will 

always be smaller than the effectivity of 
reversible process :

• This corresponds to smaller work done and 
thereby bigger compensation : 
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• The Clausius' integral can then be generalized for all 
processes :

• The equality sign characterizes reversible and 
inequality irreversible processes where entropy is 
generated and leaves the system during compensation.

• General relation between the entropy dS and
can be found is we proceed from the state 1 to 2
irreversibly [I] and back from 2 to 1 reversibly [R]. 

T
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Entropy III
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• The total cycle is irreversible so :

• So for all processes :

as before equality is valid for reversible processes.
T
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• Since all real processes are irreversible the 
entropy always grows.

• We show that this roughly means directing
to lower order, more precisely to the state 
that is accomplished by more microstates or 
quantum states.

Entropy V



Example - Heat conduction I
• A piece of Cu m1 = 10 g and T1 = 350 K is put into 

the thermal contact with identical piece which is at 
T2 = 210 K. The specific heat is c = 389 kJ kg-1K-1.

• What will be the final temperature? 
• What total energy will be transferred? 
• What is the entropy change when the first 0.1 J is 

transferred? 
• From the energy conservation : 
• ∆U = m1c(T1-T) = m2c(T-T2).
• So : T = 320 K a ∆U = 11.7 J.



• When exchanging the first 0.1 J it can be assumed 
that temperatures of both bodies have the original 
values. The entropy of the warmer body decreases 
by ∆S1 = - 0.1/350 = -2.86 10-4 JK-1. When the 
heat is given to the colder body its entropy 
increases by ∆S2 = 0.1/290 = 3.45 10-4 JK-1 . So 
totally the entropy increases by :

• ∆S = ∆S1 + ∆S2 = 0.59 10-4 JK-1

Example - Heat conduction II
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Statistical Meaning of Entropy I
• Entropy shows the direction of processes 

and sets criteria of their reversibility.
• We have shown general definition of 

entropy and its behavior in reversible or 
irreversible processes. It is precise but not 
particularly illustrative. We try a different 
approach to improve this.
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• Statistical approach can considerably improve 
understanding the meaning of the entropy :
• We illustrate that the state of a system can change 

by itself only in the direction leading to the more 
probable state, the one that is accomplished by 
more micro-states or in other words had higher 
thermodynamic weight.

• The equilibrium is the most probable state.
• At non-zero absolute temperature the state of a 

system fluctuates through the states close to the 
equilibrium.

Statistical Meaning of Entropy II
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• Let's illustrate the meaning of entropy using 
an example :
• it is simplified since it is using only the 

configuration space
• in reality the entropy depends also on velocities 

of particles and it has to be described fully only 
in the phase space

Statistical Meaning of Entropy III
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• Let's have a playground divided in two halves by a line on 
which 4 players with numbers on their back chaotically move 
= an analogue to 4 particles of ideal gas in a container.

• The state (=macro-state) of this system is what we see from 
far above wherefrom the numbers can't be read and players 
can't be distinguished. The state can be characterized by the 
number of players who are in the left half of the field.

• Various macro-states can be distinguished by measurements.
• The state when there is e.g. one player in the left half of the 

field can be accomplished by four micro-states since it can be 
either player 1 or 2 or 3 or 4. 

• Various micro-states can't be distinguished by measurements.

Statistical Meaning of Entropy IV
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• During chaotic movement of players the micro-states will 
perpetually change and appearance of any of them will 
have the same probability.

• The thermodynamic weight Ω is the total number of 
micro-states which a certain system can totally have under 
current conditions.

• The probability of a certain (macro-)state is then equal to 
the number of micro-states by which is this state is 
accomplished divided by the thermodynamic weight.

• Let's look at it in a deeper detail :

Statistical Meaning of Entropy V
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• Our system has totally 5 states distinguished by 
number of players in the left half.
state nr of micro-states  probability:

0 1 0.0625
1 4 0.25
2 6 0.376
3 4 0.25
4 1 0.0625

• The configuration state than has 16 micro-states.

Statistical Meaning of Entropy VI
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• If we return to particles in a container, we see that even in this 
case of very small number of particles the states have 
considerably different probabilities.

• In our case of only 4 particles the first state is six times less 
probable than the most probable state.

• In a container divided in two halves every particle generally 
generates two states since it can be either in the left or the 
right half. If there is n particles in the container there will be 
totally 2n micro-states.

• The state when there is m particles is in the left half  is 
accomplished by    micro-states.

)!(!
!

mnm
n
−

Statistical Meaning of Entropy VII
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• The ratio of probability of bizzare states to 
the states near to the equilibrium is 
astronomically low even for very small n. 

• Even the state when the left half is empty is 
n-times less probable than when there is just 
one particle. In the case of macroscopic 
systems n ~ NA.

Statistical Meaning of Entropy VIII
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• Let's check this for n = 20 (220 = 1048576) :
state        nr micro-states    probability          sym-sum

0  1 9.5 10-7

1 20 1.9 10-5

5 15504 0.015 (5-15) 0.988
6 38760 0.037 (6-14) 0.959
7 77520 0.074 (7-13) 0.885
8 125970 0.120 (8-12) 0.737
9 167960 0.160 (9-11) 0.497

10 184756 0.176

Statistical Meaning of Entropy IX
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• Direct calculation of the formula
fails already for n ~ 180.

• The problem is that numbers used in calculations 
are much large than the result. For large n it can be 
circumvented by using logarithm of the formula 
and then the Stirling equation : 

• So : 
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Statistical Meaning of Entropy X
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• For large number of particles the probable states 
are near to the equilibrium state called also the 
central configuration.

• The probabilities of these states are similar so the 
system fluctuates around the central state.

• If we separate the container by a diaphragm we 
can start from some improbable state e.g. that all 
particles are just in one half. After removing the 
diaphragm it is clear that the system moves
towards the most probable central state.

Statistical Meaning of Entropy XI
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• The entropy depends on the thermodynamic 
weight Ω but it must be an extensive 
quantity.

• If we join two subsystems this must hold : 
ΩAB =ΩA . ΩB a  SAB = SA + SB

• Ludwig Boltzman (1844-1906) had found : 

k = (1.3806503±0.0000024) 10-23 J K-1 is the 
Boltzman constant.

Ω= lnkS

Statistical Meaning of Entropy XII
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Macro-state and Measurable 
quantities I

• Let's assume the isolated system in 
equilibrium can be in macro-states i=1...n
• each macro-state is accomplished by Ωi micro-

states e.g. the probability Pi= Ωi/Ω, where Ω is 
the total number of micro-states and some value 
yi of measurable quantity corresponds to it

• The mean value of the measurable quantity y is:

∑ ∑Ω==>< Ω iiii yyPy 1



The number of micro-states
• n particles can be organized in a row by n! ways :

The first particle can be at any of the n positions. The 
second particle can then be in any of the rest n-1 positions. 
The third in n-2 positions and so on. 
The state when there is m particles in the left part and n-m
particles in the right one we have to divide n! by all the 
possibilities m particles and n-m particles can be organized 
since they don’t' change the macro-state. The this macro-
state is realized by: 

• micro-states.    
)!(!

!
mnm

n
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Near the Central Configuration I
• The central configuration is the most probable state that is 

also realized by the highest number of micro-states.
• In the case of a container divided in halves it is N/2:N/2. 

Similarly in the sub-volume v = V/10 the most probable 
number of particles is N/10 and 9N/10 particles in the rest.

• We study several particle distributions and see that with the 
growing number of particles the central peak relatively 
grows but the values near the maximum become similar.



• Let's have N particles in a container that is divided into two halves. We 
find the probability p(cc) of the central configuration. Let's assign a 
state near the central configuration by a asymmetry parameter s: In this 
state there is N/2-s in the left half and N/2+s in the right half. Let's find 
the probability p(10%) of the state where the asymmetry is 10%.
Finally we find I(98%) the number of states <n/2-s, n/2+s>, in which 
there is totally 98% micro-states :

• N p(ck) p(10%) I(98%)
• 10 0.246 0.2015 4

20 0.176 0.1201 6
50 0.112 0.0419 9

100 0.080 0.0108 13

Near the Central Configuration II



• Even from this short table the trends for growing N are 
clearly visible : 

• 1) The probability of the central configuration decreases
• 2) The probability of states with the same distance from 

the central configuration also decreases. 
• 3) The interval around the central configuration where the 

system stays with a certain probability absolutely grows.

Near the Central Configuration III



Near the Central Configuration IV
• For large number of particles ~NA this means the system 

passes all the time through great number of micro-states 
near to the central configuration but 'near' may mean that 
in the left half there can be several millions of particles less 
than in the right. Since several millions <<< NA this 
asymmetric state is not so asymmetric and its probability is 
close to the probability of the central configuration.

• Quantities that depend on the number of particles fluctuate 
accordingly.

• If the number of particles is very small this doesn't have to 
be the case.

^
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Main Topics
• Electric Charge and its Properties

• Coulomb’s Law
• Electric Field and Electric Intensity

• The Gauss’ Law
• The Electric Flux
• The Charge Density
• Using Gauss Law

• Conservative Fields
• The Existence of the Electric Potential
• Relations of the Potential and Intensity
• The Gradient
• Electric Field Lines and Equipotential Surfaces.
• Motion of Charged Particles in Electrostatic Fields
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I-1 Electric Charge
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Why Electrostatics?

• Many important properties of the Nature 
exist due to electric interactions of charged
particles. 

• We shall first deal with fields and charges 
which are static = do not move. 

• It is for simplicity but such fields really 
exist, if some equilibrium can be reached!
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Demonstration of Electrostatic 
Effects

• A comb after it has been run through hair attracts
little pieces of paper. The force is a long-distance
one. It can be attractive or repulsive.

• We attribute these forces to the existence of a 
property we call the electric charge.

• Bodies can be charged by conduction via contact 
with other bodies but even remotely by induction. 

• Using some materials we can easily discharge
charged bodies, these are conductors. By others it 
is slow or even impossible, they are insulators
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Main Properties of Charges
• Since both the attractive and the repulsive forces 

exist, charges must be of two kinds, positive and 
negative. Unlike charges attract and like charges 
repel themselves. 

• Charges are quantized. They can only be isolated 
in integer multiples of the elementary charge 

e = 1.602 10-19 C
• In all known processes charges appear or 

disappear only in pairs (+q and -q), so the total 
charge is conserved

• Charge is invariant to the Lorentz transformation
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Main Properties of Electrostatic 
Interactions

• Charged particles act by a force on each 
other. Forces :
• are Long-distance – mediated by electric field
• obey the principle of superposition

• Mutual interaction of two static point 
charges is described by Coulomb’s Law
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Coulomb’s Law I 

• Let us have two point charges Q1 and Q2 at the 
distance r apart. Then the magnitude of the 
interaction force is:

F = k Q1 Q2 / r2

• The SI unit of charge is 1 Coulomb [1 C]
• k = 9 109 Nm2/C2

• k = 1/4πε0

• ε0= 8.85 10-12 C2/ Nm2 is the permitivity of vacuum
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Coulom’s Law II 
• Since forces are involved the directional

information is as important as the magnitude. 
• To get the full information let’s place Q1 into the 

origin and let describe the position of Q2 by the 
radius vector     . Then the force acting on Q2 is : 

• Forces act in the straight line joining the charges .
• Positive force is repulsive .
• Forces acting on Q1 and Q2 are action and reaction of 

each other . 
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Coulomb’s Law III 

• The most general formula we get if we define the 
position of each charge Qi (i=1, 2) by its own 
radius vector    . Then the force acting on Q2 is :

• Since the force depends only on the difference
between the radius vectors, the position of the 
origin is arbitrary .
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Comparison with the Force of 
Gravity

• Formally, Coulomb’s Law is Analogous to 
Newton’s Gravitational Law
• But electrostatic force is ~ 1042 (!) times 

stronger
• Such a weak force still dominates the universe 

because matter is usually neutral
• Charging something means to break very 

slightly the great equilibrium 
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The Concept of the Field 

• If a charge is located at some point in the 
space it sends around an information about 
its position, polarity and magnitude. The 
information spreads with the speed of light. 
It can be “received” by another charge . The 
interaction of a charge with field produces a 
force. 
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Electric Intensity I

• Electrostatic field could be described by taking 
some test charge Q and recording the vector of the 
force acting on it in every point of interest. 

• This description would, however, depend on the 
magnitude and polarity of the test charge and these 
properties would have to be provided as the 
additional information to make the description 
unique.

)(rF 
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Electric Intensity II

• By dividing of the force by the magnitude of the 
'test' charge the field acts on  the electric intensity
of this field is defined :

• It is a unique property of the described field, now.
• Numerically it is equal to the force which would 

act in the particular point on a unit positive charge, 
but be careful with dimensions.  

Q
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Electric Intensity III

• It is important to realize that by dividing by the 
magnitude of the charge, the information, how the 
charge ‘feels’ the field, becomes an objective
property of the field.

• The same field acts on various charges by various 
forces which can be even opposite due to the 
existence of two polarities of charges. 
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Electric Field Lines I

• Electric field is a three dimensional vector 
field which is in general case difficult to 
visualize.

• In cases of simple symmetry, it is possible 
to use electric field lines which are lines 
tangent to vectors of the electric intensity in 
every point. The magnitude of the field can 
be illustrated by their length or density.
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Electric Field Lines II

• A positive charge of a very small mass 
would move along a certain field line in the 
direction of the electric field while negative
charge would move in the opposite
direction.

• Field lines can’t cross!



27. 05.  2020 19

I-2 Gauss’ Law
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The Electric Flux

• The electric flux is defined as

It represents amount of electric intensity 
which flows perpendicularly through a 
surface, characterized by its outer normal 
vector      . The surface must be so small 
that     can be considered constant there.

• Let’s revisit the scalar product.
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The Gauss’ Law I

• Total electric flux through a closed surface is 
equal to the net charge contained in the volume 
surrounded by the surface divided by the 
permitivity of vacuum .

• It is equivalent to the statement that field lines 
begin in positive charges and end in negative 
charges.

0ε
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The Gauss’ Law II
• Field lines can both begin or end in the 

infinity.
• G. L. is roughly valid because the decrease 

of intensity the with r2 in the flux is 
compensated by the increase with r2 of 
surface of the sphere.

• The scalar product takes care of the mutual
orientation of the surface and the intensity.
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The Gauss’ Law III

• If there is no charge in the volume each field line 
which enters it must also leave it. 

• If there is a positive charge in the volume then 
more lines leave it than enter it. 

• If there is a negative charge in the volume then 
more lines enter it than leave it.

• Positive charges are sources and negative are sinks
of the field.

• Infinity can be either source or sink of the field. 
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The Gauss’ Law IV

• Gauss’ law can be taken as the basis of 
electrostatics as well as Coulomb’s law. It is 
actually more general!

• Gauss’ law is useful: 
• for theoretical purposes
• in cases of a special symmetry
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The Charge Density

• In real situations we often do not deal with point 
charges but rather with charged bodies with 
macroscopic dimensions. 

• Then it is usually convenient to define the charge 
density i.e. charge per unit volume or surface or 
length, according to the symmetry of the problem.

• Since charge density may depend on the position, 
its use makes sense mainly if the bodies are 
uniformly charged e.g. conductors in equilibrium.
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A Point Charge I

• As a Gaussian surface we choose a spherical 
surface centered on the charge.

• Intensity     is perpendicular to the spherical 
surface in every point and so parallel (or 
antiparallel) to its normal. 

• At the same time E is constant on the surface, so :

E
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A Point Charge II

• So we get the same expression for the 
intensity as from the Coulomb’s Law :

• Here we also see where from the “strange 
term”             appears in the Coulomb’s 
Law!
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An Infinite Uniformly Charged 
Wire I

• Conductive wire (in equilibrium) must be charged 
uniformly so we can define the length charge
density as charge per unit length: 

• Both Q and L can be infinite, yet have a finite
ratio.

• The wire is axis of the symmetry of the problem.

][ 1−= Cm
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An Infinite Uniformly Charged 
Wire II

• Intensity lies in planes perpendicular to the wire 
and it is radial.

• As a Gaussian surface we choose a cylindrical
surface (of some length L) centered on the wire. 

• Intensity     is perpendicular to the surface in every
point and so parallel to its normal. 

• At the same time E is constant everywhere on this 
surface.

E
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Infinite Wire III

• Flux through the flat caps is zero since here 
the intensity is perpendicular to the normal.

• So :
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Infinite Wire IV

• By making one dimension infinite the 
intensity decreases ~ 1/r instead of 1/r2

which was the case of a point charge!
• Again, we can obtain the same result using 

the Coulomb’s law and the superposition 
principle but it is “a little” more difficult! 
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An Infinite Charged Conductive 
Plane I

• If the charging is uniform, we can define the 
surface charge density :

• Again both Q and A can be infinite yet reach a 
finite ratio, which is the charge per unit surface.

• From the symmetry the intensity must be 
everywhere perpendicular to the surface. 
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Infinite Plane II
• As a Gaussian surface we can take e.g. a cylinder 

whose axis is perpendicular to the plane. It should 
be cut in halves by the plane.

• Nonzero flux will flow only through both flat cups 
(with some magnitude A) since     is perpendicular 
to them.
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Infinite Plane III

• This time     doesn’t change with the 
distance from the plane. Such a field is 
called homogeneous or uniform!

• Note that both magnitude and direction of 
the vectors must be the same if the vector
field should be uniform. 

E
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Quiz: Two Parallel Planes 

• Two large parallel planes are d apart. One is 
charged with a charge density σ, the other 
with -σ. Let Eb be the intensity between and 
Eo outside of the planes. What is true?
• A) Eb= 0, Eo=σ/ε0

• B) Eb= σ/ε0, Eo=0
• C) Eb= σ/ε0, Eo=σ/2ε0
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I-3 Electric Potential
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Conservative Fields

• There are special fields in the Nature in 
which the total work done when moving a 
particle on along any closed path is zero. 
We call them conservative.

• Such fields are for instance:
• Gravitational - we move a massive particle
• Electrostatic - we move a charged particle
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The Existence of the Electric 
Potential

• From the definition of a conservative field it 
can be shown that work done by moving a 
charged particle from some point A to some 
other point B doesn’t depend on the path but 
only on the difference of some scalar
quality in both points. This quality is called 
the electric potential ϕ.
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Work Done on Charge in 
Electrostatic Field by an External 

Agent I
• If we (as an external agent) move a charge q

from some point A to some point B then we 
do by definition work :

W(A->B) ≡ q[ϕ(B)-ϕ(A)]
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Work Done on Charge in 
Electrostatic Field II

• Since doing positive work on some particle 
means increasing its energy, we can define a 
potential energy U

U=qϕ
• This definition clearly matches the above :

W(A->B)=q[ϕ(B)-ϕ(A)] =U(B)-U(A)
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Work Done on Charge in 
Electrostatic Field III

• In almost all situations we are interested in 
the difference of two potentials. We define 
this difference as the voltage V

VAB= ϕ(B)-ϕ(A)
• Then:

W(A->B)=q VAB
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Work Done on Charge in 
Electrostatic Field IV

• So we come to the general formula:
W=q[ϕ(B)-ϕ(A)]=U(B)-U(A)=qVAB

• Try to understand well the difference
• between the potential ϕ, the potential energy U

and the voltage V!
• between the work done by the field W’ and 

done by an external agent W = - W’ (skiing)!
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The Impact of the Potential 

• Since the potential exists, we can describe 
the electrostatic field fully using the scalar
potential field instead of the vector intensity
field :

• We need only one third of information
• Superposition means just adding numbers
• Some terms converge better

)()( rrE 
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Relations Between Potential and 
Intensity I

• It is convenient to study this relation first in terms 
of potential energy and force so we don’t have to 
care about the polarity of the charge and we can 
use examples from the gravitation field.

• Let’s have a charged particle in a field which acts 
by a force on it.

• If the particle moves by the field does work W’
on it :
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Relations of ϕ versus     II
• The sign of this work depends on the projection of 

the path vector       into the vector of force       .
• If it has the same direction as the force, the field 

does a positive work. Such a shift can take place 
without some external agent acting. But the it 
must be done at the cost of lowering the potential 
energy of the particle:

• Further we can talk only about shifts in the 
direction of the force or those opposite to it.
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Relations of ϕ versus     III

• When shifting the particle into the direction 
of the force the (positive) work is done by 
the field and when shifting it into the 
opposite direction the work is done by an 
external agent :
• in this case the potential energy of the particle 

increases
• the field can return this energy later
• that’s why we call it potential energy

E
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Relations of ϕ versus     IV
• The work done by the field for a certain 

path A->B we can get by integration : 

• Finally, after dividing by the charge we get 
the  relation between the intensity and the 
potential, we were looking for :
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Relations of ϕ versus     V
• Let’s have a particle with a unit positive charge. 

Force acting on it is numerically equal to the 
intensity and its potential energy is numerically
equal to the potential in the particular point.  

• But we have to understand that
• the intensity and the potential are properties of the field
• the force and the potential energy are the properties of 

the particular particle in the field and their dimensions
differ by the factor Q [C].

E
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Relations of ϕ versus     VI
• Let’s shift a unit charge (1C) in the direction 

of the intensity by    . Then we have:

• So : ϕ(B) = ϕ(A) - Edl and the potential 
decreases in the direction of the intensity
and also along the field lines.
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Relations of ϕ versus     VII

• So when moving along a field line, we can get the 
intensity as a change of the potential : 

• We see that the potential is connected to the 
integral properties of the intensity while the 
intensity on the other hand to the derivative
properties of the potential.
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Uniform ≡ Homogeneous Field I
• The simplest electrostatic field is the uniform or 

homogeneous field whose intensities are constant
vectors (they have the same magnitudes and 
directions) in every point. 

• In a uniform field we can illustrate the properties 
derived in the easiest way.

• The potential changes only in the direction of the 
intensities. And it is the only important direction.

• The field lines are all parallel lines. 
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Uniform ≡ Homogeneous Field II
• Everything derived above is valid now, even

for a shift of any distance d along a field 
line :

• The intensity can be understood as a slope
of the change of potential along a field line.

dd
ABE ϕϕϕ ∆−=−−= )]()([
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Homogeneous Field III
• If we want to find the work necessary to shift a 

charge from one point into another one, we have 
to find what is the projection into the direction of a 
field lines and we have to take into account what
charge we particularly shift.
• Large charge feels steeper slope of its potential energy 

than a small one.
• Negative charge feels the decrease of potential of the 

field as an increase of its potential energy.
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The Units

• The unit of ϕ or V is 1 Volt.
• [ϕ ] = [U/q]  => V = J/C
• [E] = [ϕ/d] = V/m
• [ϕ] = [kq/r] = V => [k] = Vm/C => 

[ε0]=CV-1m-1
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I-4 Simple Electrostatic Fields 
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A Spherically Symmetric Field I
• A spherically symmetric field e.g. a field of a 

point charge is another important field where the 
relation between ϕ and E can easily be calculated.

• Let’s have a single point charge Q in the origin. 
We already know that the field lines are radial and 
have a spherical symmetry:

0
2)( r

r
kQrE 
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A Spherically Symmetric Field II

• The magnitude of E depends only on r

• Let’s move a “test” charge q equal to unity from 
some point A to another point B. We study directly 
the potential! Its change actually depends only on 
changes of the radius. This is because during the 
shifts at a constant radius work is not done.

2)(
r
kQrE =
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A Spherically Symmetric Field 
III

• The conclusion: potential ϕ of a spherically 
symmetric field depends only on r and it 
decreases as 1/r

• If we move a non-unity charge q we have 
again to deal with its potential energy

r
kQr =)(ϕ

r
kqQrU =)(
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The General Formula of    
• The general formula is very simple 

• Gradient of a scalar function            in some 
point is a vector :
• It points to the direction of the fastest growth of 

the function f.
• Its magnitude is equal to the change of the 

function f, if we move a unit length into this 
particular direction.

)()( rgradrE 
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in Uniform Fields

• In a uniform field the potential can change 
only in the direction along the field lines. If 
we identify this direction with the x-axis of 
our coordinate system the general formula 
simplifies to:

dx
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in Centrosymmetric Fields

• When the field has a spherical symmetry the 
general formulas simplify to:

and

• This can for instance be used to illustrate 
the general shape of potential energy and its 
impact to forces between particles in matter.
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The Equipotential Surfaces

• Equipotential surfaces are surfaces on 
which the potential is constant.

• If a charged particle moves on a 
equipotential surface the work done by the 
field as well as by the external agent is zero. 
This is possible only in the direction 
perpendicular to the field lines. 
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Equipotentials and the Field 
Lines

• We can visualize every electric field by a set 
of equipotential surfaces and field lines.
• In uniform fields equipotentials are planes

perpendicular to the field lines.
• In spherically symmetric fields equipotentials 

are spherical surfaces centered on the center of 
symmetry.

• Real and imaginary parts of an ordinary 
complex function has the same relations.
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Motion of Charged Particles in 
Electrostatic Fields I

• Free charged particles tend to move along
the field lines in the direction in which their 
potential energy decreases. 

• From the second Newton’s law:

• In non-relativistic case:

Eq
dt
pd 

=

EaEqam m
q
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Motion of Charged Particles in 
Electrostatic Fields II

• The ratio q/m, called the specific charge is an 
important property of a particle.
1. electron, positron |q/m| = 1.76 1011 C/kg
2. proton, antiproton |q/m| = 9.58 107 C/kg (1836 x)
3. α-particle (He core) |q/m| = 4.79 107 C/kg (2 x)
4. other ions …

• Accelerations of elementary particles can be 
enormous!
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Motion of Charged Particles in 
Electrostatic Fields III

• Either the force or the energetic approach 
is employed.

• Usually, the energetic approach is more 
convenient. It uses the law of conservation
of energy and takes the advantage of the 
existence of the potential energy.
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Motion IV – Energetic Approach

• If in the electrostatic field a free charged 
particle is at a certain time in a point A and 
after some time we find it in a point B and 
work has not been done on it by an 
external agent, then the total energy in 
both points must be the same, regardless of 
the time, path and complexity of the field :

EKA + UA = EKB + UB



27. 05.  2020 68

Motion V – Energetic Approach
• We can also say that changes in potential 

energy must be compensated by changes in 
kinetic energy and vice versa :

•
•
•
• In high energy physics 1eV is used as a 

unit of energy 1eV = 1.6 10-19 J.

0)()( =∆+∆=−+− UEUUEE kABkAkB

0)( =∆+∆=−+∆ ϕϕϕ qEqE kABk

0)( =+∆=−+∆ ABkABk qVEqE ϕϕ
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Motion of Charged Particles in 
Electrostatic Fields II

• It is simple to calculate the gain in kinetic 
energy of accelerated particles from :

• When accelerating electrons by few tens of 
volts we can neglect the original speed.

• But relativistic speeds can be reached at 
easily reached voltages!

ABk qVE −=∆



One electron and one proton 0.53 10-10 m 
apart 

This corresponds to their distance in hydrogen 
atom.

N
Fe
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Force of this magnitude can be in principle 
measured macroscopically! This is the 
secret why matter holds together.
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Let us separate protons and electrons 
from one gram of H and put each group 

on each pole of the Earth
1 g is 1 gram-molecule of H, so we have 

NA=6.02 1023 of both types of particles.
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Two 1g iron spheres, 1 m apart are attracted 
by the force of 10 N. What is their excess 

charge compared to the total charge?
The excess charge:

eCq 1459 102103.3109/10 ⋅≅⋅=⋅= −

The total charge:
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Two electrons 1 m apart
They are repelled by electric force but 

attracted by the force of gravitation. Which 
force will prevail?
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The scalar ≡ dot product
Let 

Definition I. (components)

Definition II. (projection)

∑
=

=
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Can you proof their equivalence?

^

bac

⋅=



Gauss’ Law
• The exact definition:

∫ ∑∫ =⋅=Φ
0ε
q
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• In cases of a special symmetry we can find 
Gaussian surface on which the magnitude E
is constant and is everywhere parallel to 
the surface normal. Then simply:
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Infinite Wire by C.L.– die hard!
Only radial component Er of      is non-zero
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• We have to substitute all variables using ϕ
and integrate from 0 to π:
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• “Quiz”: What was easier?
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Potential of the Spherically Symmetric Field 
A->B

• We just substitute for E(r) and integrate:

• We see that ϕ decreases with 1/r !
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The Gradient I

It is a vector constructed from differentials of the 
function f into the directions of each coordinate 
axis. 

It is used to estimate change of the function f if we 
make an elementary shift     .
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The Gradient II

The change is the last term. It is a dot product. 
It is the biggest if the elementary shift      is 
parallel to the grad.

In other words the grad has the direction of 
the biggest change of the function f !
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The Acceleration of an e and p I

What is the acceleration of an electron and a proton 
in the electric field E = 2 104 V/m ?

ae = E q/m = 2 104 1.76 1011 = 3.5 1015 ms-2

ap = 2 104 9.58 107 = 1.92 1012 ms-2

[J/Cm C/kg = N/kg = m/s2]

^



The Acceleration of an Electron II

What would be the speed of an electron, if 
accelerated from zero speed by a voltage (potential 
difference) of 200 V?

Thermal motion speed ~ 103 m/s can be neglected 
even in the case of protons (vp = 1.97 105 m/s)! 
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Relativistic Effects When Accelerating 
an Electron

Relativistic effects start to be important when 
the speed reaches about 10% of the speed of 
light ~ c/10 = 3 107 ms-1.

What is the accelerating voltage to reach this 
speed?

Conservation of energy: mv2/2 = q V
V = mv2/2e = 9 1014/4 1011 = 2.5 kV !
A proton would need V = 4.7 MV!



Relativistic Approach I

If we know the speeds will be relativistic we 
have to use the famous Einstein’s formula:

qVcmEcmmcE K +=+== 2
0

2
0

2

E is the total and EK is the kinetic energy,
m is the relativistic and m0 is the rest mass
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Relativistic Approach II

The speed is usually expressed in multiples of the c
by means of  β = v/c. Since β is very close to 1 a 
trick has to be done not to overload the calculator.

So for β we have :
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Example of Relativistic Approach

Electrons in the X-ray ring of the NSLS have 
kinetic energy Ek = 2.8 GeV. What is their 
speed. What would be their delay in arriving 
to α-Centauri after light?

E0 = 0.51 MeV for electrons. So γ = 5491 and 
v = 0.999 999 983 c. The delay to make 4 ly
is dt = 2.1 s ! Not bad and the particle 
would find the time even shorter!!

^
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Main Topics
• Electric Charge and Field in Conductors
• The Field of the Electric Dipole
• Behavior of E. D. in External Electric Field
• Examples of Some Important Fields
• An Example of Storing a Charge
• C * U = Q   :   Capacity * Voltage = Charge
• Capacitors in Series and in Parallel.
• Electric Energy Storage.
• Inserting a Conductor into a Capacitor.
• Inserting a Dielectric into a Capacitor.
• Microscopic Description of Dielectrics
• Concluding Remarks to Electrostatics.
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I-5 Special Electrostatic Fields
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A Charged Solid Conductor I
• Conductors contain free charge carriers of one or 

both polarities. Charging them means to introduce 
in them some excess charges of one polarity.

• A special case are metals :
• every atom which joins metal structure, often crystallic, 

keeps some of its electrons in its vicinity but the 
valence electrons, which are bounded by the weakest 
forces, are shared by the whole structure and they are 
the free charge carriers. They can move within the 
crystal when electric (or other) force is acting on them.

• It is relatively easy to add some excess free electrons to 
metal and also to take some out of it.
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A Charged Solid Conductor II
• Adding electrons means charging the metal 

negatively.
• Taking some electrons out means charging it 

positively. 
• For our purposes we can consider the ‘holes’

left after missing electrons as positive free
charge carriers each with charge +1e.

• So effectively the charged metal contains 
excess charges either negative or positive, 
which are free to move.



01. 06.  2020 7

A Charged Solid Conductor III

• Excess charges repel themselves and since 
they are free to move as far as to the 
surface, in equilibrium, they must end on a 
surface.

• In equilibrium there must be no forces 
acting on the charges, so the electric field 
inside is zero and also the whole solid 
conductor must be an equipotential region.
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A Hollow Conductive Shell I
• In equilibrium again:

• the charges must remain on the outer surface.
• the field inside is zero and the whole body is an 

equipotential region.
• The above means the validity of the Gauss’ 

law.
• To proof that let’s return to the Gauss’ law.
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The Gauss’ Law Revisited I
• Let us  have a positive point charge Q and a 

spherical Gaussian surface of radius r
centered on it. Let us suppose radial field:

• The field lines are everywhere parallel to 
the outer normals, so the total flux is:

• But if p≠2 the flux would depend on r !

pr
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p
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The Gauss’ Law Revisited II
• The validity of the Gauss’ law ⇔ p = 2.
• By using a concept of the solid angle it can be 

shown that the same is valid if the charge Q is 
anywhere within the volume surrounded by the  
spherical surface.

• By using the same concept it can be shown that 
the same is actually valid for any closed surface.

• It is roughly because from any point within some 
volume we see any closed surface confining it 
under the solid angle of 4π.
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A Hollow Conductive Shell II
• Let first the shell be spherical. Then the charge 

density σ on its surface is constant.
• From symmetry, in the center the intensities from 

all the elementary surfaces that make the whole 
surface always compensate themselves and 

• For any other point within the sphere they 
compensate themselves and            only if  p = 2.

• Again, using the concept of solid angle, it can be 
shown, the same is valid for any closed surface.

0=E


0=E
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A Hollow Conductive Shell III

• Conclusion: The existence of a zero electric 
field within a charged conductive shell is 
equivalent to the validity of the Gauss’ law.

• This is the principle of:
• experimental proof of the Gauss’ law with a 

very high precision:  p – 2 = 2.7 ÷ 3.1 10-16.
• of shielding and grounding (Faraday’s cage).
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Electric Field Near Any 
Conducting Surface

• Let us take a small cylinder and submerge it into 
the conductor so its axis is perpendicular to the 
surface.

• The electric field
• within the conductor is zero
• outside is perpendicular to the surface

• A non-zero flux is only through the outer cup ⇒

• Beware the edges! σ is not generally constant!
0ε
σ

=E
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The Electric Dipole I
• Materials can produce non-zero electric fields in 

their vicinity even when the total charge in them is 
compensated. 

• But they must contain so called electric multipoles
in which the centers of gravity of positive and 
negative charges are not in the same point.

• The fields produced are not centrosymmetric and 
decrease generally faster than the field of the 
single point charge.
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The Electric Dipole II
• The simplest multipole is the electric dipole.

• It is the combination of two charges of the same 
absolute value but different sign +Q and –Q.

• They are separated by vector    , starting in –Q.
• We define the dipole moment as : 

l


lQp


=
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The Electric Dipole III
• Electric dipoles (multipoles) are important 

because they are responsible for all the 
electrical behavior of neutral matter.

• The components of material (molecules, 
domains) can be polar or their dipole 
moment can be induced.

• Interactions of dipoles are the basis of some 
types of (weaker) atomic bonds. 
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Behavior of the Electric Dipole in 
External Electric Fields 

• In uniform electric fields the dipoles are 
subjected to a torque which is trying to turn 
their dipole moments in the direction of the 
field lines

• In non-uniform electric fields the dipoles 
are also dragged.
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Some Examples 

• The field of homogeneously charged sphere
• Parallel uniformly charged planes
• Electrostatic xerox copier 
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I-6 Capacitance and Capacitors
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Storing Charge I

• In the end of 18th century people were 
amazed by electricity, mainly by big 
discharges - sparks. 
• The entertainers had noticed that different 

bodies charged to the same voltage contained 
different amounts of “electricity” (charge in our 
words) and produced sparks of different impact. 
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Storing Charge II

• So a problem had arisen to store as big charge
as possible for the maximum voltage available.

• First they needed larger and larger “containers” 
but after a better solution was found!

• Let’s have a conductive sphere ri = 1 m.
• A quiz: If we were not limited by voltage, 

can we put any charge on it?
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Storing Charge III
• The answer is NO!
• We are still limited by the breakdown intensity. In 

dry air Em≅ 3 106 V/m.
• The maximum intensity depends on the properties

of the surroundings of the conductor and the 
conductor itself (there would be some limit even 
in vacuum).

• If the maximum intensity is reached the conductor 
will self-discharge.

• Rough surfaces would make things even worse.
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Storing Charge IV
• Using the Gauss’ law: E = 0 within the 

sphere and E = kQ/ri
2 close to the surface.

• From relations of the potential and the 
intensity ϕ = kQ/ri within and on the sphere.

• Combining these we get: ϕ = riE for r>ri
• The maximum voltage and charge for our 

sphere are :
ϕ = 3 106 V ⇔ Qmax = 3.3 10-4 C.
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Storing Charge V
• This voltage anyway far exceeded the limits of 

power sources at the time, which were, say, 105 V.
• On our sphere, such voltage would correspond to 

small charge : Q = Vri/k = 105/9 109 = 1.11 10-5 C.
• This could originally be improved only by 

increasing of the sphere ri.
• Then someone (in Leyden, Germany) made a 

miracle! He inserted this sphere ri into a little 
bigger one ro, which he grounded.

• The sparks grew considerably!
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Storing Charge VI
• The smaller sphere, charged with +Q, 

produced charge –Q on the inner surface of 
the bigger sphere and charge +Q in its outer
surface. But when grounded the positive 
charge from the outer surface was repelled  
to the ground, so charge –Q remained on the 
outer sphere, particularly its inner surface.

• The result: potential of the charged sphere 
decreased, while the charge remained same!
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Storing a Charge VII

• The potential from the inner sphere:
ϕi = kQ/ri for r ≤ ri ; ϕi = kQ/r for r > ri

• The potential from the outer sphere:
ϕo = -kQ/ro for r ≤ ro ; ϕo = -kQ/r for r > ro

• From the superposition principle:
ϕ(r) = ϕi(r)+ ϕo(r)

• The potential is zero for r ≥ ro!
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Storing a Charge VI
• So the potential on the inner sphere is here 

also the voltage between the spheres:
Vi = kQ(1/ri – 1/ro) = kQ(ro – ri)/riro

• Let ro = 1.01 m and V = 104 V ⇒
Q = 1.12 10-3 C the charge increased 101 x!

• We have obtained a capacitor (condenser).
• (Qmax would still be 3 10-4 C, however !) 
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The Capacitance
• The voltage between any two charged 

conductors is generally proportional their 
charge

Q = C V
• The constant of proportionality C is called 

the capacitance. It is the ability to store the 
charge. 

• Its unit is called Farad. 1 F = 1 C/V



01. 06.  2020 29

Various Types of Capacitors
• It makes sense to produce a device meant to 

store charge – a capacitor.
• The capacitance of capacitors should not

depend on their surroundings.
• Capacitors are used to store a charge and at 

the same time a potential energy.
• Most widely used are parallel plate, 

cylindrical and spherical capacitors. 
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Quiz: Two Parallel Planes 

• Two large parallel planes are d apart. One is 
charged with a charge density σ, the other 
with -σ. Let Eb be the intensity between and 
Eo outside of the planes. What is true?
• A) Eb= 0, Eo=σ/ε0

• B) Eb= σ/ε0, Eo=0
• C) Eb= σ/ε0, Eo=σ/2ε0
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Determination of Capacitance I
• Generally, we find the dependence of Q on 

V and capacitance is the coefficient of the 
proportionality between them.

• In the case of parallel plates of area A, 
distance d apart, charged to +Q and -Q:

• Gauss’ law: E = σ/ε0 = Q/ε0A
• Also: E=V/d ⇒ Q = ε0AV/d ⇒ C = ε0A/d



01. 06.  2020 32

Determination of Capacitance II
• The potential on one sphere in the universe :

Vi = kQ/ri ⇒ C = ri/k
• The second “electrode” of this “capacitor” 

is the infinity or more probably ground, 
which is closer. The capacitance would be 
strongly influenced by presence of 
conductors in the near neighborhood.
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Determination of Capacitance III
• In the case of spherical capacitor we had :

Vi = kQ(1/ri – 1/ro) = kQ(ro – ri)/riro

which corresponds to the capacitance :

The capacitance doesn’t depend on near 
conductors, unless they are very close.
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Charging a Capacitor 
• To charge a capacitor we

• either connect the capacitor to a power source 
one plate to its plus the other plate to its minus
pole. The first will be charged with the positive
charge the other with the negative charge. The 
voltage of the power source will be across the 
capacitor, when equilibrium is reached.

• or we ground (temporarily) one plate and 
charge the other as in our example.
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Capacitors in Series I
• Let us have two capacitors C1 a C2 in series. 

We can replace them by a single capacitance 

• If we charge one end while the other is 
grounded, both (all) capacitors will be charged 
by induction having the same charge :

Q = Q1 = Q2 = …
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Capacitors in Series II
• Connected electrodes must be at the same 

potential so the total voltage is the sum of 
voltages on both (all) capacitors :

V = V1 + V2 ⇒

21
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Capacitors in Parallel
• Let us have two capacitors C1 a C2 in parallel. We 

can replace them by one capacitance Cp :
Cp = C1 + C2

• Total charge is distributed between both (all) capacitors. 
Q = Q1 + Q2

• Voltage on both (all) capacitors is the same 
V = V1 = V2 ⇒

Cp = Q/V = Q1/V+ Q2/V = C1 + C2
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Absolute limit of charge
• Capacitance of a parallel plate capacitor (in 

vacuum) can be increased both by increasing the 
area of the plates and decreasing of their distance. 
Only the first way, however, leads to decrease of 
the electric field and thereby to increase the 
absolute limit of the the charge which can be 
stored!

• It would be actually better to ground the inner and 
charge the outer sphere of our spherical capacitor.
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I-7 Electric Energy Storage. 
Dielectrics.
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Electric Energy Storage I

• We have to do work to charge a capacitor.
• This work is stored as a potential energy

and all (if neglecting the losses) can be used 
at later time (e.g. faster to gain power).

• If we do any changes to a charged capacitor 
we do or the field does work. It has to be 
distinguished whether the power source is 
connected or not during the change.
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Electric Energy Storage II
• Charging a capacitor means to take a positive 

charge from the negative electrode and move it to
the positive electrode or to take a negative charge 
from the positive electrode and move it to the 
negative electrode. 

• In both cases (we can take any path) we are doing 
work against the field and thereby increasing its
potential energy. Charge should not physically 
pass through the gap between the electrodes of the 
capacitor!
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Electric Energy Storage III
• A capacitor with the capacitance C charged 

by the charge Q or to the voltage V has the 
energy:

Up = Q2/2C = CV2/2 = QV/2
• The factor ½ in the formulas reveals higher 

complexity then one might expect. By 
moving a charge between the electrodes we 
also change Q, V so we must integrate.
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Electric Energy Storage IV
• The energy density

• Let us have a parallel plate capacitor A,d,C,
charged to some voltage V:

• Since Ad is volume of the capacitor we can 
treat ε0E2/2 as the density of (potential) energy

• In uniform field each volume contains the same
energy.
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Electric Energy Storage V
• In non-uniform fields energy has to be 

integrated over volume elements where E is 
(approximately) constant.

• In the case of charged sphere these volumes 
would be concentric spherical shells ( r > ri ) :
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Electric Energy Storage VI
• Integrating from some R ≥ ri to infinity we get :

• For R = ri we get the same energy as from a 
formula for spherical “capacitor”.

• We can also see, for instance,  that half of the 
total energy is in the interval ri < r < 2ri or 99% 
of the total energy would be in the interval ri < 
r < 99ri
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Inserting a Conductor Into a 
Capacitor I

• Let us insert a conductive slab of area A and 
thickness δ < d into the gap between the 
plates of a parallel plate capacitor A,d, ε0,σ.

• The conductive slab contains enough free
charge to form on its edges a charge density 
σp equal to the original σ. So the original 
field is exactly compensated in the slab.

• Effectively the gap changed to d - δ.
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A Guiz
• Inserting a conductive slab of area A and 

thickness δ < d into the gap between the 
plates of a parallel plate capacitor A,d, ε0,σ
will increase its capacitance.

• Where should we put the slab to maximize
the capacitance ?
• A) next to one of the plates.
• B) to the plane of symmetry.
• C) it doesn’t matter.
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C: It doesn’t matter !
• Let us insert the slab some distance x from 

the left plate. Then we effectively have a 
serial connection of two capacitors, both 
with the same A. One has the gap x and the 
other d-x-δ. So we have:
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Inserting a Conductor Into a 
Capacitor II

• The capacitance has increased.
• In the case of disconnected power source the 

charge is conserved and the energy decreases –
the slab would be pulled in.

• In the case of connected power source the 
voltage is conserved and the energy increases –
we do work to push the slab in and also the 
source does work to put some more charge in.
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Inserting a Dielectric Into a 
Capacitor I

• Let us charge a capacitor, disconnect it from 
the power source and measure the voltage
across it.  When we insert a dielectric slab 
we shall notice that
• The voltage has dropped by a ratio K = V0/V
• The slab was pulled in by the field

• We call K the dielectric constant or the 
relative permitivity (εr) of the dielectric.

• εr depends on various qualities T, f!
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Inserting a Dielectric Into a 
Capacitor II

• What has happened : Since the inserted 
plate is a dielectric it contains no free 
charges to form a charge density on its 
edges, which would be sufficient to 
compensate the original field. 

• But the field orientates electric dipoles. That 
effectively leads to induced surface charge 
densities which weaken the original field
and thereby increase the capacitance. 
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Inserting a Dielectric Into a 
Capacitor III

• The field orientates electric dipoles their charges 
compensate everywhere except on the edges next 
to the capacitor plates, where some charge density 
σp < σ remains.

• The field in the dielectric is then a superposition
of the field generated by the original σ and the 
induced σp charge densities.

• In the case of homogeneous polarization the 
induced charge density σp = P which is so called 
polarization or the density of dipole moments.
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Inserting a Dielectric Into a 
Capacitor IV

• Inserting dielectrics is actually the most
effective way to increase the capacitance. 
Since the electric field decreases, the 
absolute “breakdown” charge increases.

• Moreover for most dielectrics their 
breakdown intensity (or dielectric strength) 
is higher than that of air. They are better 
insulators!
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Energy Density in Dielectrics
• If we define the permitivity of a material as:

ε = Kε0 = εrε0
and use it in all formulas where ε0 appears .
For instance the energy density can be written 

as εE2/2.
If dielectrics are non-linear or/and non-

uniform their description is considerably 
more complicated! 
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Capacitor Partly Filled with a 
Dielectrics

• If we neglect the effects near the edges of 
the dielectrics, we can treat the system as a 
serial or/and parallel combination of 
capacitors, depending on the particular 
situation.
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Concluding Remarks To 
Electrostatics 

• We have illustrated most of things on very 
simplified examples. 

• Now we know relatively deeply all the 
important qualitative principles of the whole 
electrostatics.

• This should help us to understand easier the 
following parts ad well as functioning of 
any device based on electrostatics!



The Solid Angle I
• Let us have a spherical surface of radius r. 

From its center we see an element of the 
surface da under a solid angle dΩ :
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We see the whole spherical surface under :



The Solid Angle II
If there is a point charge Q in the center the 

elementary flux through da is:
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Since the last fraction is dΩ, the total flux is:
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Intensities near more curved 
surfaces are stronger!

• Let’s have a large and a small conductive spheres 
R, r connected by a long conductor and let’s 
charge them. Charge is distributed between them 
to Q, q so that the system is equipotential:
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Potential of Electric Dipole I

• Let us have a charge –Q at the origin and a 
+Q in   . What is the potential in    ? We use 
the superposition principle and the gradient:
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How to calculate grad(1/r)?
• r is the distance from the origin :
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• e.g. the first components of the gradient is :



Potential of Electric Dipole II
• The first two terms cancel:
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• The potential has axial symmetry with the 
dipole in the axis and axial anti-symmetry 
perpendicular to it. It decreases with 1/r2!
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Electric Dipole - The Torque
• Let us have a uniform field with intensity 

Forces on both charges contribute 
simultaneously to the torque:
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• The general relation is a cross product:
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Electric Dipole - The Drag
• Let us have a non-uniform field with 

intensity    and a dipole parallel to a field 
line (-Q in the origin).
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The vector ≡ cross product I
Let 

Definition (components)

The magnitude
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The vector ≡ cross product II
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The vector c  is perpendicular to the plane 
made by the vectors and and they have to 
form a right-turning system.

εijk = {1 (even permutation), -1 (odd), 0 (eq.)}
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Charging a Capacitor
• Let at some point of charging the capacitor 

C have some voltage V(q) which depends 
on the current charge q. To move a charge 
dq across V(q) we do work dEp = V(q)dq. 
So the total work to reach the charge Q is:
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Polarization ≡ Dipole Moment 
Density I

Let us take some volume V which is small in 
the macroscopic scale but large in the 
microscopic scale so it is representative of 
the whole sample:

V

p
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Polarization ≡ Induced Surface 
Charge Density II

Let a single dipole moment p = lq be confined 
in a prism of the volume v = al. A volume V
of the uniformly polarized dielectric is built 
of the same prisms, so the polarization must 
be the same as in any of them:
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Polarization III
The result field in the dielectric :

0
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We can express the original charge density:

PEE +== 000 εεσ
So the original field is distributed to the result 

field and the polarization according to the 
ability of the dielectric to be polarized.



Polarization IV
In linear dielectrics    is proportional to the 

result field     . They are related by the 
dielectric susceptibility χ:
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The result field E is K times weaker than the 
original field E0 and can also define the 
permitivity of a dielectric material as ε.

E
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Main Topics
• Electric Currents = Moving Charges or Changing Electric Field 
• Power Sources
• The Ohm’s Law
• Transfer of Charge, Energy and Power
• Resistance and Resistors, Resistors in Series and Parallel, Resistor Networks
• General Topology of Circuits
• Kirchhoff’s Laws – Physical Meaning and Use
• The superposition principle
• The Use of the Loop Currents Method
• Real Power Sources
• DC Voltmeters and Ammeters – Building and Use
• Wheatstone Bridge.
• Charging Accumulators.
• The Resistivity and Conductivity – Conductors, Semiconductors and Insulators.
• The Speed of Moving Charges.
• The Ohm’s Law in Differential Form.
• The Classical Theory of Conductivity.
• The Temperature Dependence of Resistivity
• The Thermocouple
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II–1 Ohm’s Law
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Electric Currents I
• So far we were interested in equilibrium

situations. 
• Before equilibrium is reached non-zero fields exist 

which force charges to move so currents exist. 
• On purpose we often maintain potential difference

on a conductor in order to keep the currents flow.   
• The current at some instant is defined as:

dt
tdqtI )()( =
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Electric Currents II
• From the physical point of view we 

distinguish three types of currents:
• conductive – e.g. movement of charged 

particles in solids or solutions
• convective – movement of charges in vacuum

e.g. in the CRT- tube
• shift – connected with changes in time of the 

electric field e.g. depolarization of dielectrics 
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Electric Currents III
• Electric currents can be realized by the movement 

of both types of charges. 
• The conventional direction of current is in the 

direction of the electric field so the same way as 
positive charge carriers would move.

• If in the particular material the charge carriers are 
negative as e.g. in metals they physically move in 
the direction opposite to the conventional current. 
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Electric Currents IV
• In the rest of this lecture block we shall deal with 

stationary currents. This is a special case of ‘semi 
equilibrium’ when all the voltages and currents in 
networks we shall study are stable and constant. 
Stationary currents can be only conductive or 
convective. 

• Later we shall also deal with time dependent
currents, which can also include shift currents. 
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Electric Currents V
• The unit for the current is 1 ampere

abbreviated A. 1 A = 1 C/s. 
• Since currents can be relatively easily 

measured, ampere is taken as one of the 7 
main units in the SI system.

• It is used as a basis to define other electrical 
units e.g. 1 coulomb as 1C = 1 As. 
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Power Sources I
• To maintain a constant current e.g. a 

constant charge flow through a conducting 
rod, we have to keep the restoring field
constant, which is equivalent to keep a 
constant potential difference between both 
ends of the rod or to keep a constant voltage
on the rod.

• To accomplish this we need a power source.
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A Quiz
• Can a charged capacitor be used as a power 

source to reach a stationary current?
• A) Yes
• B) No
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The Answer
• The answer is NO! Capacitors can be used 

as a power sources e.g. to cover temporary 
drop-outs but the currents they can produce 
are not stationary. The current, in fact, 
discharges the capacitor, so its voltage
decreases and so does the current.  
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Power Sources II
• A power source :

• is similar to a capacitor but it must contain a 
mechanism, which would compensate for the 
discharging so a constant voltage is maintained.

• must contain non electrical agent e.g. chemical 
which recharges it. It for instance moves 
positive charges from the negative electrode to 
the positive across the filed, so it does work !

• voltage is given by the equilibrium of electric
and non-electric forces.
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Power Sources III
• To maintain a constant current the work has 

to be done at a certain rate so the power 
source delivers power to the conducting 
system. 
• There the power can be changed into other 

forms like heat, light or mechanical work.
• Part of the power is unfortunately always lost

as unwanted heat.
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Power Sources IV
• Special rechargeable power sources exist –

accumulators. Their properties are very similar to 
those of capacitors except they are charged and 
discharged at (almost) constant voltage. 

• So the potential energy of an accumulator charged 
by some charge Q at the voltage V is U = QV and 
not QV/2 as would be the case of a charged 
capacitor. 
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Ohm’s Law 
• Every conducting body needs a certain

voltage between its ends to build sufficient 
electric field to reach certain current. The 
voltage and current are directly proportional
as is described by the Ohm’s law:

V = RI
• The proportionality parameter is called the 

resistance. Its unit is ohm: 1 Ω= 1 V/A
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Resistance and Resistors I
• To any situation when we have a certain voltage 

and current we can attribute some resistance. 
• In ideal resistor the resistance is constant

regardless the voltage or current.
• In electronics special elements – resistors are used 

which are designed to have properties close to the 
ideal resistors.

• The resistance of materials generally depends on 
current and voltage.
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Resistance and Resistors II
• An important information on any material is its 

volt-ampere characteristics. 
• It is measured and conveniently plotted (as current 

vs. voltage or voltage vs. current) dependence. It 
can reveal important properties of materials.

• In any point of such characteristic we can define a 
differential resistance as

dR = ∆V/∆I
• Differential resistance is constant for an ideal

resistor.
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Resistance and Resistors III
• In electronics also other special elements 

are used such as variators, Zener diods and 
varistors which are designed to have special 
V-A characteristics . They are used for 
special purposes, for instance to stabilize
voltage or current.
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Transfer of Charge, Energy and 
Power I

• Let us connect a resistor to terminals of a 
power source with some voltage V by
conductive wires the resistance of which 
can be neglected. This is a very simple 
electric circuit. 

• We see that the same voltage is both on the 
power source as well as on the resistor. But 
look at the directions of field!
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Transfer of Charge, Energy and 
Power II

• The field will try to discharge the power source 
through it and also around through the circuit 
because this means lowering the potential energy. 

• But in the power source there are non-electrical 
forces which actually push charges against the 
field so that the current flows in the same (e.g. 
clock wise) direction in the whole circuit.

• The external forces do work in the power source
and the field does work in the resistor(s). 
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Transfer of Charge, Energy and 
Power III

• Let us take some charge dq. When we move it 
against the field in the power source we do work 
Vdq which means that the field does work –Vdq.

• In the resistor the field does work Vdq. 
• The total work when moving the charge around 

the circuit is zero This, of course, corresponds to 
the conservativnes of the electric field. 

• If we derive work by time we get power: P = VI.
• Counting in the resistance: P = V2/R = RI2. 
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Transfer of Charge, Energy and 
Power IV

• So power P = VI is delivered by the non-
electric forces in the power source, it is 
transported to an electric appliance by 
electric field and there is is again changed
into non-electric power (heat, light…).

• The trick is that the power source and the 
appliances can be far away and it is easy to 
transport power using the electric field. 
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Transfer of Charge, Energy and 
Power V

• In reality the resistance of connecting wires
can’t be neglected, especially in the case of 
a long-distance power transport.

• Since the loses in the wires depend on I2 the 
power is transformed to very high voltages
to keep low currents and thereby to decrease
the loses.
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Resistors in Series
• When resistors are connected in series, they have 

the same current passing through them. 
• At the same time the total voltage on them must be 

a sum of individual voltages. 
• So such a connection can be replaced by a resistor 

whose resistance is the sum of individual 
resistances.

R = R1 + R2 + …
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Resistors in Parallel
• When resistors are connected in parallel, 

there is the same voltage on each of them.
• At the same time the total current must be a 

sum of individual currents. 
• So such a connection can be replaced by a 

resistor whose reciprocal resistance is the 
sum of individual reciprocal resistances.

1/R = 1/R1 + 1/R2 + …
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DC Circuits I
Theory & Examples
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General Resistor Networks
• First we substitute resistors in the serial 

branches and then in the parallel.
• A triangle circuit we replace by a star using 

cyclic permutations of: 
rα = rbrc/(ra + rb + rc)

• This follows from cyclic permutations of:
rα + rβ = rc(ra + rb)/(ra + rb + rc)



09. 07.  2018 29

Example I-1 (26-19)
• Connecting R2 means increasing current I1

as well as V1 and power delivered by the 
source. Voltages V3 = V4 must drop.

• Before connecting I1 = 45/150 = 0.3 A and 
I3 = I4 = I1/2 = 0.15 A; P = VI1= 13.5 W;
I2= 0; V2= 0.

• After connecting I1a = 45/133.3 = 0.3375 A; 
I2a= I3a= I4a= I1a/3; P = VI1a= 15.2 W etc.
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Example II-1 (26-29)
• The easiest is to substitute e.g. left triangle 

into a star with resistances 9.09, 3.6, 4.5 Ω.
• Then we add the resistors from the right 

triangle and find the total resistance of the 
system Rt = 12.12 Ω and the total current.

• Then we go backwards finding voltages in 
each point and calculating currents.
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General Topology of Circuits
• Circuits are constructed of

• Branches – wires with power sources and 
resistors. 

• Junctions– points in which at least three
branches are connected.

• Loops – all different possible closed trips 
through various branches and joints which 
don’t cross.
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Solving Circuits
• To solve a circuit completely means to find 

currents in all branches. Sometimes it is sufficient 
to deal only with some of them.

• When solving circuits it is important to find 
independent loops. There are geometrical methods 
for that and usually several possibilities. 

• In practice, we have to obtain enough linearly 
independent equations for currents.
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The Kirchhoff’s Laws I
• The physical background for solving 

circuits are the Kirchhoff’s laws. They 
express fundamental properties the 
conservation of charge and potential energy.

• In the simplest form they are valid in the 
approximation of stationary fields and 
currents but can be generalized to some 
time dependent fields and currents as well.
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The Kirchhoff’s Laws II
• The Kirchhoff’s first law or junction rule

states that at any junction point, the sum of
all currents entering the junction must be 
equal the sum of all currents leaving the 
junction.

• It is a special case of conservation of charge
which is more generally described by the 
equation of continuity of the charge.
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The Kirchhoff’s Laws III
• The Kirchhoff’s second law or loop rule

states that, the sum of all the changes in 
potential around any closed path (= loop) of 
a circuit must be zero. 

• It is based on the conservation of potential 
energy or more generally on the 
conservativity of the electric field.
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The Use of Kirchhoff’s Laws I
• We have to build as many independent 

equations as is the number of branches
• First we name all currents and choose their 

direction. If we make a mistake they will be 
negative in the end.

• We write equations for all but one junctions. 
The last equation would be lin. dependent.

• We write equation for every independent loop.
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Example III-1
• Our circuit has 3 branches, 2 junctions and 3 loops 

of which two are independent. 
• Since there are sources in two branches we can’t 

use simple rules for serial or parallel connections 
of resistors.
U1 = 10V R1 = 5Ω

R3 = 20Ω
a b

U2 = 6V R2 = 10Ω
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Example III-2
• We name the currents and choose their 

directions. Here, let all leave the junction a, 
so at least one must be negative in the end.

• It is convenient to mark polarities on 
resistors according to the supposed direction
of currents. 

• The equation for the junction a is :
I1 + I2 + I3 = 0.
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Example III-3
• Equation for the junction b would be the 

same so we must proceed to loops.
• We e.g. start in the point a go through the 

branch 1 and return through the branch 3:
-V1 + R1I1 – R3I3 = 0

• Similarly from a via 2 and back via 3:
V2 + R2I2 – R3I3 = 0
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Example III-4
• The “rule of the thumb” is to put all terms 

on one side of the equation and write the 
sign according to the polarity which we 
approach first during the path.

• Then we can get -I3 = I1 + I2 from the first 
equation and substitute it the the other two:

V1 = (R1 + R3)I1 + R3I2
-V2 = R3I1 + (R2 + R3)I2
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Example III-5
• Numerically we have:

25I1 + 20I2 = 10
20I1 + 30I2 = -6

• We can proceed several ways and finally 
get: I1 = 1.2 A, I2 = -1 A, I3 = -0.2 A

• We see that the current I2 and I3 run the 
opposite direction the we had estimated.  
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The Use of Kirchhoff’s Laws II
• The Kirchhoff’s laws are not really useful

for practical purposes because they require 
to build and solve as many independent 
equations as is the number of branches. But 
it can be shown the it is sufficient to build 
and solve just as many equations as is the 
number of independent loops, which is 
always less.
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Example IV-1
• Even in our simple example we had to solve 

a system of three equations which is the 
limit which can be relatively easily solved 
by hand.

• We can show that even for a little more 
complicated circuit the number of equations 
would be enormous and next to impossible 
to solve.
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Example IV-2
• Now we have 6 branches, 4 junctions and 7 

loops out of which 3 are independent.
• Kirhoff’s laws give us 3 independent 

equations for junctions and 3 for loops.
• We have a system of 6 equations for 6 

currents, which is in principle enough but it 
would be very difficult to solve it.
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The Principle of Superposition I
• The superposition principle can be applied 

in such a way that all sources act 
independently.

• We can shortcut all sources and leave only 
the j-th on and find currents Iij in every 
branch. 

• We repeat this for all sources. Then for 
current in i-th branch Ii = Ii1 + Ii2 + Ii3 + …
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The Principle of Superposition II
• A simple illustration: Let’s have a power source of 

12 V, its positive electrode is connected to the 
positive electrode of a second power source of 
6 V. Both negative electrodes are connected via a 
3 Ω resistor.

• The first p. source creates  a current I1 = +4 A
• The second p. source creates a current I2 = –2 A
• Since the sources act together the total current is  

I = I1 + I2 = +2 A
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Example III-6
• Let us return to our first example.
• Let’s leave the first source on and shorten 

the second one.
• We obtain a simple pattern of resistors 

which we easily solve:
• I11= 6/7 A; I21= -4/7 A; I31= -2/7 A  



09. 07.  2018 48

Example III-7
• We repeat this for the second source:
• I12= 12/35 A; I22= -3/7 A; I32= 3/35 A
• Totally we get:
• I1= 1.2 A; I2= -1 A; I32= -0.2 A
• Which is the same as the previous result.
• Using superposition is handy if we want to 

see what happens e.g. if we double the 
voltage of the first source.   
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The Loop Currents Method
• There are several more advanced methods 

which use only the minimum number of 
equations necessary to solve the circuits.

• Probably the most elegant and easiest to 
understand and use is the method of loop 
currents.

• It is based on the idea that only currents in 
the independent loops exist and the other 
currents are their superposition.
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Example III-8
• In our first example two independent loop 

currents exist e.g. Iα in the loop a(1)(3) and 
Iβ in the loop a(2)(3).

• All branch currents written as their 
superposition:

• I1= Iα
• I2= Iβ
• I3= -I α - Iβ



09. 07.  2018 51

Example III-9
• Now we write loop equations.
• (R1 + R3)Iα + R3Iβ = V1

• R3Iα + (R2 + R3) Iβ = -V2

• By inserting the numerical values and 
solving we get: Iα = 1.2 A and Iβ = -1A
which gives again the same branch currents: 
I1 = 1.2 A, I2 = -1 A, I3 = -0.2 A
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Example III-10
• They are, of course, the same as before but 

we solved only system of two equations for 
two currents. We skipped the step of 
substituting for the current I3.

• To see the advantage even better let’s revisit 
the fourth more complicated example.
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DC Circuits II
Applications
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Example IV-3
• Let Iα be the current in the DBAD, Iβ in the DCBC 

and Iγ in the CBAC loops. Then:
• I1 = Iβ - I α
• I2 = Iγ - Iβ
• I3 = Iα - Iγ
• I4 = -Iβ
• I5 = Iα
• I6 = Iγ
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Example IV-4
• The loop equation in DBAD would be:
• -V1 + R1(Iα - Iβ) – V3 + R3(Iα - Iγ) + R5Iα = 0
• (R1 + R3 + R5)Iα - R1Iβ - R3I γ = V1 + V3

• Similarly from the loops DCBD and CABC:
• -R1Iα + (R1 + R2 + R4)Iβ - R2I γ = V4 - V1 – V2

• -R3Iα - R2Iβ +(R2 + R3 + R6)I γ = V2 - V3

• It is some work but we have a system of only three
equations which we can solve by hand!
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Example IV-5
• Numerically we get:
• 12  –2   –5  Iα =  51
•  -2  14  –10  Iβ = -16
• -5  –10  25  Iγ =  25
• From here we get Iα, Iβ, Iγ and then using 

them finally the branch currents I1 … 
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Real Power Sources I
• Power sources have some forces of non-electric 

character which compensate for discharging when 
current is delivered.

• Real sources are not able to compensate totally. 
Their terminal voltage is a decreasing function of 
current.

• Most power source behave linearly. It means we 
can describe their properties by two parameters, 
according to a model which describes them.
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Real Power Sources II
• Most common model is to substitute a real source 

by serial combination of an ideal power source of 
some voltage ∈ or EMF (electro-motoric force) 
and an ideal, so called, internal resistor. Then the 
terminal voltage can be expressed:

V(I) = ∈ - RiI
• If we compare this formula with behavior of a real 

source, we see that ∈ is the terminal voltage for 
zero current and Ri is the slope of the function. 
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Real Power Sources III
• ∈ can be obtained only by extrapolation to zero 

current. 
• From the equation we see that the internal 

resistance Ri can be considered as a measure, how 
close is the particular power source to an ideal
one. The smaller value of Ri the closer is the plot 
of the function to a constant function, which 
would be the behavior of an ideal power source –
whose terminal voltage doesn’t depend on current.
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Real Power Sources IV
• The model using ∈ and Ri can be used both when 

charging or discharging the power source. The 
polarity of the potential drop on the internal 
resistor depends on the direction of current.

• Example: When charging a battery by a charger at 
Vc = 13.2 V the Ic = 10 A was reached. When 
discharging the same battery  the terminal voltage 
Vd = 9.6 V and current Id = 20 A. Find the ∈ and 
Ri.
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Real Power Sources V
• Charging:

∈ + Ic Ri = Vc
• Discharging:

∈ - Id Ri = Vd
• Here:
• ∈ + 10 Ri = 13.2 
• ∈ - 20 Ri = 9.6 
• ∈ = 12 V and Ri. = 0.12 Ω
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DC Voltmeters and Ammeters I
• Measurements of voltages and currents are very 

important not only in physics and electronics but 
in whole science and technology since most of 
scientific and technological quantities (such as 
temperature, pressure …) are usually converted to 
electrical values.

• Electric properties can be easily transported and 
measured.
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DC Voltmeters and Ammeters II
• In the following part we shall first deal with 

the principles of building simple measuring 
devices. 

• Then we shall illustrate some typical 
problems which stem from non-ideality of 
these instruments which influences the 
accuracy of the measured values.
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Building V-meters and A-meters I

• The heart of voltmeters or ammeters is so 
called galvanometer. It is a very sensitive 
voltmeter or ammeter. It is usually 
characterized by full-scale current or f-s
voltage and internal resistance.

• Let us have a galvanometer of the full-scale 
current of If = 50 µA and internal resistance 
Rg= 30 Ω. Ohms law ⇒ Vf = If Rg = 1.5 mV
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Building V-meters and A-meters 
II

• If we want to measure larger currents, we have to 
use a shunt resistor which would bypasses the 
galvanometer and takes around the superfluous
current.

• For instance let I0 = 10 mA. Since it is a parallel 
connection, at Vf = 1.5 mV, there must be I = 
9.950 mA passing through it, so R = 0.1508 Ω. 

• Shunt resistors have small resistance, they are 
precise and robust.
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Building V-meters and A-meters 
III

• If we what to measure larger voltages we have to 
use a resistor in series with the galvanometer. On 
which there would be the superfluous voltage. 

• Lets for instance measure V0 = 10 V. Then at If = 
50 µA there must be V = 9.9985 V on the resistor. 
So Rv= 199970 Ω. 

• These serial resistors must be large and precise.
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Using V-meters and A-meters I
• Due to their non-ideal internal resistance 

voltmeters and ammeters can influence their or 
other instruments reading by a systematic error!

• What is ideal?
• Voltmeters are connected in parallel. They should 

have infinite resistance not to bypass the circuit.
• Ammeter are connected in serial. They should 

have zero resistance so there is no voltage on 
them.
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Using V-meters and A-meters II
• Let us measure a resistance by a direct 

measurement. We can use two circuits.
• In the first one the voltage is measured 

accurately but the internal resistance of 
voltmeter (if infinity) makes the reading of 
current larger. The measured resistance is 
underestimated.

• Can be accepted for very small resistances.
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Using V-meters and A-meters III
• In the second scheme the current is 

measured accurately but the internal 
resistance of the ammeter (if not zero) 
makes the reading of voltage larger. The 
measured resistance is overestimated.

• Can be accepted for very large resistances.
• The internal resistances of the meters can be 

obtained by calibration.
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Using V-meters and A-meters IV
• Normal measurements use some physical 

methods to get information about unknown 
properties of samples.

• Calibration is a special measurement done 
on known (standard) sample to obtain 
information on the method used.
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Wheatstone Bridge I
• One of the most accurate methods to 

measure resistance is using the Wheatstone 
Bridge. 

• It is a square circuit of resistors. One of 
them is unknown. The three other must be 
known and one of the three must be 
variable. There is a galvanometer in one 
diagonal and a power source in the other.
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Wheatstone Bridge II
• During the measurement we change the 

value of the variable resistor till we balance 
the bridge, which means there is no current 
in the diagonal with the galvanometer. It is 
only possible if the potentials in the points a
and b are the same:

• I1R1 = I3R3 and I1R2 = I3R4 divide them ⇒
• R2/R1 = R4/R3 e.g. ⇒ R4 = R2R3/R1



09. 07.  2018 73

II–4 Microscopic View of 
Electric Currents
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The Resistivity and Conductivity 
I

• Let’s have an ohmic conductor i.e. the one which 
obeys the Ohm’s law:

V = RI
• The resistance R depends both on the geometry

and the physical properties of the conductors. If 
we have a homogeneous conductor of the length l
and the cross-section A we can define the 
resistivity ρ and its reciprocal the conductivity γ
by:

A
l

A
lR

γ
ρ 1

==



09. 07.  2018 75

The Resistivity and Conductivity 
II

• The resistivity is the ability of materials to defy
the electric current. With the same geometry a 
stronger field is necessary if the resitivity is high 
to reach a certain current. 

• The SI unit of resistivity is 1 Ωm.
• The conductivity is the ability to conduct the 

electric current.  
• The SI unit of conductivity is 1 Ω-1m-1. 
• A special unit siemens exists 1 Si = Ω--1.
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Mobile Charge Carriers I
• Generally, they are charged particles or 

pseudo-particles which can move freely in 
conductors. 

• They can be electrons, holes or various ions. 
• The conductive properties of materials 

depend on how freely their charge carriers 
can move and this depends on deep 
structure properties of the particular 
materials.
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Mobile Charge Carriers II
• E.g. in solid conductors each atom shares some of 

its electrons, those least strongly bounded, with
the other atoms. 

• In zero electric field these electrons normally 
move chaotically at very high speeds and undergo 
frequent collisions with the array of atoms of the 
solid. It resembles thermal movement of gas 
molecules ↔ electron gas.
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Mobile Charge Carriers III
• In non-zero field the electrons also have 

some relatively very low drift speed in the 
opposite direction then has the field. 

• The collisions are the predominant 
mechanism for the resistivity (of metals at 
normal temperatures) and they are also 
responsible for the power loses in 
conductors. 
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Differential Ohm’s Law I
• Let us again have a conductor of the length l

and the cross-section A and consider only 
one type of charged carriers and a uniform
current, which depends on their:
• density n i.e. number in unit volume
• charge q
• drift speed vd
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Differential Ohm’s Law II
• Within some length ∆x of the conductor there is a 

charge:
∆Q  =  n q∆x A

• The volume which passes some plane in 1 second 
is  A∆x/∆t =  vd A so the current is:

I  =  ∆Q/∆t  =  n q vd A  =  j A
• Where j is so called current density. Using Ohm’s 

law and the definition of the conductivity:
I  =  j A =  V/R  =  El γ A/l  ⇒ j = γE
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Differential Ohm’s Law III
j = γE

• This is Ohm’s law in differential form. 
• It has a similar form as the integral law but 

it contains only microscopic and non-
geometrical parameters. 

• So it is a the starting point of theories which 
try to explain conductivity.

• Generally, it is valid in vector form: Ej


γ=
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Differential Ohm’s Law IV
• Its meaning is that the magnitude of the 

current density is directly proportional to 
the field and that the charge carriers move
along the field lines.

• For deeper insight it is necessary to have at 
least rough ideas about the magnitudes of 
the parameters involved in the Ohm's law.
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An Example I
• Let us have a current of 10 A running 

through a copper conductor with the cross-
section of 3 10-6 m2. 
What is the charge density and drift velocity 
if every atom contributes by one free 
electron? 
• The atomic weight of Cu is 63.5 g/mol.
• The density ρ = 8.95 g/cm3.
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An Example II
• 1 m3 contains 8.95 106/63.5 = 1.4 105 mol.
• If each atom contributes by one free 

electron, this corresponds to n = 8.48 1028

electrons/m3.

10/(8.48 1028 1.6 10-19 3 10-6) = 2.46 10-4 m/s

==
Anq

Ivd
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The Internal Picture
• The drift speed is extremely low. It would take the 

electron 68 minutes to travel 1 meter! In 
comparison, the average speed of the chaotic 
movement is of the order of 106 m/s.

• So we have currents of the order of 1012 A running 
in random directions and so compensating
themselves and relatively a very little currents 
caused by the field. 

• It is similar as in the case of charging something a 
very little un-equilibrium.
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A Quiz 

• The drift speed of the charge carriers is of 
the order of 10-4 m/s. 
Why it doesn’t take hours before a bulb 
lights when we switch on the light?
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The Answer 
• By switching on the light we actually 

connect the voltage across the wires and the 
bulb and thereby create the electric field
which moves the charge carriers. But the 
electric field spreads with the speed of light 
c = 3 108 m/s,  so all the charges start to 
move (almost) simultaneously.
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The Classical Model I 
• Let’s try to explain the drift speed using 

more elementary parameters. We suppose 
that during some average time between the 
collision τ the charge carriers are 
accelerated by the field. And non-elastic
collision stops them.

• Using what we know from electrostatics:
vd = qEτ/m
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The Classical Model II 
• We substitute the magnitude of the drift 

velocity into the formula for the current 
density:

j =  n q vd = n q2 τ E/m
• So we obtain conductivity and resistivity:

γ =  n q2 τ /m
ρ =  1/γ = m/nq2τ
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The Classical Model III 
• It may seem that we have just replaced one set of 

parameters by another. 
• But here only the average time is unknown and it 

can be related to mean free path and the average 
thermal speed using well established theories 
similar to those studying ideal gas properties.

• This model predicts dependence of the resistivity
on the temperature but not on the electric field. 
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Temperature Dependence of 
Resistivity I

• In most cases the behavior is close to linear.
• We define a change in resistivity in relation to 

some reference temperature t0 (0 or 20° C):
∆ ρ = ρ(t) – ρ(t0)

• The relative change of resistivity is directly 
proportional to the change of the temperature:
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Temperature Dependence of 
Resistivity II

• α [K-1] is the linear temperature coefficient.
• It is given by the temperature dependence of n and vd. 
• It can be negative e.g. in the case of semiconductors 

(but exponential behavior). 
• In larger temperature span we have to add a 

quadratic term etc. 
∆ρ/ρ(t0) = α(t – t0) = α ∆t  + β (∆t)2 + … ⇒

ρ(t) = ρ(t0)(1 + α ∆t + β (∆t)2 + …)
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The Thermocouple I
• The thermocouple is an example of a 

transducer, a device which transfers some 
physical quality (here temperature) to an 
electrical one.

• Unlike other temperature sensors e.g. the 
platinum thermometer or thermistor which 
use the thermal conductivity change of 
metals or semiconductors, the thermocouple 
is a power-source.   
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The Thermocouple II
• It is based on thermoelectric or Seebeck

(Thomas 1821) effect : If we keep a 
difference of temperature on two ends of a 
conductive wire also potential difference
appears between these ends. 

• This voltage is proportional to the 
temperature difference and some a material
parameter Seebeck’s coefficient.
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The Thermocouple III
• Let’s connect two conductors A and B in one 

point, which we keep at temperature t1.
• The other ends, which are at room temperature t0

will have voltages with respect to their contact
point :

VA=kA(t1-t0) and VB=kB(t1-t0)
• A voltmeter connected between these ends shows :

VAB = VB - VA= (kB - kA)(t1 - t0)
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The Thermocouple IV
• As a thermocouple two wires with sufficiently 

different Seebeck’s coefficient can be used. 
• Usually around ten selected pairs of materials are 

frequently used. They are named J, K … and their 
calibration parameters are known. They differ e.g. 
in temperature span where they are used. 

• When using one thermocouple its voltage depends
on room temperature which is not a very 
convenient property.
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The Thermocouple V
• A simple possibility to get rid of this dependence 

is to use a pair of thermocouples.
• Let use make a second connection of conductors A and 

B and place it into known temperature t2.
• The we cut one of the conductors (e.g. B) in a place on 

room temperature t0. The voltages of the points of 
disconnection X and Y with respect to the first common 
point is : VX = kB(t1 - t0) 

VY = kA(t1 - t2) + kB(t2 - t0)
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The Thermocouple VI
• And the voltage between these points is :
VXY = VY - VX = kA(t1 - t2) + kB(t2 - t0) - kB(t1 - t0)

so finally : VXY = (kA- kB)(t1 - t2)
• The dependence on the room temperature has 

really vanished. The price is the necessity to use 
a bath with the reference temperature t2. 
Usually some well defined phase transitions
e.g. (melting of ice in water) are used. But care 
has to be taken e.g. for pressure dependence.
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The Thermocouple VII
• Modern instruments (equipped with 

microprocessors) usually measure the room 
temperature, so they can simulate the “cold 
junction” (reference junction) and using 
only one thermocouple is sufficient.

• They can be, however, only used with the 
types of thermocouples for which they are 
preprogrammed and instructions how to 
precisely connect the thermocouple have to 
be obeyed.
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Peltier’s Effect
• Thermoelectric effect works also the other way. If 

current flows through a junction of two different 
materials, heat can be transferred into or from this 
junction. 

• This is so called Peltier effect (Jean 1834).
• Peltier cells are commercially available. 

• They can be used to control conveniently temperature
of some volume of interest in a temperature span of 
circa   – 50 to 200 °C. They can both heat and  cool!

• In special cases e.g. in space ships they can even be 
used as power sources.



The vector or cross product I
Let c=a.b

Definition (components)

The magnitude |c|
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Is the surface of a parallelepiped made by a,b.
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The vector c  is perpendicular to the plane 
made by the vectors a and b and they have to 
form a right-turning system.

εijk = {1 (even permutation), -1 (odd), 0 (eq.)}
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Main Topics
• Introduction into Magnetism
• Permanent Magnets and Magnetic Fields
• Magnetic Induction
• Electric Currents Produce Magnetic Fields
• Forces on Electric Currents
• Forces on Moving Electric Charges
• Biot-Savart Law
• Ampere’s Law
• Calculation of Some Magnetic Fields
• Magnetic Dipoles

• The Fields they Produce
• Their Behavior in External Magnetic Fields

• Calculation of Some Magnetic Fields
• Solenoid
• Toroid
• Thick Wire with Current 
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Main Topics
• Applications of Lorentz Force

• Currents are Moving Charges
• Moving Charges in El. & Mag
• Specific charge Measurements
• The Story of the Electron
• The Mass Spectroscopy
• The Hall Effect
• Accelerators

• Introduction to Magnetic Properties
• Magnetism on the Microscopic Scale
• Diamagnetism
• Paramagnetism
• Ferromagnetism
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Introduction into Magnetism
• Magnetic and electric effects are known for 

many thousands years. But only in 19th

century a close relation between them was 
found. Deeper understanding was reached 
only after the development of the special 
theory of relativity in 20th century. 

• Studying of magnetic properties of 
materials has been up to now a field of 
active research.
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Permanent Magnets I
• The mathematical description of magnetic 

fields is considerably more complicated
then it is for the electric fields. 

• It is worth to begin with good qualitative
understanding of simple magnetic effects.

• It has been known for a long time that 
certain materials are capable of interacting 
by another long-distance force which is not 
electrostatic.
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Permanent Magnets II
• This force had been named magnetic.
• This force can be either attractive or 

repulsive.
• The magnitude of this force decreases with 

distance. 
• There had been a suspicion that electric and 

magnetic forces were the same thing. They 
are not! But they are related.
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Permanent Magnets III
• The reason: magnets don’t influence

charges at rest but they do influence moving 
charges.  

• At first, the magnetic properties were 
attributed to some “magnetic charges”.
• Since both attractive and repulsive forces exist 

there must be two kinds of these “charges”. 
• But it was found that these magnetic ”charges” 

can’t be separated!
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Permanent Magnets IV
• If you separate a piece of any size and shape

from a permanent magnet, it will always 
contain both “charges”. So they are called 
more appropriately – magnetic poles. 

• Unlike poles attract and like poles repel.
• We expect that poles don’t switch without 

external influence and the interactions are 
stable.
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A Simple Experiment
• The fact that unlike poles attract and like 

poles repel can be proved by a simple 
experiment using three magnets:
• Let’s mark one pole on each of the magnets.
• At least two of the magnets must have the mark 

on the same pole. We can find them using the 
interaction with the third magnet.

• We readily see e.g. that marked poles repel.
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Permanent Magnets V
• Around any magnet there is magnetic field

which can interact with other magnets. 
• In pre-physics ages it was found that the 

Earth is a source of a magnetic field. It is a 
large permanent magnet.

• A magnetic needle would always point in 
the North-South direction.
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Permanent Magnets VI
• This is a principle of compass, used by the 

Chinese thousands years ago for navigation.
• A convention has been accepted: 

• the pole of a magnet pointing to the North
geographic pole is called the north and the other 
one the south. 

• the magnetic field has the direction from the 
north to the south. i.e. in the direction a 
compass would point, which enables a simple 
calibration of magnets.
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Permanent Magnets VII
• From this it is clear that the south magnetic pole of 

the Earth is near to the North geographical pole. 
• A compass doesn’t point exactly to the north. It 

has a declination which depends on the particular 
location since magnetic and geographic poles dont 
coincide. The field is even not horizontal.

• Magnets can be imagined consisting of smaller 
magnets so the convention works even inside
them.
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Magnetic Fields I
• Similarly as in the case of electric fields, we  

accept an idea that magnetic interactions are 
mediated by magnetic fields.

• Every source of magnetic field e.g. magnet 
spreads (by the speed of light) around an 
information on its position, orientation and 
strength. This information can be received
by another source. The results is that a force
between those sources appears.
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Magnetic Fields II
• As can be easily proved by a magnetic 

needle, magnetic fields generally change 
directions and therefore must be described 
in every point by some vector quantity. 
Magnetic fields are vector fields.

• Magnetic fields are usually described by the 
vector of the magnetic induction .B
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Magnetic Fields III
• The magnetic field lines are:

• lines tangential to the magnetic induction 
in every point.

• closed lines which pass through the space 
as well as through the magnets in the 
same direction as a north pole of a 
magnetic needle would point – from 
north to south.
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Magnetic Fields IV
• Since magnetic monopoles don’t exist, the 

magnetic field lines are closed lines and outside 
the magnets they resemble the electric field lines 
of an electric dipole.

• Although it is in principle possible to study 
directly the forces between sources of magnetic 
fields, it is usual to separate problems to
• how fields are produced
• how they interact with other sources. 
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Electric Currents Produce 
Magnetic Fields I

• First important step to find relations 
between electric and magnetic fields was 
the discovery done by Hans Christian 
Oersted (1777-1851, Danish) in 1820. He 
found that electric currents are sources of 
magnetic fields.

• A long straight wire produces magnetic 
field whose field lines are circles centered 
on it.
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Electric Currents Produce 
Magnetic Fields II

• It is interesting that these closed field lines exist as 
if they were produced by some invisible magnets!

• Magnetic field due to a circular loop of wire is 
torroidal (doughnut).

• The direction of the field lines can be found using 
a right-hand rule.

• Later we shall see where this rule comes from and 
how these and other fields look in more detail and 
quantitatively.



09. 07.  2018 20

Forces on Electric Currents I

• When it was found that electric currents are 
sources of magnetic fields it could have 
been expected that magnetic fields also 
exert force on currents-carrying wires.

• The interaction was also proved by Oersted 
and a formula for a force on a wire of  
carrying the current I was found:

(cross product))( BldIFd


×=

ld
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Forces on Electric Currents II

• For a long straight wire which can be 
described by the vector     carrying the 
current I the integral formula is valid:

• If currents produce magnetic fields and they 
are also affected by them it logically means 
that currents act on currents by magnetic 
forces.

)( BlIF


×=
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Forces on Electric Currents III
• Now, we can qualitatively show that two 

parallel currents will attract them selves and 
the force will be in the straight line which 
connect these currents. 

• This seems to be similar to a force between 
two point charges but now the force is the 
result of a double vector product as we shall 
see soon.
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Forces on Electric Currents IV
• From the formula describing force on 

electric currents the units can be derived.
• The SI unit for the magnetic induction B is 

1 Tesla, abbreviated as T, 1T = 1 N/Am
• Some older are units still commonly used 

for instance 1 Gauss: 1G = 10-4 T
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Magnetic Fields Due to Currents
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Forces on Moving Electric 
Charges I

• Since currents are in reality moving charges
it can be expected that all what is valid for 
interaction of magnetic fields with currents 
will be valid also for moving charges. 

• The force      of a magnetic field     acting 
on a charge q moving by a velocity    is 
given by the Lorentz formula:
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Forces on Moving Electric 
Charges II

• Lorentz force is in fact part of a more 
general formula which includes both 
electric and magnetic forces:

• This relation can be taken as a definition of 
electric and magnetic forces and can serve 
as a starting point to study them.
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Forces on Moving Electric 
Charges III

• Lorentz force is a central issue in whole 
electromagnetism. We shall return to it by 
showing several examples. Moreover we 
shall find out that it can be used as a basis 
of explanation of almost all magnetic and 
electromagnetic effects.

• But at this point we need to know how are 
magnetic fields created quantitatively.
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Biot-Savart Law I
• There are many analogies between 

electrostatic and magnetic fields and of 
course a question arises whether some 
analog of the Coulomb’s law exists, which 
would describe how two short pieces of 
wires with current would affect themselves. 
It exists but it is too complicated to use. For 
this reason the generation and influence of 
magnetic fields are separated.
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Biot-Savart Law II
• All what is necessary to find the mutual 

forces of two macroscopic wires of various 
sizes and shapes with currents is to employ 
the principle of superposition, which is 
valid in magnetic fields as well and 
integrate. 

• It is a good exercise to try to make a few 
calculations then try do something better!
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Magnetic Field Due to a Straight 
Wire I

• Let’s have an infinite wire which we 
coincide with the x-axis. The current I flows 
in the +x direction.  We are interested in 
magnetic induction in the point P [0, a]. 

• The main idea is to use the principle of 
superposition. Cut the wire into pieces of 
the same length dx and add contribution of 
each of them.
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Magnetic Field Due to a Straight 
Wire II

• For a contribution from a single piece we use 
formula derived from the Biot-Savart law:

• Since both vectors which are multiplied lie in the 
x, y plane only the z component of        will be 
non-zero which leads to a great simplification. We 
see where the right hand rule comes from! 
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Magnetic Field Due to a Straight 
Wire III

• So a piece of the length dx with the coordinate x
contributes:

• Here r is the distance of dx and P and α is the 
angle between the line joining dx and P and the x-
axis. We have to express all these quantities as a 
function of one variable e.g. the α.
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Magnetic Field Due to a Straight 
Wire IV

• For r we get:

and for x and dx (- is important to get 
negative x at angles α < π /2 !):
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Magnetic Field Due to a Straight 
Wire V

• So finally we get:

The conclusions we can derive from the symmetry 
we postpone for later!
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Ampère’s Law
• As in electrostatics also in magnetism a law 

exists which can considerably simplify 
calculations in cases of a special symmetry
and can be used to clarify physical ideas in 
many important situations.

• It is the Ampères law which relates the line 
integral of     over a closed path with 
currents which are surrounded by the path.

B
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Magnetic Field Due to a Straight 
Wire VI

• As it is the case with using the Gauss’ law, 
we have to find a path which is tangential to                                                                            

everywhere and on which the magnitude 
of B is constant. So it must be a special field 
line. Then we can move B out of the 
integral, which then simply gives the length
of the particular integration path.

B




09. 07.  2018 37

Magnetic Field Due to a Straight 
Wire VII

• Let us have a long straight wire with current I.
• We expect B to depend on r and have axial

symmetry where the wire is naturally the axis.
• The field lines, as we already know are circles and 

therefore our integration path will be a circle with 
a radius r equal to the distance where we want to 
find the field. Then:
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Magnetic Field Due to a Straight 
Wire VIII

• The vectors of the magnetic induction     are 
tangents to circles centered on the wire, 
which thereby are the field lines, and the 
magnitude of B decreases with the first
power of the distance. 
• It is similar as in the case of the electrostatic 

field of an straight, infinite and uniformly 
charged wire but there electric field lines were 
radial while here magnetic are circular, thereby 
perpendicular in every point.

B
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Magnetic Field in a Center of a 
Square Loop of Current I

• Apparently by employing the Amperes law we 
have obtained the same information in a 
considerable easier way. But, unfortunately, this 
works only in special cases.

• Let’s calculate magnetic induction in the center of 
a square loop a x a of current I. We see that it is a 
superposition of contributions of all 4 sides of the 
square but to get these we have to use the formula 
for infinite wire with appropriate limits. 
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Magnetic Field in a Center of a 
Square Loop of Current II

• The contribution of one side is:

etc.
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Force Between Two Straight 
Wires I

• Let us have two straight parallel wires in 
which currents I1 and I2 flow in the same 
direction separated by a distance d.

• First, we can find the directions and then 
simply deal only with the magnitudes. It is 
convenient to calculate a force per unit 
length.
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Force Between Two Straight 
Wires II

• This is used for the definition of 1 ampere:
1 ampere is a constant current which, if 
maintained in two straight parallel
conductors of infinite length, of negligible
cross section, and placed 1 meter apart in 
vacuum, would produce between these 
conductors a force equal to 2 10-7 N per 
meter of length. 
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Magnetic Dipoles
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Magnetic Dipoles I
• In electrostatics we defined electric dipoles. We 

can imagine them as solid rods which hold one 
positive and one negative charge of the same
absolute values some distance apart. 
• Although their total charge is zero they are sources of 

fields with special symmetry which decrease faster than 
fields of point sources. 

• External electric field is generally trying to orient and 
shift them.
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Magnetic Dipoles II
• Their analogues in magnetism are either thin flat 

permanent magnets or loops of current. 
• These also are sources of fields with a special

symmetry which decrease faster than fields from 
straight currents 

• In external magnetic fields they are affected similarly as 
electric dipoles. 

• Later we shall describe magnetic behavior of 
matter using the properties of magnetic dipoles.
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Magnetic Dipoles III
• Let us have a circular conductive loop of 

the radius a and a current I flowing in it. Let 
us describe the magnetic field at some 
distance b on the axis of the loop.

• We can “cut” the loop into little pieces
dl = adχ and vector add their contribution 
to the magnetic induction using the Biot-
Savart law.
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Magnetic Dipoles IV
• For symmetry reasons the direction of     is 

the same as the direction of the z-axis 
perpendicular to the loop and integration in 
this case means only to add the projections
dBz = dB sinβ . And from the geometry:

sinβ = a/r  ⇒ 1/r2 = sin2β /a2

r2 = a2 + b2

• Let us perform the integration.

B
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Magnetic Dipoles V
• Since magnetic dipoles are sources of 

magnetic fields they must also be affected
by them. 

• In uniform magnetic field they will 
experience a torque directing them in the 
direction of the field. 

• We shall illustrate it using a special case of 
rectangular loop a x b carrying current I.
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A Quiz:

• What is the total force and torque on this 
rectangular loop if it lies perpendicularly to 
the field lines of  the uniform magnetic 
field?

• What would be the difference, if the loop 
was circular?
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The Answer
• Force on each side is perpendicular to it and lies in 

the plane of the rectangle. Its particular direction 
depends on the directions of the magnetic field 
and the current. The forces acting on opposite
sides will cancel, however, since the current
direction in them is the opposite.

• In a circular loop a force acting on its piece dl will 
cancel with the force acting on the piece dl’ across
the diameter.
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Magnetic Dipoles VI
• Form the drawing we see that forces on the 

sides a are trying to stretch the loop but if it 
is stiff enough they cancel.

• Forces on the sides b are horizontal and the 
upper acts into the blackboard and the lower 
from the blackboard. Clearly they are trying 
to stretch but also rotate the loop.
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Magnetic Dipoles VII
• To find the contribution of each of the b

sides to the torque we have to find the 
projection of the force      perpendicularly to 
the loop: T/2 = Fbsinϕ a/2

• Since both forces act in the same sense:
T = BIabsinϕ

• We can generalize this using the magnetic
dipole moment :0mIabm 

=

BmT
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A Galvanometer
• A loop with current in a uniform magnetic 

field whose torque would be compensated 
by a spring is a possible principle of 
measuring the current. The scale of such 
device would not be linear!

• So special radial but constant (radial 
uniform) field is used to keep the two 
torque forces always perpendicular to the 
loop. 

2sin πϕ NIabkT ==
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Magnetic Field of a Solenoid I
• Solenoid is a long coil of wire consisting of many 

loops.
• In the case of finite solenoid the magnetic field 

must be calculated as a superposition of magnetic 
inductions generated by all loops.

• In the case of almost infinite we can neglect 
effects close to the ends and use the Ampere’s law 
in a very elegant way.
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Magnetic Field of a Solenoid II
• As a closed path we choose a rectangle

whose two sides are parallel to the axis of 
the solenoid.

• From symmetry we can expect that the field 
lines will be also parallel to the axis 
direction.

• Since the closed field lines return through 
the whole Universe outside the solenoid we 
can expect they are infinitely “diluted”.
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Magnetic Field of a Solenoid III
• Only the part of the path along the side 

inside the solenoid will make non-zero
contribution to the loop integral.

• If the rectangle encircles N loops with 
current I and its length is l then:

Bl = µ0NI
• And if we introduce the density of loops

n = N/l ⇒ B = µ0nI
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Magnetic Field of a Solenoid IV
• For symmetry reason we didn’t make any 

assumptions about how deep is our rectangle 
immersed in the solenoid. So the magnetic field in 
the long solenoid can be expected to be uniform or 
homogeneous.

• Many physical methods rely on uniform magnetic 
field, e.g. NMR and mass spectrography.

• A reasonably uniform magnetic field can be 
obtained if we shorten thick solenoid and cut it 
into halves - Helmholtz coils.  
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Magnetic Field of a Toroid I
• We can think of the toroid as of a solenoid bent 

into a circle. Since the field lines cant escape we 
do not have to make any assumptions about the 
size.

• If the toroid has a radius R to its central field line 
and N loops of current I, we can simply show that 
all the field is inside and what is the magnitude on 
a particular field line.     
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Magnetic Field of a Toroid II
• Let’s us choose the central filed line as our 

path then the integration simplifies and:
B(r) 2πr = µ0NI ⇒ B(r) = µ0NI/2πr

• His is also valid for any r within the toroid.
• The field:

• is non uniform since it depends on r.
• is zero outside the loops of the toroid      
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Magnetic Field of a Thick Wire I
• Let’s have a straight wire of a diameter R in 

which current I flows and let us suppose 
that the current density j is constant.

• We use Ampere’s law. We use circular paths 
one outside and one inside the wire.

• Outside the field is the same as if the wire 
was infinitely thin.

• Inside we get linear dependence on r.
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Magnetic Field of a Thick Wire II

• If we take a circular path of the radius r 
inside the wire we get:

B 2πr = µ0Ienc

• The encircled current Ienc depends on the 
area surrounded by the path

Ienc = jπr2 = Iπr2/πR2 ⇒
B = µ0Ir/2πR2
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Application of Magnetic Fields
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Lorenz Force Revisited
• Let us return to the Lorentz force:

and deal with its applications.
• Let’s start with the magnetic field only. 

First, we show that 
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Currents are Moving Charges I
• Let’s have a straight wire with the length L

perpendicular to magnetic field and charge 
q, moving with speed v in it.

• Time it takes charge to pass L is: t = L/v
• The current is: I = q/t = qv/L ⇒ q = IL/v
• Let’s substitute for q into Lorentz equation:

F = qvB = ILvB/v = ILB
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Currents are Moving Charges II
• If we want to know how a certain conductor 

in which current flows behaves in magnetic 
field, we can imagine that positive charges 
are moving in it in the direction of the 
current. Usually, we don’t have to care what 
polarity the free charge carriers really are.

• We can illustrate it on a conductive rod on 
rails.
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Currents are Moving Charges III
• Let’s connect a power source to two rails which 

are in a plane perpendicular to the magnetic field. 
And let’s lay two rods, one with positive free 
charge carriers and the other with negative ones.

• We see that since the charges move in the opposite 
directions and the force on the negative one must 
be multiplied by –1, both forces have the same 
direction and both rods would move in the same 
direction . This is a principle of electro motors.  
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Moving Charge in Magnetic 
Field I

• Let’s shoot a charged particle q, m by speed v
perpendicularly to the field lines of homogeneous
magnetic field of the induction B.

• The magnitude of the force is F = qvB and we can 
find its direction since FvB must be a right-turning
system. Caution negative q changes the orientation 
of the force!

• Since F is perpendicular to v it will change 
permanently only the direction of the movement 
and the result is circular motion of the particle.
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Moving Charge in Magnetic 
Field II

• The result is similar to planetary motion. The 
Lorentz force must act as the central or centripetal 
force of the circular movement:

mv2/r = qvB
• Usually r is measured to identify particles:

• r is proportional to the speed and indirectly
proportional to the specific charge and magnetic 
induction.  

B
vr
m
q

1
=



09. 07.  2018 69

Moving Charge in Magnetic 
Field III

• This is basis for identification of particles 
for instance in bubble chamber in particle 
physics.
• We can immediately distinguish polarity.
• If two particles are identical than the one with 

larger r has larger speed and energy.
• If speed is the same, the particle with larger 

specific charge has smaller r. 
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Specific Charge Measurement I
• This principle can be used to measure 

specific charge of the electron.
• We get free electrons from hot electrode 

(cathode), then we accelerate them forcing 
them to path across voltage V, then let them 
fly perpendicularly into the magnetic field B
and measure the radius of their path r.  
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Specific Charge Measurement II
• From: mv2/r = qvB ⇒ v = rqB/m
• This we substitute into equation describing 

conservation of energy during the 
acceleration:

• mv2/2 = qV ⇒ q/m = 2V/(rB)2

• Quantities on the right can be measured. B
is calculated from the current and geometry 
of the magnets, usually Helmholtz coils.
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Specific Charge of Electron I
• Originally J. J. Thompson used 

different approach in 1897.
• He used a device now known as a 

velocity filter.
• If magnetic field B and electric field E are 

applied perpendicularly and in a right
direction, only particles with a particular 
velocity v pass the filter.
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Specific Charge of Electron II

• If a particle is to pass the filter the 
magnetic and electric forces must 
compensate:

qE = qvB ⇒ v = E/B
• This doesn’t depend neither on the 

mass nor on the charge of the particle.
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Specific Charge of Electron III
• So what exactly did Thompson do? He:

• used an electron gun, now known as CRT.
• applied zero fields and marked the undeflected

beam spot.
• applied electric field E and marked the 

deflection y.
• applied also magnetic field B and adjusted its 

magnitude so the beam was again undeflected.
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Specific Charge of Electron IV
• If a particle with speed v and mass m flies 

perpendicularly into electric field of 
intensity E, it does parabolic movement and 
its deflection after a length L:

y = EqL2/2mv2

• We can substitute for v = E/B and get:
m/q = L2B2/2yE
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Mass Spectroscopy I
• The above principles are also the basis of an 

important analytical method mass spectroscopy. 
Which works as follows:
• The analyzed sample is ionized or separated e.g. by GC 

and ionized.
• Then ions are accelerated and run through a velocity

filter.
• Finally the ion beam goes perpendicularly into 

magnetic field and number of ions v.s. radius r is 
measured.
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Mass Spectroscopy II
• The number of ions as a function of specific 

charge is measured and on its basis the 
chemical composition can be, at least in 
principle, reconstructed.

• Modern mass spectroscopes usually modify 
fields so the r is constant and ions fall into 
one aperture of a very sensitive detector.

• But the basic principle is anyway the same.  
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The Hall Effect I
• Let’s insert a thin, long and flat plate of material 

into uniform magnetic field. The field lines should 
be perpendicular to the plane. 

• When current flows along the long direction a 
voltage across appears. 

• Its polarity depends on the polarity of free charge 
carriers and its magnitude caries information on 
their mobility.
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The Hall Effect II
• The sides of the sample start to charge until 

a field is reached which balances the 
electric and magnetic forces:

qE = qvdB
• If the short dimension is L the voltage is:

Vh = EL = vdBL
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Accelerators
• Accelerators are built to provide charged 

particles of high energy. Combination of 
electric field to accelerate and magnetic
field to focus (spiral movement) or confine
the particle beam in particular geometry.
• Cyclotrons
• Synchrotrons
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Cyclotrons I
• Cyclotron is a flat evacuated container which 

consists of two semi cylindrical parts (Dees) with 
a gap between them. Both parts are connected to 
an oscillator which switches polarity at a certain 
frequency. 

• Particles are accelerated when they pass through 
the gap in right time. The mechanism serves as an 
frequency selector. Only those of them with 
frequency of their circular motion equal to that of 
the oscillator will survive.
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Cyclotrons II
• The radius is given by:
• r = mv/qB ⇒
• ω = v/r = qB/m ⇒
• f = ω/2π = qB/2πm
• f is tuned to particular particles. Their final

energy depends on how many times they 
cross the gap. Limits: size Ek ~ r2, relativity 
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Magnetic Properties of Materials
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Introduction Into Magnetic 
Properties I

• Magnetic properties of materials are 
generally more complicated than the electric 
ones even on the macroscopic scale. We had 
conductors in which the electric field was 
zero and dielectrics (either polar or non-
polar), in which the field was always 
weakened. Other behaviour is rare. More 
subtle differences can be revealed only by 
studying thermal or frequency properties.
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Introduction Into Magnetic 
Properties II

• If a material is exposed to an external 
magnetic field is gets magnetized and an 
internal magnetic field appears in. It can 
be described as the density of magnetic 
dipole moments:

• The volume V is small on macroscopic but 
large on the atomic scale.
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Introduction Into Magnetic 
Properties III

• The total field in the magnetized material can be 
then written as a superposition of the original field
and internal field :

• Here, we can shall deal only with linear behavior:

• The parameter χm is the magnetic susceptibility
which can now be greater or less than zero. 
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Introduction Into Magnetic 
Properties IV

• We can combine these equations: 

and define the relative permeability Km ,
usually also written as µr.

• The absolute permeability is defined as:
µ = µ0 µr = µ0 Km

• The internal field of a long solenoid with a 
core can then be written as: B = µnI.
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Introduction Into Magnetic 
Properties V

• Three common types of magnetic behavior 
exist. The external field in materials can be
• weakened (χm< 0 or Km < 1) this is called 

diamagnetism
• slightly intensified, (χm> 0 or Km >1) this is 

called paramagnetism
• considerably intensified, (χm>> 0 or Km >> 1)

this is called ferromagnetism. 
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Introduction Into Magnetic 
Properties VI

• If a material can be ferromagnetic is is a 
dominant behavior which masks other 
behavior (diamagnetism) that is also always 
present but is much weaker.

• But the dominant behavior may disappear
with high temperature. Ferromagnetism 
changes to paramagnetisms above Courie’s
temperature.
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Magnetism on Microscopic Scale 
I 

• Magnetic behavior of materials is an open 
field of research. But the main types of 
behavior can be illustrated by means of 
relatively simple models. All must start 
from the microscopic picture.

• We know that if we cut a piece of any size
and shape from a permanent magnet, we get 
again a permanent magnet with both poles.  
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Magnetism on Microscopic Scale 
II

• If we continue to cut a permanent magnet we 
would once get to the atomic scale. The question 
is: which elementary particles are responsible for 
magnetic behavior?

• We shall show that elementary magnetic dipole 
moment is proportional to the specific charge so 
electrons are responsible for the dominant
magnetic properties. 

• Experiments exist, however, which are sensitive to 
nucleus magnetic moment (NMR, Neutron Diff.).
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Magnetism on Microscopic Scale 
III

• Electrons can generate magnetism in three 
ways:
• As moving charges as current.
• Due to their spin.
• Due to their orbital rotation around a core.

• The later two mechanisms add together and 
the way it is done is responsible for 
magnetic behavior in particular material. 
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Magnetism on Microscopic Scale 
IV

• Electrons can be viewed as a tiny spinning
negative charged particles. The quantum 
theory predicts spin angular momentum s:

s = h/4π = 5.27 10-35 Js
• Here h = 6.63 10-34 Js is the Planck constant
• Since electron is charged it also has a 

magnetic dipole moment due to the spin:
1 ms = eh/4πme = 9.27 10-24 J/T
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Magnetism on Microscopic Scale 
V

• ms = mb is called Bohr magneton and it is 
the smallest magnetic dipole moment which 
can exist in Nature. So it serves as a 
microscopic unit for dipole moments.

• We see that magnetic dipole is quantised.
• Spin is a quantum effect not a simple 

classical rotation. Electron would irradiate
energy and slow down and fall on the core.
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Magnetism on Microscopic Scale 
VI

• When electrons are bound in atoms they 
also have orbital angular momentum. It also 
is a quantum effect.

• It is illustrative to look at a classical 
planetary model of electron, even if it is not 
realistic, to see where the dependence on 
the specific charge comes from. 
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Magnetism on Microscopic Scale 
VII

• Even in a very small but macroscopic piece of 
material there is enormous number of electrons, 
each having some spin and some angular 
momentum. The total internal magnetic field is a 
superposition of all electron dipole moments. 

• The magnetic behavior generally depends on 
whether all the magnetic moments are 
compensated or if some residual magnetic moment
remains.



09. 07.  2018 97

Diamagnetism I
• Materials, in which all magnetic moments 

are exactly compensated are diamagnetic. 
Their internal induced magnetic field 
weakens the external magnetic field.

• We can explain this behavior on (non-
realistic but sometimes useful) planetary 
model of one electron orbiting around an 
atom.
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Diamagnetism II
• Due to an external magnetic field a radial

force acts on the electron. It points toward 
or out of the center depending on the 
direction of the field. The force can’t
change the radius but if it points toward the 
center it speeds the electron and if out it 
slows it. This leads to a change in the 
magnetic moment which is always opposite
to the field. So the field is weakened.
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Paramagnetism I
• Every electron is primarily diamagnetic but 

if atoms have internal rest magnetic dipole 
moment diamagnetism is masked by much 
stronger effects. If the spin and orbital 
moments in matter are not fully 
compensated, the atoms as a whole have
magnetic moments and  they behave like 
magnetic dipoles. They tend to line up with 
the external field and thereby reinforce it.    
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Paramagnetism II
• The measure of organizing of dipoles due to 

the external field depends on its strength 
and it is disturbed by temperature
movement.

• For fields and temperatures of reasonable 
values Curie’s law is valid:

Bm = CB/T
where C is a material parameter.
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Ferromagnetism I
• If we think of magnetism, we usually have 

in mind the strongest effect ferromagnetism.
• In some materials (Fe, Ni, Co, Ga and many 

special alloys) a quantum effect, called 
exchanged coupling leads to rigid parallel
organizing of atomic magnetic moments in 
spite of the randomizing tendency of 
thermal motions.
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Ferromagnetism II
• Atomic magnetic moments are rigidly 

organized in domains which are 
microscopic but at the same time large on 
the atomic scale.

• Their typical volumes are 10-12 – 10-8 m3 , 
yet they still contain 1017 – 1021 atoms.

• If the matter is not magnetized the moments 
of domains are random and compensated.
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Ferromagnetism III
• In external magnetic field the domains 

whose moments were originally in the 
direction of the field grow and the magnetic 
moment of some other can collectively
switch its direction to that of the field.

• This leads to macroscopic magnetization.
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Ferromagnetism IV
• Ferromagnetic magnetization:

• Is a strong effect µr ≈ 1000!
• Depends on the external field.
• Ends in saturation.
• Has hysteresis and thereby it can be permanent.
• Disappears if T > TC, Curie’s temperature.  
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Ferromagnetism V
• The internal magnetization is saturated at 

some point. That means it can’t be further 
increased by increasing of the external field. 

• The alignment at saturation can be of the 
order of 75%.

• The Curie’s temperature for Fe is 1043 K.
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Ferromagnetism VI
• The hysteresis is due the fact that domains 

can’t return at low temperatures and in 
reasonable times to their original random
configuration. Due to this, so called 
memory effect, some permanent
magnetization remains. 

• This effect is widely used e.g. to store
information on floppy and hard-drives.



Planetary model of a charge I
Let’s have a charge q with speed v on orbit of 
the radius r and calculate its magnetic dipole 
moment m0 = IA. 
The area is simply A = πr2.
To get the current we first have to find the 
period of rotation: T = 2πr/v.
Then if we realize that every T one charge of 
q passes, the current is: I = q/T = qv/2πr. 



Planetary model of a charge II
Now the magnetic moment m0 = IA =rqv/2.
On the other hand the angular momentum is:

b = mvr.
If we put this together, we finally get:

m0 = b q/2m.
This can be generalized into a vector form:

If the charge is an electron q = -e so the 
vectors of the magnetic moment and orbital 
momentum have opposite directions. ^

m
qbm 20
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Magnetic interaction of two 
currents I
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Let us have two currents I1 and I2 flowing in 
two short straight pieces of wire           and             
Then the force acting on the second piece due 
to the existence of the first piece is:

This very general formula covers almost all
the magnetism physics but would be hard to 
use in practice.
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Magnetic interaction of two 
currents II
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That is the reason why it is divided into the 
formula using the field (we already know):

and the formula to calculate the field, which 
particularly is the Biot-Savart law:
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Magnetic interaction of two 
currents III

If we realize that:

is a unit vector pointing in the direction from 
the first current     to the second one    , we se 
that magnetic forces decrease also with the 
second power of the distance.
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Magnetic interaction of two 
currents IV

The “scaling” constant µ0 = 4π 10-7 Tm/A is 
called the permeability of vacuum or of free 
space. Some authors don’t use it since it is 
not an independent parameter of the Nature. 
It is related to the permitivity of vacuum ε0
and the speed of light c by:

200
1
c

=µε

^



Ampère’s Law

∑∫ =⋅ iIldB 0µ


Let us have none, one, two ore more wires 
with currents I1, I2 … then:

• All the current must be added but their 
polarities must be taken into account !

^



Circular Loop of Current I
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Circular Loop of Current II
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A = πa2 is the area of the loop and its normal 
has the z direction. We can define a magnetic 
dipole moment and suppose that we 
are far away so b>>a. Then:

Magnetic dipole is a source of a special 
magnetic field which decreases with the third 
power of the distance. ^
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The vector or cross product I
Let c=a.b

Definition (components)

The magnitude |c|

kjijki bac ε=

ϕsinbac


=

Is the surface of a parallelepiped made by a,b.



The vector or cross product II
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The vector c  is perpendicular to the plane 
made by the vectors a and b and they have to 
form a right-turning system.

εijk = {1 (even permutation), -1 (odd), 0 (eq.)}

^
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Faraday’s Law
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Introduction into Electro-
magnetism

• Many scientists in history were interested in 
relation between electric and magnetic 
fields. When it was known that electric
currents produce magnetic fields and 
interact with them a natural question  
appeared: do also magnetic fields produce
electric fields?

• Simple experiments somehow didn’t work.
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Faraday’s Experiment I
• Michael Faraday (1791-1867) used two 

coils on a single toroidal core. He used a 
power-source to produce a current through 
the first coil and he connected galvanometer 
to the other coil. He probably was not the 
first one to find out that there was no
current through the galvanometer, 
regardless on how strong the current was.
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Faraday’s Experiment II
• But he was the first who noticed that the 

galvanometer deflected strongly when the 
power source was switched on and it also 
deflected in the opposite direction when he 
opened the switch and disconnected the 
power source.

• He correctly concluded that the 
galvanometer reacts to the changes of the 
magnetic field.
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Simple Demonstration I
• We can show the effect of electromagnetic 

induction and all its qualitative properties 
simply, using a permanent magnet and few 
loops of wire, connected to a galvanometer.

• If we move the magnet into the coil the 
galvanometer moves in one direction if we 
move it out the deflection direction changes, 
as well as it does if we turn the magnet.
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Simple Demonstration II
• If we make the experiment more accurately, 

taking into account which pole of the 
magnet is the north we find out that the 
current has such a direction that the field it 
produces goes against the changes of the 
external field we do by moving the magnet.

• We can also notice that it is sufficient to tilt
the magnet and keep in the same distance.
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Moving Conductive Rod I
• Before we state the general law describing 

the effect it is useful to study one special 
case of a conductive rod of a length l
moving perpendicularly to the field lines of 
a uniform magnetic field with a speed v.

• Let us expect positive free charge carriers in 
the rod. Since we force them to move in 
magnetic field, they experience Lorenz
force.
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Moving Conductive Rod II
• The charges are free in the rod so they will 

move and charge positively one end of the 
rod.

• The positive charge will be missing on the 
other end so it becomes negative and new 
electric field appears in the rod and the 
force it does on the charges is opposite to 
the Lorenz magnetic force.
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Moving Conductive Rod III
• An equilibrium will be reached when the 

electric and magnetic forces are equal so the 
net force on the charges is zero and the 
charging of the rod thereby stops:

qvB = qE = qV/l ⇒ V = Bvl
• We see that the above is valid regardless on 

the polarity nor the magnitude of the free 
charge carriers.
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The Magnetic Flux I
• We have seen that movement of a 

conductive rod in magnetic field leads to 
induction of a potential difference in 
direction perpendicular to the movement. 
We call this electro-motoric force EMF.

• This was a special case of change of a new 
quantity the flux of the magnetic induction
or shortly the magnetic flux.
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The Magnetic Flux II
• The magnetic flux is defined as

It represents amount of magnetic induction 
which flows perpendicularly through a 
small surface, characterized by its outer 
normal vector      . 

• Please, repeat what exactly the scalar and 
the vector product of two vectors means!

AdBd m


⋅=Φ
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Ad
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The Gauss’ Law in Magnetism  
• The total magnetic flux through a closed

surface is always equal to zero!
• This is equivalent to the fact that magnetic

monopoles don’t exist so the magnetic field 
is the dipole field and its field lines are 
always closed.

• Any field line which crosses any closed
surface must cross it also in again
somewhere else in opposite sense. 
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The Faraday’s Law I  
• The general version of Faraday’s law of 

induction states that the magnitude of the 
induced EMF in some circuit is equal to the 
rate of the change of the magnetic flux
through this circuit:

• The minus sign describes the orientation of 
the EMF. A special law deals with that.

dt
d mΦ

−=ε
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The Faraday’s Law II  
• The magnetic flux is a scalar product of two 

vectors, the magnetic induction and      the 
normal describing the surface of the circuit. 
So in principle three quantities can change 
independently to change the magnetic flux:
• B … this happens in transformers
• A … e.g. in our example with the rod
• relative direction of     and     … generators

B


A


B


A
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The Lenz’s Law  
• The Lenz’s law deals with the orientation or 

polarity of the induced EMF. It states:
• An induced EMF gives rise to a current 

whose magnetic field opposes the original 
change in flux.

• If the circuit is not closed and no current 
flows, we can imagine its direction if the 
circuit was closed.
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Moving Conductive Rod IV
• Let’s illustrate Lenz’s law on our moving 

rod. Now we move it perpendicularly to two 
parallel rails.

• If we connect the rails on the left, the flux
grows since the area of the circuit grows. 
The current must be clockwise so the field 
produced by it points into the plane and 
thereby opposes the grow in flux. 
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Moving Conductive Rod V
• If we connect the rails on the right, the flux

decreases since the area of the circuit 
decreases. The current must be 
counterclockwise so the field produced by it 
points out of the plane and thereby opposes
the decrease in flux.

• The current in the rod is in both cases the 
same and corresponds to the orientation of 
the EMF we have found previously. 
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Simple Demonstration III
• If we return to the demonstration with a 

permanent magnet and a galvanometer.
• From its deflection we can see what is the 

direction of the the currents in the case we 
approach the wire loop and the case we 
leave it. From this we can find which pole 
of the magnet is the north and verify it in 
the magnetic field of the Earth.
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Rotating Conductive Rod I  
• A conductive rod l long, is rotating with the 

angular speed ω perpendicularly to a 
uniform magnetic field B.What is the EMF?

• The rod is “mowing” the field lines so there 
is EMF. But each little piece of the rod 
moves with different speed. We can imagine 
the rod like many little batteries in series. 
So we just integrate their voltages.
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Moving Conductive Rod VI
• A QUIZ : 
• Do we have to do work on the conductive 

rod to move it in magnetic field?
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Moving Conductive Rod VII
• The answer is: 
• NO after the equilibrium is reached between 

electric and magnetic forces and net current 
doesn’t flow in the rod!

• The situation will change when we bridge 
the rails by a resistor. WHY ? 
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Inductance
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Transporting Energy I  
• The electromagnetic induction is a basis of 

generating and transporting electric energy.
• The trick is that power is delivered at power 

stations, transported by means of electric 
energy (which is relatively easy) and used 
elsewhere, perhaps in a very distant place.

• To show the principle lets revisit our rod.
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Moving Conductive Rod VIII
• If the rails are not connected (or there are no 

rails), no work in done on the rod after the 
equilibrium voltage∈ is reached since there 
is no current.

• If we don’t move the rod but there is a 
current I flowing through it, there will be a 
force pointing to the left acting on it. We 
have already shown that F = BIl.    
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Moving Conductive Rod IX
• If we move the rod and connect the rails by 

a resistor R, there will be current I = ∈/R
from Ohm’s law. Since the principle of 
superposition is valid, there will also be the 
force due to the current and we have to 
deliver power to move the rod against this 
force: P = Fv = BIlv = ∈I, which is exactly 
the power dissipated on the resistor R.
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Counter Torque I
• We can expect that the same what is valid 

for a rod which makes a translation
movement in a magnetic field is also true 
for rotation movement.

• We can show this on rotating conductive 
rod. We have to exchange the translation 
qualities for the rotation ones:

P = Fv = Tω
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Counter Torque II
• First let us show that if we run current I

through a rod of the length l which can 
rotate around one of its ends in uniform 
magnetic field B, torque appears. 

• There is clearly a force on every dr of the 
rod. But to calculate the torque also r the 
distance from the rotation center must be 
taken into account, so we must integrate. 
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Counter Torque III
• If we rotate the rod and connect a circular 

rail with the center by a resistor R, there 
will be current I = ∈/R. Due to the principle 
of superposition, there will be the torque 
due to the current and we have to deliver
power to rotate the rod against this torque: P 
= Tω = BIl2ω/2 = ∈I, which is again 
exactly the power dissipated on the resistor.
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Counter EMF I
• From the previous we know that the same

conclusions are valid for linear as well as 
for rotating movement. So we return to our 
rod, linearly moving on rails for simplicity.

• Let us connect some input voltage to the 
rails. There will be current given by this 
voltage and resistance in the circuit and 
there will be some force due to it.
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Counter EMF II
• After the rod moves also EMF appears in 

the circuit. It depends on the speed and it 
has opposite polarity that the input voltage 
since the current due to this EMF must, 
according to the Lenz’s law, oppose the 
initial current. We call this counter EMF.

• The result current is superposition of the 
original current and that due to this EMF.
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Counter EMF III
• Before the rod (or any other electro motor) 

moves the current is the greatest I0 = V/R.
• When the rod moves the current is given 

from the Kirchhof’s law by the difference of 
the voltages in the circuit and resistance:

I = (V - ∈)/R = (V – vBl)/R
• The current apparently depends on the 

speed of the rod.
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Counter EMF IV
• If the rod was without any load, if would 

accelerate until the induced EMF equals to the 
input voltage. At this point the current disappears
and so does the force on the rod so there is no
further acceleration.
• So the final speed v depends on the applied voltage V.
• Now, we also understand that an over-loaded motor, 

when it slows too much or stops, can burn-out due to 
large current. Motors are constructed to work at some 
speed and withstand a certain current Iw <  I0.
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Eddy Currents I  
• So far we dealt with one-dimensional rods 

totally immersed in the uniform magnetic 
field. 

• But if the conductor must be considered as 
two or three dimensional and/or it is not
completely immersed in the field or the 
field is non- uniform a new effect, called 
eddy currents appears.
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Eddy Currents II  
• The change is that now the induced currents 

can flow within the conductor. They cause a 
forces opposing the movement so the 
movement is attenuated or power has to be 
delivered to maintain it.

• Eddy currents can be used for some 
purposes e.g. smooth braking of hi-tech 
trains or other movements.
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Eddy Currents III  
• But eddy currents produce heat so they are 

source of power loses and in most cases 
they have to be eliminated as much as 
possible by special construction of 
electromotor frames or transformer cores 
e.g. laminating.
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The Self Inductance I  
• We have shown that if we connect some 

input voltage to a free conductive rod
immersed in external magnetic field an 
EMF appears which has the opposite
polarity then the input voltage.

• But even a circuit of conducting wire 
without any external field will behave 
qualitatively the very same way. 
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The Self Inductance II  
• If some current already flows through such a wire, 

the wire is actually immersed in the magnetic field 
produced by its own current.

• If we now try to change the current we are 
changing this magnetic field and thereby the 
magnetic flux and so an EMF is induced in a 
direction opposing the change.

• If we make N loops in our circuit, the effect is 
increased N times! 
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The Self Inductance III  
• We can expect that the induced EMF in this 

general case depends on the: 
• geometry of the wire and material properties of 

the surrounding space
• rate of the change of the current 

• It is convenient to separate these effects and 
concentrate the former into one parameter 
called the (self) inductance L.
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The Self Inductance IV  
• Then we can simply write:
• We are in a similar situation as we were in 

electrostatics. We used capacitors to set up known 
electric field in a given region of space. Now we 
use coils or inductors to set up known magnetic
field in a specified region. 

• As a prototype coil we usually use a solenoid (part 
near its center) or a toroid.

dt
dIL−=ε
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The Self Inductance V  
• Let’s have a long solenoid with N loops. 
• If some current I is flowing through it there will be 

the same flux Φm1 passing through each loop.
• If there is a change in the flux, there will be EMF 

induced in each loop and since the loops are in 
series the total EMF induced in the solenoid will 
be N times the EMF induced in each loop.

• We use Faraday’s law slightly modified for this 
situation and previous definition of inductance.
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The Self Inductance VI  

• If N and L are constant we can integrate and get 
the inductance:

• The unit for magnetic flux is 1 weber
1 Wb = 1 Tm2

• The unit for the inductance is 1 henry 
1H = Vs/A = Tm2/A = Wb/A

dt
dIL

dt
dN m −=
Φ

−= 1ε

I
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The Self Inductance VII  
• The flux through the loops of a solenoid depends 

on the current and the field produced by it and the 
geometry. In the case of a solenoid of the length l
and cross section A and core material with µr:

• In electronics compomemts having inductance 
inductors are needed and are produced. 

l
ANL

l
NINAN r
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2
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The Mutual Inductance I  
• In a similar way we can describe mutual

influence of two inductances more 
accurately total flux in one as a function of 
current in the other.

• Let us have two coils Ni, Ii on a common 
core or close to each other.

• Let Φ21 be the flux in each loop of coil 2 
due to the current in the coil 1.
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The Mutual Inductance II  
• Then we define the mutual inductance M21

as total flux in all loops in the coil 2 per the 
unit of current (1 ampere) in the coil 1:

M21 = N2Φ21/I1 ⇔ I1M21 = N2Φ21

• EMF in the coil 2 from the Faraday’s law:
∈2 = - N2dΦ21/dt = - M21 dI1/dt

• M21 depends on geometry of both coils.
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The Mutual Inductance III  
• It can be shown that the mutual inductance 

of both coils is the same M21 = M12 .
• The fact that current in one loop induces 

EMF in other loop or loops has practical
applications. It is e.g. used to power supply 
pacemakers so it is not necessary to lead 
wires through human tissue. But the most 
important use is in transformers.
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Energy of Magnetic Field
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The Transformer I
• Transformer is a device with (usually) two 

or more coils sharing the same flux. The 
coil to which the input voltage is connected 
is called primary and the other(s) are 
secondary.

• Transformers are mostly used to convert
voltages or to adjust (match) internal
resistances.
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The Transformer II
• Let us illustrate the principle of functioning of  a 

transformer on a simple type with two coils with 
N1 and N2 loops. We shall further suppose that 
there is negligible current in the secondary coil. 

• Since both lops share the same magnetic flux, in 
each loop of each coil the same EMF ∈1 is 
induced:

∈1 = - dΦm1/dt
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The Transformer III
• If we connect a voltage V1 to the primary

coil, the magnetization in the core will grow
until the counter EMF induced in this coil is 
equal to the input voltage:

V1 = N1∈1
• The voltage in the secondary coil is also 

proportional to its number of loops:
V2 = N2∈1
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The Transformer IV
• So voltages in both coils are proportional to 

their number of loops:
V1/N1 = V2/N2

• It is more difficult to understand the case 
when the secondary coil is loaded and, of 
course, even much more difficult to design a 
good transformer with high efficiency. In 
big transformers it can be close to 1!
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The Transformer V
• Suppose, our transformer has efficiency

close to 1.
• In this case, currents are inversely 

proportional to the number of loops in each 
coil and resistances are proportional to their 
squares:

P = V1I1 = V2N1I1/N2 = V2I2
I1N1 = I2N2

R1/N1
2 = R2/N2

2 
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Energy of Magnetic Field I
• An inductance opposes changes in current. That 

means it is necessary to do work to reach a certain 
current in a coil. This work is transferred into the 
potential energy of magnetic field and the field 
starts to return it at the moment we want to 
decrease the current.

• If a current I flows through a coil and we want to 
increase it, we have to deliver power proportional 
to the rate of the change we want to reach.
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Energy of Magnetic Field II
• In other words we have to do work at a 

certain rate to move charges against the 
field of the induced EMF:

P = I∈ = ILdI/dt ⇒
dW = Pdt = LIdI

• To find the work to reach current I, we 
integrate:

W = LI2/2
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Energy Density of Magnetic 
Field I

• Similarly as in the case of a charged 
capacitor the energy here is distributed in 
the field, now of course magnetic field.

• If the field is uniform, as in a solenoid, it is 
easy to find the density of energy:

• We already know formulas for L and B:
L = µ0N2A/l

B = µ0NI/l ⇒ I = Bl/µ0N
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Energy Density of Magnetic 
Field II

• Al is the inside volume of the solenoid,
where we expect (most of) the field, 
can be attributed to the energy density of the 
magnetic field.

• This definition is valid in generally in every 
point of even non-uniform magnetic field.
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RC, RL, LC and RLC Circuits
• Often not only static but also kinetic 

processes are important. So we have to find 
out how quantities depend on time when 
charging or discharging a capacitor or a 
coil. 

• We shall se that circuits with LC will show 
a new effect – un-dumped or dumped 
oscillations.
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RC Circuits I
• Let’s have a capacitor C charged to a 

voltage Vc0 and at time t = 0 we start to 
discharge it by a resistor R.

• At any instant the capacitor can be 
considered as a power source and the 
Kirchhoff’s loop (or Ohm’s) law is valid:

I(t) = Vc(t)/R
• This leads to differential equation.
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RC Circuits II
• All quantities Q, V and I decrease 

exponentially with the time-constant τ = RC
• Now, let’s connect the same resistor and 

capacitor serially to a power supply V0. At 
any instant we find from the second 
Kirchhoff’s law:

I(t)R + Vc(t) = V0
a little more difficult differential equation.
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RC Circuits III

• Now Q and V exponentially saturate
while I exponentially decreases as in 
the previous case. The change of all
quantities can be again described using 
the time-constant τ= RC.
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RL Circuits I
• A similar situation will be if we replace the 

capacitor in the previous circuit by a coil L.
• When the current grows the sign of the 

induced EMF on the coil will be the same as 
on the resistor and we can again use the 
second Kirchhof’s law:

RI(t) + LdI/dt = V0
• This is again a similar differential equation.
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RL Circuits II
• The coil refuses immediate growth of the 

current.
• I starts from zero and exponentially

saturates. 
• The EMF on the coil (VL) starts from its 

maximal value, equal to V0, and 
exponentially decreases. When the current 
becomes constant, the EMF on the coil 
disappears.
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LC Circuits I

• Qualitatively new situation appears 
when we connect a charged capacitor 
C to a inductance L. 

• It can be expected that now the energy
will change from the electric form to
the magnetic form and back. We obtain 
un-dumped periodic movement.
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LC Circuits II
• This circuit is called an LC oscillator

and it produces, so called,
electromagnetic oscillations.

• We can use the second Kirchhoffs law:
L dI/dt – Vc = 0

• This is again a differential equation but 
of higher order.
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LC Circuits III
• What happens qualitatively:
• In the beginning the capacitor is charged

and it tries to discharge through the coil. 
However EMF equal to the voltage on the 
capacitor builds on the coil to prevent quick 
growth of the current. The current is zero in 
the beginning. But its time derivative must 
be non-zero, so current slowly grows.
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LC Circuits IV
• The capacitor discharges which causes decreases 

the current growth and thereby also the EMF in 
the coil.

• At the point, the capacitor is discharged, the 
voltage on it and thereby the rate of the growth of 
the current as well as the voltage on the coil are 
zero. But the current is now in its maximum and 
the coil prevents it to drop instantly. 
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LC Circuits V
• The EMF on the coil will now grow in the 

opposite direction to oppose the decrease of 
the current. But anyway the EMF as well as 
the decrease rate of the current grows. The 
capacitor will now be charged it the 
opposite polarity.

• At the moment the capacitor is fully 
charged the current is zero and everything 
repeats again.
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LC Circuits VI
• Using formulas for electric and magnetic 

energy we can find:

• Energy changes as expected from electric to 
magnetic and the total is constant.
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LRC Circuits I

• If we add a resistor the oscillations will 
be dumped. The energy will be lost by 
thermal loses on the resistor. 

• The level of dumping depends on the 
resistance. 



The vector or cross product I
Let

Definition (components)

The magnitude of the vector  

kjijki bac ε=

ϕsinbac


=

Is the surface of a parallelepiped made by      .

bac


×=

ba
,

c



The vector or cross product II
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The vector     is perpendicular to the plane 
made by the vectors     and    and 
must form a right-turning system.
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The scalar or dot product
Let

Definition I. (components)

Definition II. (projection)

∑
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Gauss’ Law in Magnetism
• The exact definition:

∫ ∫ =•=Φ 0AdBd m



^



Rotating Conductive Rod - EMF
• At first we have to deal with the directions. 

If the field lines come out of the plane and 
the rod rotates in positive direction the 
center of rotation will be negative. dV in dr:

drrBvdV )(=

^

• And total EMF:

2
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Rotating Conductive Rod - Torque

• Torque on a piece dr which is in a distance r
from the center of rotation of a conductive 
rod l with a current I in magnetic field B is:

BIrdrrdFdT ==

^

• The total torque is:
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RC Circuit I
• We use definition of the current I = –dQ/dt

and relation of the charge and voltage on a 
capacitor Vc = Q(t)/C:

RC
tQ

dt
dQ

R
tVtI c )()()( −=⇒=

• The minus sign reflects the fact that the 
capacitor is being discharged. This first
order homogeneous differential equation
can be solved by separating the variables.



RC Circuit II

• Where we define a time-constant τ = RC. 
We can integrate both sides of the equation:

τ
dt

Q
dQ

−=

• The integration constant can be found from 
the boundary conditions Q0 = CVc0 :

)exp()()ln( 0 ττ
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RC Circuit III

• By dividing this by C and then by R we get the 
time dependence of the voltage on the capacitor 
and the current in the circuit.:

)exp()( 0 τ
tCVtQ c

−
=

^
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RC Circuit IV
• We substitute for the current I = +dQ/dt and 

the voltage and reorganize a little:

0
)( V

C
tQ

dt
dQR =+

• We get a similar equation for the charge on 
the capacitor but now its the right side is not 
zero. We can solve it by solving first a 
homogeneous equation and then adding one
particular solution e.g. final Qk = CV0 .



RC Circuit V
• Since we have already solved the 

homogeneous equation in the previous case, 
we can write:

00 )exp()( CVtQtQ +
−

=
τ

The integration constant we again get  from 
the initial condition Q(0) = 0 ⇒ Q0 = -CV0.



RC Circuit VI

• By dividing this by C we get the time 
dependence of the voltage on the capacitor:

)]exp(1[)( 0 τ
tCVtQ −
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RC Circuit VII
• To get the current we have to calculate from its 

definition as the time derivative of the charge:

^
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τ
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R
V

dt
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RL Circuit I

• First we solve a homogeneous equation 
(with zero in the right) and add a particular 
solution Im = V0/R (maximal current): 

0)( V
dt
dILtRI =+

0)( =+
dt
dILtRI



RL Circuit II
• This can be solved by separation of the 

variables. Using the previous, defining the 
time-constant τ = L/R and adding the 
particular solution, we get: 

mItItI +
−

= )exp()( 0 τ
• We apply the starting conditions I(0) = 0 ⇒

I0 = -Im and we get:



RL Circuit III

• The voltage on the coil we get from 
• V = LdI/dt :

)]exp(1[)(
τ

tItI m
−

−=

)exp()( 0 τ
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−
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LC Circuit I
• We use definition of the current I = –dQ/dt  

and relation of the charge and voltage on a 
capacitor Vc = Q(t)/C:

0)(
2

2

=+
LC

tQ
dt

Qd

• We take into account that the capacitor is 
discharged by positive current. This is 
homogeneous differential equation of the 
second order. We can guess the solution.



LC Circuit II

• Now we get parameters by finding the second 
derivative of the Q(t) and substituting it into the 
equation: 

)cos()( 0 ϕω += tQtQ

• The solition are un-dumped harmonic
oscillations.

LC
tQ

LC
tQ 10)(1)(2 =⇒=+− ωω
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Main Topics

• Maxwell equations and E. M. Waves
• Introduction into Optics.
• Margins of Geometrical Optics.
• Fundamentals of Geometrical Optics.
• Ideal Optical System.
• Fermat’s Principle.
• Reflection Optics.
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Main Topics
• Refraction, Dispersion and Refraction Optics.
• Thin Lenses. Types and Properties.
• Combination of Lenses.
• Basic Optical Instruments

• Human Eye
• Magnifying Glass
• Telescope
• Microscope
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Maxwell's Equations I

• All the important physics in electromagnetism can be 
expressed in four Maxwell’s Equations, the Lorentz
force and conservation of charge with interesting 
consequences.
• When both electric and magnetic fields are static equations 

split into two independent pairs one for the electrostatic and 
the second for the magnetostatic field.

• When the fields are changing in time they are bound and 
there is one electromagnetic field.
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Maxwell's Equations II
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• The first equation is the Gauss' law from 
which it follows::
• Charges – the sources of electric fields exist.
• If they are present field-lines start in positive

and end in negative charges. In the ground or 
infinity both types of field-lines can start or 
end. 

• The field of a point source behaves as 1/r2.

Maxwell's Equations II
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• The second equation is the Faraday's law of
electromagnetic induction :
• If magnetic field which changes in time is not

present, electric field is conservative and it has 
a scalar potential.

• Electric field can be also generated by time 
changes of magnetic field. If this is the case it is 
not conservative and field-lines are closed
curves. 

Maxwell's Equations III
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• The third equation is the Gauss' law of 
magnetism :
• Point magnetic charges do not exist. The

sources of magnetic field are only dipoles and 
higher multipoles.

• The field of a current element behaves as 1/r2.

Maxwell's Equations IV
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• The fourth equation is the generalized 
Ampere's law :
• Magnetic field is generated by currents or time 

changes of the electric field. The latter shift 
current or displacement current was discovered 
by J.C. Maxwell and it was a surprise. 

• Magnetic field-lines are closed curves. 

Maxwell's Equations V
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• Many interesting properties of electromagnetic 
field can be derived from the Maxwell equations:
• It is sufficient that only one of the fields is not static. 

Then also the second one can't be static and we are 
dealing with one electromagnetic field.

• Electromagnetic field exists in the form of 
electromagnetic waves which carry energy or 
information and spread with the speed of light. 

Maxwell's Equations VI
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General properties of EMW
• The solution of Maxwell's equations with no charges 

and currents present leads to general wave equations. 
• In vacuum EMA waves spread with the speed of light 

c = 3.108 m/s
• If we use vector that includes the direction, then 

vectors     ,     ,      are perpendicular and form right-
handed system in every point.

• They obey the superposition principle.

c E


B
c
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• We will deal with a special, yet important solution 
the plane waves. If they move in the direction of 
+x they can be described as :

E = Ey =E0sin(kx - ωt)
B = Bz =B0sin(kx - ωt)

• E a B are in phase
• vectors ,     ,      for right-handed system
• wave number :  k = 2π / λ
• angle frequency : ω = 2πf
• speed of the wave : c = f λ = ω / k

c E


B


Plane EMW
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The Spectrum of EMW
• It shows up that effects of seemingly different

character are in fact the same EMW with ‘just’ 
different frequency and wavelength.
• Radio waves  λ > 0.1 m
• Microwaves  10-1 > λ > 10-3 m
• Infrared  10-3 > λ > 7 10-7 m
• Visible  7 10-7 > λ > 4 10-7 m
• Ultraviolet  4 10-7 > λ > 6 10-10 m
• X - rays  10-8 > λ > 10-12 m
• Gamma rays  10-10 > λ > 10-14 m
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Dualism of EMW (light)
• In many experiments electromagnetic waves 

behave like typical waves. In other group of effect 
they behave like particles. This particle behavior 
increases with the frequency.

• EMW spread in photons with energy given by 
Planck's law 

where f is the frequency of the appropriate wave.
λ
hchfE ==



01. 07.  2020 16

Introduction into geometrical 
Optics

Originally: Properties and Use of 
Light. 

Now: Far More General.
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Introduction into Optics I

• Since the beginning of humankind people 
have tried to find an answer to a simple 
question: What is light?

• The first important discoveries were done 
some three thousand years ago and recently 
our knowledge almost doubles every year. 
Yet the deep insights change slowly and the 
question immutably remains. 
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Introduction into Optics II

• For a long time it was believed that light is 
a flow of some microscopic particles. So 
called, corpuscular theory, based on this 
idea had been supported e.g. by Isaac
Newton ( 1642-1727) who managed to 
complete the physical knowledge in several 
fields e.g. mechanics and gravitation. In 
spite of his great authority, experiments
revealed clearly wave properties of light. 
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Introduction into Optics III

• They were ingeniously summarized by 
James Clerk Maxwell (1831-1879). So now 
we know that visible light are in fact 
electromagnetic waves with wavelengths of 
400 – 700 nm.

• Surprisingly the ‘particle – wave problem’
remains unsolved since other experiments
exist, which support the particle idea. 
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Introduction into Optics IV

• Energy of light (generally EMW) is transferred and also 
absorption and emission are realized by some minimal
quanta – photons.
• They are particles whose properties depend surprisingly on 

the parameters of the wave: 
• speed             c  (they can never slow down or stop)     
• energy U = E = hf  (h = 6.63 10-34Js Planck's const.)
• lin. momentum p = E/c = h/λ
• mass m = E/c2 = h/λc
• Photons are bosons, so (unlike to the case of fermions) there is 

no limit on number of them in the same state - laser.
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De Broglie wavelength I

• So it may seem not surprising that motion
of light through a lens, a hole or a set of 
slits is governed by wave characteristics.

• It has been confirmed that any particle can 
be attributed a wavelength according to the 
famous De Broglie’s relation: λ = h/p and 
has therefore also wave properties. They are 
detectable, however, only for very small p.
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De Broglie wavelength II

• Running man (100kg, 10 m/s) λ ≅ 10-37 m
• Running bug (1 g, 1 cm/s) λ ≅ 10-29 m
• Running electron (me, 106 m/s) λ ≅ 10-10 m
• There is no way to detect the first two 

wavelengths but the third is comparable 
with atomic distances in molecules and 
crystals. This is the basis of electron
diffractometry.
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Introduction into Optics V
• It was found that this dualism of waves and 

particles is an intrinsic property of the microscopic 
world. 

• The acceptance of the idea that microscopic 
entities can be ‘at the same time’ particles and 
waves is a basis on which the quantum theory, is 
built. It is the best, yet not easy to understand, 
description of the microscopic world, we recently 
have.
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Introduction into Optics VI

• Due to this dualism also the scope of optics 
widened. It deals with not only the behavior 
and use of visible light but generally all 
electromagnetic and other waves but also 
for instance with focusing particles such as 
electrons or neutrons.
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Margins of Geometrical Optics I
• Although, optics is an extremely wide and 

complex scientific field, for many practical and 
industrial purposes its 1st approximation which is 
the geometrical optics can be used. The effects it 
deals with can be treated by pure geometry. It 
inherits some properties of waves, such as:
• straight propagation, 
• independence
• reciprocity

• Geometrical optics stops to be a good theory if 
wave or particle properties start to matter. 
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Margins of Geometrical Optics II
• Typically wave properties start to matter 

when the size of optical elements is 
comparable to the wavelength. This is the 
case in radio- and microwave techniques 
but also limits the resolution of optical
instruments.

• Particle properties are detectable for EMW 
of high energies but in some cases also for 
visible light.
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Margins of Geometrical Optics III

• Geometrical optics can be used when the 
wavelength can be considered (close to) 
zero, speed infinite and the energy of the 
electromagnetic waves is small (or materials 
are used where e.g. fotoeffect is negligible).

• These conditions are usually met when 
dealing with visible light of low intensities.
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Fundamentals of G. Optics I
• First important assumption is that light 

travels in the form of rays. Those are lines
drawn in space, which correspond to the 
flow of radiant energy. 
• In isotropic and homogeneous materials rays 

are straight lines perpendicular to the wave-
fronts of the waves.

• Rays can be treated by pure geometry.
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Fundamentals of G. Optics II
• Rays can relatively easily be traced through 

an optical system and wave-fronts and other 
qualities of imaging can be reconstructed.

• Rays follow a principle of reciprocity, if a 
ray can pass through an optical system in 
one direction, it can pass also in the 
opposite one. This is one result of the 
Fermat’s principle.
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Fermat’s Principle I

• Fermat’s principle is a convenient basis for 
describing the very simple but also very 
complicated optical phenomena. It states:
A light ray if going from point S to point P
must traverse an optical path length which 
is stationary with respect of variations of 
that path.
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Fermat’s Principle II
• It is a heritage of wave properties which 

says that wave being a ray must be (almost) 
in-phase with the near neighboring waves.

• Often, the meaning can be interpreted in 
much simpler form: from all the possible 
waves that can travel between two points, 
the ray is the one, which makes its path in 
the (extreme) shortest time.    
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An Ideal Optical System I
• By an optical system we are trying to focus all 

rays emanating from some point S in the object
space into some point P in the image space.

• If this is reached the optical system is stigmatic for 
these two points.

• By ideal optical system would every 3-dim region 
in one space be stigmatically imaged in the other 
region.

• The regions are interchangeable due to reciprocity.
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An Ideal Optical System II

• Properties of a real optical system should be as 
close as possible to that of the ideal one.

• Moreover the rays in the system should be easily
traceable and due to simple parametrization an 
simple equation should be available which would 
relate the positions of the object and the image.

• Optical systems are based on the effects of 
reflection and refraction.
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Reflection I

• Let’s use the Fermat’s principle to find the 
law of reflection at a top of a flat surface:

• Point S is a source of many rays which 
spread out radially. Since the observation 
point P is in the same space, the ray which 
comes first from S to P will be the shortest
one. We can find it using a trick when we 
reflect the point S behind the mirror. 
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Reflection II

• From simple geometry it follows that the 
angle of incidence is equal the angle of 
reflection. By convention in optics we 
measure these angles from the normal to the 
reflecting surface.
• This is valid for any element of the surface.
• If a surface of a reasonable size is smooth the 

reflection is specular and from P we can see the 
image of S, if not it is diffuse (paper, Moon) 
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Reflection Optics I

• Using reflection is one possibility to build 
optical elements, in this case various kinds 
of mirrors, to produce image of an object. 
The image can be either real, if the rays 
really path through it or virtual if eye, only 
sees the rays coming from the direction of 
the image.

• R. O. is important for X-rays and neutrons.
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Reflection Optics II
• Every optical element has a principal axis, which 

is roughly the axis of its symmetry.
• If an ideal mirror is stroked by rays coming 

parallel with the principal axis the rays either 
focus in the focal point – in the case of concave
mirrors or they seem to come from a virtual focal
point behind the mirror, if the mirror is convex.     

• Optical properties of ideal mirror are described by 
one parameter only, the focal length f, the distance 
of the focal point from the mirrors center. 
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Reflection Optics III

• The surface of an ideal mirror should be 
parabolic and recently, it is in principle 
possible to make a parabolic mirrors.

• In most applications much cheaper spherical
mirrors are used but they suffer from 
spherical aberration and can be successfully 
used only for paraxial rays – those very 
close to the principal axis.   
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Reflection Optics IV

• If a spherical mirror has curvature r the 
focal length f in paraxial region is: 

f = ± r/2
• + for concave mirrors
• – for convex mirrors
• The treatment of convex mirrors is similar 

but their focal length is negative.
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Reflection Optics IV
• The distance of the object do, the image di and the 

focal length f obey the mirror equation:
1/do + 1/di = 1/f

which can be derived from similar triangles.
• By convention all these quantities are considered 

positive if they are in front of the mirror.
• The properties described in this equation are used 

for construction of an image to an object. 
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Reflection Optics V

• We can also define the lateral magnification
m = hi/h0 = - di/do

• Recently, special optical systems are being 
widely developed for instance for X-rays, 
neutrons or fiber optics, which use total 
reflection which appears at very low angles 
of incidence on simple or multi-layer 
surfaces. 
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Basic Optical Elements and 
Instruments
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Refraction I
• Another important basic optical effect is refraction

appearing when rays pass from one material to 
another. Transparent materials may differ in optical 
density.

• The more dense material the lower is the speed of 
light in it. Optical density is characterized by the 
absolute refraction index: n = c/v
• c is the speed of light in vacuum
• v speed in the particular material.

• Frequency of the waves passing through the 
interface remains constant. 
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Refraction II

• We can again use the Fermat’s principle to 
find the law of refraction.

• To find which ray makes it first from S to P
is a similar problem as if we want to safe a 
drowning person in the shortest time, taking 
into account that we run much faster than 
swim.
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Refraction III

• We use the more general definition that the 
correct ray is the stationary one. In other 
words, if we take some neighboring ray its 
time of flight will be (roughly) the same. 

• Let the point:
• S be in a space where the light travels with the 

speed v1 = c/n1 and 
• P in the space where the speed is v2 = c/n2.
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Refraction IV

C

φ1

F

n1

n2

S

P
φ2

E

X

EC/v1 = XF/v2

XCsinφ1/v1 = XCsinφ2 /v2

n1 sinφ1 = n2 sinφ2



01. 07.  2020 47

Refraction V

• Now, let the SCP be the correct ray for and 
the SXP some neighboring ray. Should the 
time of flight be the same: EC/v1 = XF/v2

• We use : EC = XCsinϕ1 and XF = XCsinϕ2
substitute for v1 and v2 and get the

• Snell’s law:

2211 sinsin ϕϕ nn =



01. 07.  2020 48

Refraction VI

• We see that the higher is the optical density
or the slower is the speed of light the 
smaller is the refraction angle.

• If the angle of incidence from the less dense 
material is 90° the refracted angle is given:

• sinϕc = n1/n2 the maximum refracted angle 
or the critical angle. 
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Refraction VII

• If the beam would try to pass from the 
optically dense material under an incident 
angle higher than the critical angle it would 
not get through the boundary but rather be 
totally reflected.

• The effect of total (internal) reflection is 
used for instance in fiber optics.
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Dispersion I
• Transparent materials have an important property 

that the speed of light and thereby their refraction
index depends on the wavelength of the applied 
light.

• The higher energy (lower λ) the stronger 
interaction and thereby higher optical density and 
higher deflection from the original direction.

• This means that light of every wavelength or color
is refracted under a (little) different angle. 
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Dispersion II
• The effect of dispersion complicates design of 

optical systems and has to be compensated by 
using more lenses of different materials.

• On the other hand it gives us the possibility to 
decompose the visible light and near IR and UV 
regions into different wavelengths. 

• That is important for instance for studies of 
properties of matter by spectroscopic methods. 
The matter can be very far away in the universe! 
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Refraction Optics I

• The effect of refraction is used to build 
optical components and systems.

• If we have a point S in the medium n1 and 
the point P in the medium n2 > n1 we may 
use the Fermat’s principle to find the shape 
of the boundary between the media so the 
points are conjugated or the optical system 
is stigmatic for them. 
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Refraction Optics II

• If we compare a time of flight of some 
refracted ray with the one directly 
connecting both points we find a relation:

l1n1 + l2n2 = s1n1 + s2n2
• We readily understand from here, why the 

optically denser media must be convex.
• The corresponding surface is of the fourth

order, so called, Cartesian ovoid.
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Refraction Optics III

• If we move one of the points S or P into 
infinity the surface becomes second order, 
either elliptical or hyperbolical.

• This can be in principle used to construct 
lenses - optical components from some 
material, which allow that the object as well 
as the image are in the same media.  
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Refraction Optics IV
• Ideal lenses are for instance double 

hyperbolic or planar-hyperbolic. 
• Although, recently they can be, in principle, 

machined, for the same reasons, as in the 
case of mirrors aspherical surfaces are 
approximated by cheaper spherical ones. 

• But they can be successfully used only in 
the paraxial region.
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Refraction Optics V

• Spherical surface can be shown to be stigmatic for 
points on the optical axis in the paraxial
approximation.  

• Let the the ray come from the point O in matter n1
under an angle α and hit the spherical surface in 
the point P, which is seen from the curvature 
center C under an angle β and deflects to the point 
I in material n2, where it arrives under an angle γ.

• ϕ1 and ϕ2 will be the incident and refracted angles. 
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Refraction Optics VI
• From triangle PIC  : β = γ + ϕ2; OPC : ϕ1 = α + β
• In paraxial approximation the angles are small, so 

we can write: n1ϕ1 = n2ϕ2

α = h/d0; β = h/R; γ = h/di; where h is the height 
of the point P from the optical axis.

• We can show that the angle dependence vanishes:
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Refraction Optics VII

• It is important to obey the following convention: 
• If C in on the same side as the light comes from, it 

is negative.
• If O in on the same side as the light comes from, it 

is positive.
• If I in on the same side as the light comes from, it 

is negative.
• We can see that the reciprocity principle is valid!
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Thin Lenses I

• Very important lenses are those which can 
be considered as thin.
• All their properties can be characterized by a 

single parameter the focal length f. 
• It is the distance from the optical center to the 

focal points F. 
• There is one focal point in front and one behind

the lens, both equally distant from the center.
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Thin Lenses II
• The, so called, lensmaker’s equation can be 

derived which relates the focal distance of a 
thin lens with the radii of its spherical
surfaces

• Sign conventions must be obeyed.
• Note that the focal length is the same on 

both sides even if the radii are different.
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Thin Lenses III

• It is possible to make converging lenses 
with positive focal length when the positive 
radius of curvature is smaller or diverging
lenses with negative focal length when the 
negative radius of curvature is smaller.

• Optometrist and ophthalmologist use the 
power P = 1/f to specify lenses. Its unit is 
diopter (D), 1D = 1m-1.
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Thin Lenses IV

• To find an image of some point, we can 
again use two of three special rays.

• A ray passing in any direction through
optical center is not deflected.

• A ray arriving in parallel with the optical 
axis will pass through the image focus if f is 
positive or appear to leave it, if f is negative.
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Thin Lenses V

• A ray passing through the object focus if f is 
positive or heading towards it, if f is 
negative, will continue in parallel with the 
optical axis on the other side of the lens.

• If the imaging is stigmatic (sharp) all other 
rays leaving the object point must appear in 
the image point as well. But they can’t be 
used to find it.
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Thin Lenses VI

• The lens equation which relates the 
distances of the object and image with the 
focal distance can be easily derived:

1/do + 1/di = 1/f
• and lateral magnification is defined as the 

ratio of the image height to the object height
m = ho/hi = - di/do
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Thin Lenses VII
• To comprehend functioning of almost any 

optical instrument it is necessary to fully 
understand the importance of the focal 
planes of the lenses.

• For converging lens a bunch of parallel rays 
coming under some angle with the optical 
axis will pass through a point in the image
focal plane, which is on the other side of the 
lens.



01. 07.  2020 66

Thin Lenses VII

• We can locate this point using the ray 
passing the optical center and the one 
passing through the object focus.

• Using the lens equation we can verify that 
an object producing an image in the focal 
plane (di = f) must be in infinity. 
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Thin Lenses VIII

• For diverging lens all beams heading 
towards a point in the object focal plane, 
which is now behind the lens, will run as a 
bunch of parallel rays after the lens.

• We can find their direction using the ray 
passing the optical center and the one 
coming in parallel with the optical axis.
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Thin Lenses IX
• We can again verify this using the lens 

equation. If the object is in the object focal 
plane (do = f , both negative now) the image 
must be in infinity. 

• We can produce parallel bunches of rays by 
both types of thin lenses if the object is in
the object focal plane. For the diverging
lens the object distance is, however, 
negative! 
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Combination of Lenses
• We start from the lens closest to the object. 
• We display the object by this lens only.
• The image of produced by the first lens will 

be the object for the second lens.
• Then we display the new object by the 

second lens only. And so on.
• The sign convention must be strictly obeyed 

since now object distance may be negative!
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The Human Eye I
• Most of the focusing (refraction) is done by 

the cornea (n = 1.376). The lens does just 
the ‘fine tuning’.

• The quality of focusing and the depth of 
focus depends on the iris. The smaller the 
aperture the better.

• Normal eye has the near point at 25 cm and 
the far point in infinity.
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The Human Eye II
• In the case of nearsightedness (myopia) the 

far point is not infinity. This has to be 
corrected by a diverging lens. 

• In the case of farsightedness (hyperopia or 
presbyopia – developed by age) the eye 
can’t focus on near objects. This has to be 
corrected by a converging lens. 
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The Human Eye III

• The eye is relaxed if it watches the far point 
so eyepieces usually produce parallel rays. 

• Some other optical instruments produce a 
virtual image in the conventional length
equal to the standard near point at 25 cm.
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Magnifying Glass
• Magnifying glass is used:

• either the object is in the focal plane and we 
watch it by relaxed eye.

• or the lens is close to the eye (Sherlock
Holmes) and a virtual image is produced in the 
conventional distance.

• Magnification is the angle magnification –
we see objects as big as is the angle of their 
image on the retina. 
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Telescopes I
• Astronomical refractive telescopes have two 

lenses an objective (with longer f) and an 
eyepiece, which share the same focal plane. 

• The eyepiece can be either a converging
lens or a diverging one, then the shared 
focal plane is behind the eyepiece.

• The angle magnification in both cases is 
minus the ratio of the focal lengths.
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Telescopes II
• Important are reflecting telescopes:

• Large mirrors are easier to produce and support
• Mirrors don’t suffer from color aberration.

• But we have to realize that although 
reflection is not influenced by dispersion, it 
is still a complicated process and 
reflectivity of any material isn’t ideal . 
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Compound Microscope

• The principle of a microscope can be shown 
also using two lenses. The objective (now 
with very short f) produces a real image. It 
is watched by the eyepiece, which usually 
produces the imaginary image in the 
conventional distance.

• Good microscopes are complicated since it 
is important to compensate aberrations.
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Maxwell’s Equations I
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Main Topics
• Particle properties of waves

• Black body radiation – Planck law
• Photoelectric effect
• Compton effect

• Wave properties of particles
• DeBroglie's waves
• Electron diffraction

• The first models of atoms
• X-rays
• Lasers
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Blackbody radiation I
• By experience we know that we are able to feel existence 

of a warm body close to us. This is because heat is also 
transferred by electromagnetic waves - radiation

• When the temperature is lower than circa 700° C the 
radiation is mainly in infrared range. At higher 
temperatures the visible part becomes more pronounced. 
So spectral properties of the radiation clearly depend on 
temperature and it makes sense to find this dependence.

• We should understand the meaning of this energy transfer 
by radiation: The very existence of life on our Earth 
depends on transfer of energy from the Sun.
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• When studying heat radiation of a body it has to 
be separated from the radiation reflected from 
other sources. The body the radiation of which is 
purely heat is so called ideal black body.

• Beside the ability to emit energy every body has 
also ability to absorb it. 

• Gustav Robert Kirchhoff has shown that these 
abilities are proportional, hence good absorber 
must also be a good emitter. 

Blackbody radiation II
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• In the year 1879 Josef Stefan had discovered a law that 
was later (1884) theoretically justified by Ludwig 
Boltzman :
From the surface S of material with the emittivity ε and 
absolute temperature T power P is emitted :

the constant σ = 5.67033 10-8 Wm-2K-4

• So clearly we can influence cooling of a body by emitivity 
of its surface. To study properties of the emitter the body 
has to be as black as possible - the blackbody. Such a 
system was discovered in the 19th century.

4ST
t
QP εσ=
∆
∆

=

Blackbody radiation III
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Irradiation coming from 
outside is totally absorbed 
in the cavity. (Like an eye.)

The spectrum of emitted radiation 
depends only on temperature of 

the body with the cavity.

Blackbody radiation IV
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• When the measurements were well established problems 
arrived with the explanation of spectral behavior as a 
function of temperature.. 

• In the year 1896 partly successful was W. Wien, who found 
empiric law for the behavior of maxima of spectral 
dependencies :

λm is the wavelength of the maximum. This formula is the 
basis for remote measurements of temperature till now. 

mKTm
31090.2 −=λ

Black body radiation V
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• In the end of 19th century a theory of Rayleigh-Jeans was 
developped. It described well the long-wave region of the 
spectrum. There was, however, no theory that would describe 
the behavior of the whole spectrum.

• A breakthrough was the originally empiric formula, introduced 
by Max Planck (1885-1947) :

k = 1.38 10-23 J/K is Boltzman's constant and
h = 6.626 10-34 J s = 4.1356692 10-5 eV s the Planck's constant
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Black body radiation VI
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• Planck's law is a breakthrough not only that it explains the 
whole spectra of heat radiation but it expects that the 
irradiating system consists of small oscillators the energies 
of these can't reach any value but are discrete - quantized :

• Max Planck considered quantized energies as a trick to 
explain the measured data mathematically. It was Albert 
Einstein in 1905 who discovered the depth of the idea that 
energy as well as other quantities in the micro-world are 
quantized.

3,2,1== nnhfE
kTλ

Black body radiation VII
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• Black body radiation and its interpretation by 
Planck's law is one of the important effects 
that pushed physicists for a new description 
of micro-world the – quantum theory.

• Beside this it can be used for remote 
temperature measurements from high temp 
furnaces to the temperatures of stars or the 
cosmic background radiation.

kTλ

Black body radiation VIII
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Pyrometer with disappearing thread –
temperature measurements

eye

Black body radiation IX
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Photoelectric effect I
• As the name hints the photoelectric effect means 

emitting of electrons by matter after its irradiation 
by electromagnetic waves (VIS, UV).

• Let's place a test electrode near the main illuminated 
electrode. Almost immediately an equilibrium 
voltage U builds between these electrodes. This 
voltage corresponds to the maximum kinetic energy 
Ekmax which the electrons can have under the current 
conditions :

eUEeUE kkin =⇒≤ max
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• It can be shown that the Ekmax doesn't depend on the 
intensity of the electromagnetic waves it is a linear
function of their frequency. Moreover electrons are 
emitted only when the frequency is higher than some 
threshold frequency. This corresponds to some minimal 
work Wo, necessary to release the electrons and it is a 
material parameter called the work function :

• This again supports the idea of the existence of quanta
of radiation.

ok WhfE −=max

Photoelectric effect II
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• The wave conception of the EMW is in contradiction with 
the speed of the effect: If the power was distributed 
homogeneously in the cross section of the beam, the time 
needed to accumulate energy necessary to release an 
electron would be much longer the experiment really 
shows. 

• The probability of a collision of very little photon and very 
little atom is indeed small but it is multiplied by extremely 
high number of photons in the beam and number of 
irradiated atoms.

Photoelectric effect III
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• Many every-day effects are connected with 
the existence of photons and dependence of 
their energy on their color. E.g. the use of a 
red light in the dark-room, of green leaves 
of photosynthesizing plants. 

• Measurements of the energy distribution of 
emitted electrons is the basis of several 
important surface methods e.g. nanoESCA.

Photoelectric effect IV
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Compton's effect I
• It the year 1923 A. Compton found out that the 

wavelength of X-ray beam scattered by matter is 
longer than that of the primary beam and 
moreover it strongly depends on the scattering 
angle.

• It shows up that the effect is caused by inelastic 
collisions of electrons and photons which beside 
energy must also have a linear momentum.

• An example:
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Primary photon
(known f1)

E1 = hf1

Electron with mass 
m at rest before the 
collision with 
photon

Moving electron 
after the collision 
(it stays in the 
matter undetected)

Photon after the 
collision (can be 
detected)

Θ
E2 = hf2; E2 < E1

)cos1( Θλ∆ −=
mc
h (5)

Compton's effect II
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Wave-Particle Duality 
the Principle of Complementarity
• There is a group of experiments showing that light are 

waves and another group, the examples of which we have 
just seen, supports the particle theory of light. This 
dilemma is referred as the wave-particle duality.

• To clarify the situation Niels Bohr proposed his principle 
of complementarity: To understand any given experiment, 
we must use either the wave or the photon theory, but not 
both. Yet we must be aware of both theories should we 
have a full understanding of light. Therefore these two 
aspects of light complement one another.   
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De Broglie waves I

• In the year 1923 Luis de Broglie (1892-1987) 
came with, at this time a brave idea, that the wave 
particle-dualism is a common property of micro-
world and it is symmetric, so that waves exhibit 
sometimes particle properties and particles can be 
attributed (now de Broglie) wavelength which is a 
function of their linear momentum : 

p
h

=λ
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• It comes from the analogy with photons, where
E = hf and m0 = 0, which from the STR leads to
E = cp = hf .

• Obviously, waves corresponding to macroscopic 
bodies are immeasurably (so far?) short but in the 
micro-world it is different :
• Running Beatle (100 kg, 10 m/s) λ ≅ 10-37 m
• Running Beetle (0.001 kg, 1 cm/s) λ ≅ 10-29 m
• Electron (9.1.10-31 kg, 1.106 m/s) λ ≅ 10-10 m

De Broglie waves II
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• Following discoveries proved that De Broglie had been 
right. 

• E.g. the circumference of every stable orbit in Bohr's 
model of the hydrogen atom is integer multiple of De 
Broglie's wavelength.

• Soon after De Broglie's hypotheses had appeared electron 
diffraction would be discovered. Since the wavelength of 
electrons can be tuned to be of the order of atomic bond 
length the method is important for structure analysis.

• Wave properties of electrons are also important for 
construction of electron microscopes and accelerators.

De Broglie waves III



Electron diffraction on crystals and thin 
surfaces I

Electron gun

Detector 

Crystal 

Foil 

Intersection of diffraction cones and the plane of the shield
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The wavelength of an electron beam :
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Electron diffraction on crystals and thin 
surfaces II
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The Bohr model I

• Another important problem was to explain 
the existence the discrete lines in atomic 
spectra. The wavelength for the first then 
known Balmer's series was :

n = 3, 4 ...  a   R = 1.0974.107 m-1 is so 
called Rydberger's constant. 
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• Later two more series were discovered and 
for all a single equation holds : 

n = k+1, k+2, k+3 ...
• in UV region k = 1 Lyman's
• in VIS region k = 2 Balmer's
• in IR region k = 3 Pashen's

)11(1
22 nk

R −==
λ

σ

The Bohr model II
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• At the time the existence of electrons and atomic 
nuclei was known but the problem was how these 
are composed in an atom. The simple planetary 
model doesn't work since if electrons move on a 
closed orbit their motion is accelerated and they 
emit energy and during several picoseconds they 
would fall on the nuclei.

• Bohr merged the planetary model with Planck's 
quantum hypothesis.

The Bohr model III
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• Bohr postulated that certain orbits and corresponding 
energetic levels are stationary. Then atoms emit or absorb
energy possibly as photons only during transition between 
these states :

• Energy states which he found matched spectra of hydrogen 
and hydrogen-like atoms (Z):

• The energy -E1 = -13.6 eV is the well known energy of the 
ground state of hydrogen H. 

lk EEhf −=

2

2

1 n
ZEEn =

The Bohr model IV
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X-Rays I
• In the year 1895 Wilhelm Conrad Röntgen (the 1st

awardee of the Nobel prize in 1901) discovered 
emission of X-Rays - an effect conceptually 
inverse to the photoelectric effect: 

• When high energy electrons fall onto matter 
electromagnetic radiation is emitted . Its 
wavelength is of the order 10-10 m. X-Ray 
radiation has two components. White 
bremsstrahlung and discrete which is analog to 
VIS spectrum.
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• The wavelength of X-Ray is comparable 
with the atomic bond length so it is very 
important for the X-Ray structure analysis. 

• X-Rays are important also for the methods 
of X-Ray spectroscopy, which study 
absorption and emission spectra and also 
several special methods (EXAFS…).

X-Rays II
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LASER = Light Amplication of 
Stimulated Emission of Radiation

I
• The discovery of lasers was a great breakthrough into 

many fields of science.
• Lasers are sources of electromagnetic radiation in many 

wavelength regions (IR, VIS, UV, RTG… ), which is of 
can be :
• collimated
• monochromatic
• intense
• coherent
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Laser II
• Laser (Light Application of Stimulated Emission 

of Radiation) is based on the effect of stimulated 
emission: When an photon with a suitable energy 
interacts with and excited atom it stimulates an 
emission of another photon which is its exact
copy.

• Through a choice of suitable materials inverse
population of excited electrons in some metastable 
state for sufficiently long time can be reached and 
the emission can be then started.
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Laser III
• Usually laser has elongated shape. One cap is a 

normal the other a semitransparent mirror, plane 
or concave. Due to these mirrors photons return 
many times into the excited medium. This triggers 
an avalanche effect in the axis and narrows its 
spectrum.

• The medium can be a transparent crystal or gas, 
how it is e.g. in HeNe laser. Excitation can be 
done by illumination or chemically..

• Recently also semiconductor lasers with wide and 
important usage develop quickly.



Kirchhoff's law I

• .

• The validity of Kirchhoff's law can be verified 
experimentally or by a simple reasoning: Let's have a slab 
the two large surfaces of which are made of different 
materials I and II.

• Near to the surface I we place second slab made of 
material II and is connected with a thermometer and next 
to surface II on the other side we place a third slab made of 
material I, equipped also with a thermometer.

• After certain time equilibrium when all temperatures are 
the same is reached.



Kirchhoff's law II

• .

• If εi are emission and αi absorption coefficients then this 
must hold :

• Then the emission coefficient is always proportional to the 
absorption coefficient :

• If, for instance, the surface I is black αI ≅ 1 and  the 
surface II partly reflects αII < 1 then also εI > εII .

• This reasoning is valid even for any wavelength.
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Heat radiation – example

• .

• Let's have a ceramic cup with ε = 0.7 and a stainless steel 
cup with ε = 0.1. In each of them there is 0.75 l of tea with 
95° C. Estimate what power is irradiated from each of 
them to the surroundings with the temperature 20° C ?

• Assume, each cup is a cube with the edge of 10 cm and it 
absorbs and emits at the same time.
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• Then the ceramic cup irradiates 21 W. The stainless cup 
only 3 W so in this one the tea stays hot for longer time. 
But heat conductivity should also be included in!



Wien's law – example I

./.

• Let's estimate the surface temperature of the Sun. The 
maximum of distribution of the intensity is λm ≅ 500 nm, it  
lays in the visible region and it is green :

• There is quite an interesting question: why green plants reject 
the wavelength with the highest energy?
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Wien's law – example II

./.

• The temperature of the fiber and composition of the internal gas of 
incandescent bulbs is designed according to their planned use: 2200 °C 
and vacuum up to 25 W, 2600 °C for the common filled with a mixture 
of Ar & N2 and 3000 °C for special halogen e.g. for projectors.

• Tungsten is a selective emitter which in the visible region emits more 
than would correspond to its temperature. What would the peak λm be 
if the fiber of a normal bulb would be a blackbody? 
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• So  λm lays in the IR region and there also most of energy 
is irradiated. Heat radiation feels good.



Wien's law – example III

• .

• How would a star with a surface temperature 32500 K look 
like?
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• Here λm lays in the UV and the star would be bluish white.



Compton's effect I

• .

• X-Ray beam with the wavelength 0.14 nm is scattered on a 
block of graphite. What is the wavelength of the radiation 
scattered to the angles 0°, 90°, a 180°?

• The scattered wavelength is :
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• The quantity has a dimension of 
length and it is called Compton's wavelength. Here we have :
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Compton's effect II
• In the interaction of a photon and electron the energy and 

linear momentum is conserved :

• Kinetic energy Ek has to be evaluated relativistically :
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Compton's effect III

• .

• Linear momentum is conserved in the (specular) plane of 
scattering, in the original direction of a photon x-axis and 
perpendicular y-axis :
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Compton's effect IV

• .

• We square the energy conserving equation :
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Compton's effect V

• .

• We cancel E0 and substitute for the square of momentum :

• After rearranging :
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Compton's effect VI

• .

• |we substitute for the electron's rest energy E0 = m0c2 and 
arrange :

^

• Finally we get the famous Compton's formula :
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Example – photoeffect I
• Cesium layer with the work function Wo = 1.93 eV, is 

illuminated from the distance r = 3.5 m by the light of 
sodium discharge lamp the strongest line of which has the 
wavelength λ = 590 nm, with the power P=100 W. The 
dimension of an electron are not known but effective radii 
with respect to certain effects are defined and for the 
interaction with a photon it is the Thompson's radius re = 
5.10-11 m. 

• How long it would take before an electron to receive 
enough energy to be emitted it the energy flow was 
homogeneous??

• What is the mean time interval between a photon flies 
twice through the cross-section of an electron?

• The scattering cross-section of the electron is : 
2212 1085.7 mrS ee
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Example – photoeffect II
• The energy of emitted photon in [J] is :
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• The energy of emitted photon in [eV] is :
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• Number of photons emitted in 1 s into all angles if 
we expect all energy is emitted on one wavelength 
with 100% effectivity  :



Example – photoeffect III
• Intensity - power through a unit of surface in the location

of the sample :
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• Number of photons passing through a unit of surface in the
location of the sample in 1 s :



Example – photoeffect IV
• After multiplying by the electron's cross-section we get 

energy absorbed by electron in the unit of time :
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• Now we easily find out that the time necessary to 
accumulate the energy W0 is around 1 minute :
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• and number a photons through this cross-section in 1 s :
1
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Example – photoeffect V
• Mean time of one photon crossing through the electron's 

cross-section is :

^

• These times may seem comparable. The photoeffect is, 
however, much faster ~10-9 s. This may be explained only by 
dense bodies of energy - photons in the beam cross-section. 

• There is no way how the time necessary to suck the energy 
continuously could be shortened!
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The Bohr Model I
• Bohr accepted the planetary model but postulated 

only certain stationary states, characterized by 
certain values of the angular momentum : 

...,2,1==≡ nnvrmL ne 

• In planetary model the centripetal force is accomplished 
by the Columb's force. If we substitute for v2 in the 
denominator : 
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The Bohr Model II
• After rearranging we find out that radius of any 

orbit of any atom can be found as a multiple of 
Bohr's radius, which is the radius of the smallest 
orbit in Hydrogen.

• Similarly the energy of any orbit can be expressed 
using the ground energy of Hydrogen, which is the 
energy of the orbit closest to the nucleus. 
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The Bohr Model III
• Let's evaluate the first four orbitals of the Hydrogen :
• n rn [pm] En [eV]
• 1 53 -13.6
• 2 212 - 3.4
• 3 417 - 1.5
• 4 848 - 0.85
• For a particular atom energies grow quadratically.
• Radius of corresponding orbits in higher Z atoms is smaller.
• Energies of bound electrons is always negative. For ionisation this or 

higher energy has to be absorbed by the electron.
• Energy levels quadratically pack in the direction of zero energy.
• Energies of absorbed or emitted photons must correspond to the 

transitions between the appropriate energetic states.  

^



The Bohr Model IV
• Manipulations that leads to the formula for En :
• We substitute for mev2 into the total energy :

^

• And we substitute for 1/rn :
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De Broglie Waves
• For photons we use Einstein's equation for the total energy. 

De Broglie's great idea was that what is valid for photons 
could be valid also for other micro-particles :
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Helium Neon Laser
Gas laser in which the active medium is a mixture of He and Ne 

gases.

Mirror Semi-transparent 
mirror

Electrodes to ignite 
the discharge



Active energetic levels in the He - Ne laser

Ne

1s

2p

2s
3p

3s
3s - 3p ….3,391 μm

3s - 2p ….0,633 μm

2s - 2p ….1,152 μm

^
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Problem 01: The side of an elementary cube in the primitive cubic crystal is a = 1.2 Å. How 
many atoms are there in 1 cm3? (Avogadro number NA = 6.023 1023 mol-1) 
 
Solution: 1D in 1 cm: 1/1.2 10-8 = 8.33 107 → 3D in 1 cm3: (8.33)3 = 5.79 1023 
 
Problem 02:  The street system in a town consists of radial roads and rings. If we are entering 
via one radial road and plan to leave by another, how should we drive to take the shortest 
path? 
 
Solution: This depends on the angle φ between the two radial roads. The distance through the 
center is always 2R so for φ < 2 radians it is shorter to take the ring. 
 
Problem 03:  The highest and most tilted point on the Leaning Tower of Pisa is 56.7 m high 
and its projection lays 3.9 m from the bottom of the wall. How is the tower tilted and what is 
its real length? 
 
Solution: tgφ = y/x; x = h cosφ ; y = h sinφ ; φ = atg(y/x) = 1.5 rad = 86.063˚. The tilt from the 
vertical direction is only 3.94˚. The length of the tower is h = y/ sinφ = 56.8 m. The tilt is 
relatively small but human eye is sensitive to the tilt for the vertical or horizontal directions. 
 
Problem 04: Test basic vector operations using these vectors: a = (2, -1, -2); b = (6, -3, 1);  
c = (-2, 1, -5).  For instance, is c perpendicular to a+b? 
 
Solution: (a+b).c=(8, -4, -1).(-2, 1, -5)= -16-4+5=-15. These vectors are not perpendicular. 
  
Problem 05: A car travels 50 km by the speed of 60 km/h and the next 50 km by the speed of 
120 km/h. What is its average speed?  
  
Solution: Using a primitive average (60+120)/2 is wrong! The proper definition must be 
employed: <v> = Σsi/Σti = 100*60/75 = 80 km/h 
 
Problem 06: As could be seen from another boat flowing with the current our boat travels 
with a velocity vl = 1.85 m/s to the North perpendicular to the current. Tom standing on a 
shore sees the current to flow with the velocity vp = 1.2 m/s to the West. What is the velocity 
of our boat seen by him? 
 
Solution: He sees it traveling to the North-West under an angle φ to the West. Vectors of the 
velocity of the boat and the velocity of he current are perpendicular, so φ = arctg(vl/vp) = 
arctg(1.54) = 57.03 ̊. v=2.2051 m/s 
 
Problem 07: The coordinate of a particle can be described by the equation  
x(t) = 2.1 t2 – t + 2.8. 
a) What kind of motion is it?  
b) After how long is the speed zero? 
c) What is the speed after 5 s? 
d) What is the coordinate after 3 s? 
e) What is the average speed between 3 and 5 s?  
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Solution: ab) v(t) = dx/dt = 4.2t–1, a(t) = dv/dt = 4.2 , v(t0) = 4.2 t0–1=0 uniformly slowing up 
to t0=1/4,2=0,2381s then uniformly accelerated.  
cd) v(5) = 4.2*5–5 = 9.5 m/s c) x(3) = 2.1*9–3+2.8 = 18.7 m; x(5) = 50.3 m.  
e) <v>  = (x(5) –x(3))/(5-3)  = 15.8 m/s. 
 
Problem 08: Two cars start from two places 100 km apart approaching each other by the 
speeds 20 ms-1, respectively 30 ms-1. Where and when they meet? Try also graphical solution. 
 
Solution: The equations of their motion xa(t)=20t; xb(t)=100000-30t; Their solution use the 
fact that if they meet it has to be at the same time and in the same point, so both equations 
must hold together t(xa=xb)=2000 s 
 
Problem 09: The driver of a car driving by a speed of 108 km/h notices a police radar ahead. 
He starts to brake with the acceleration of a = –2,5 ms-2. When his car really starts to slow 
down the radar is just 100 m ahead. What speed will be measured? 
 
Solution: From the formulas for x(t) and v(t) we eliminate time: v2 = v1 + a(t2 - t1) → (t2 - t1) = 
(v2 - v1)/a → x2 = x1 + v1(t2 - t1)  + a/2 (t2 - t1)2 → d = x2 - x1 = v1(v2 - v1)/a + a/2 ((v2 - v1)/a)2 = 
½ a (v2

2 – v1
2) → v2

2 = 2ad + v1
2 = 72 km/h 

 
Problem 10: Estimate how fast must the air-bag inflate to help a driver driving at the speed of 
108 km/h, which stops at 1 m after crushing?  
 
Solution: The average acceleration is a = (v2

2 – v1
2)/2d = -450ms-2 → dt = (v2 – v1)/a =  

0.0666 s. It is particularly the acceleration what kills! 
 
Problem 11: What are the period T, the frequency f, the angular speed ω and the 
circumference speed v of points on the equator and on the 50th and 60th parallel? 
 
Solution: T=86400s; R=6378km; Equator: OE=40000km; vE=1666km/h=463m/s; At the 
parallel φ: O(φ)=OEcos(φ); O(50)=OEcos50=40000*0.463=25712; v(50)=1071km/h=298m/s; 
Earth parameters: Tsiderial=23h56m4.09s=86164s; tropics ~23.27˚; polar circles ~66.33˚ 
 
Problem 12: An axis at rest starts to rotate with the constant angular acceleration ε = 2s-2. 
After how long the centripetal acceleration reaches four times the value of the tangent 
acceleration? Is it necessary to know the diameter? 
 
Solution: It is the case of uniformly accelerated rotation so at=εr and 
ac=ε2t2r→ε2t2r=4εr→t2=4/ε 
 
Problem 13: The crank arm of a bicycle has the length r = 171 mm, the front gearwheels 
have from 22 to 54 teeth and rear freewheels have from 9 to 36 teeth. That allows for a great 
span of gear ratios. What is the distance the rear wheel of diameter D = 696 mm travels at one 
rotation of the pedal crank arm when the gear ratio 1:1 and 54:9? How high would the ‚High 
bicycle‘ have to be? 
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Solution: The circumference speed of the wheels connected by a chain is constant. Moreover 
the circumference of a gearwheel is proportional to its number of teeth as well as its radius or 
the diameter.: Let ω be the angle velocity of pedals and the front gearwheel and Ω the angle 
velocity of the freewheel and the rear wheel and z, Z the respective number of teeth then 
ωz=ΩZ!; Since z is proportional to the respective radius or circumference → Ω=ωz/Z; For the 
ratio 1:1 Ω=ω; p=R/r=2.03 and the distance L1=2.187m. For the ratio 54:9 Ω=6*ω; 
p=zR/Zr=12.2; L1=13.1m. In this case the ‚High bicycle‘ would have to have the diameter 
DD=4.2m! 
 
Problem 14: A little puppet with the mass of m = 100 g is hanging on a string on the mirror 
of a car.  
a) What is its force on the mirror at rest? 
b) Later the car uniformly accelerates on a horizontal road so the puppet is inclined by 6° 
from the vertical. What is the acceleration of the car? 
c) What is the force on the mirror now? 
 
Solution: The string is stretched always in the direction of the resulting force.  
a) At rest it is vertical and the force is the weight G=mg=1 N;  
b) a/g=tgφ → a=g.tgφ≈g.φ=1.05 m/s2;  
c) Since here the force of gravity and inertia are perpendicular we can use Pythagoras law 
G≈>1N. 
 
Problem 15: A child on a merry-go-round rotates on a circle of the radius 5 m and the string 
that holds him is inclined 30° from the vertical. What is the angular speed of the merry-go-
round? 
 
Solution: tgφ = ac/g = ω2r/g → ω = sqrt(g.tgφ/r) 
 
Problem 16: A body with the mass of m = 2 kg is hanging on a string over a pulley. The 
influence of the pulley and string can be neglected. We act on the string by a force. What 
happens if  
a) F = 0,  
b) 0 < F < mg,  
c) F = mg  
d) F > mg?  
e) Can the acceleration bigger than the free-fall g be reached? 
 
Solution: We use the concept of dynamic equilibrium F+F*=mg → The inertial force F* = 
mab = mg-F → ab=(mg-F)/m  
a)  F=0 → ab=g Free-fall.  
b) 0<F<mg ab=(mg-F)/m<g slowed free-fall. 
c) F=mg → ab=0. The body moves uniformly or is in rest.  
d) The body accelerates upward ad<0.  
e) This can’t be reached applying force on a string over a pulley. The force has to act directly 
on the body, be vertical and (its component) point downward. 
 
Problem 17: Two bodies hang on a string over a pulley. The influence of the pulley and 
string can be neglected. The body on the left has the mass m1 = 3 kg, the body on the right has 
the mass m2 = 2 kg. How the system moves when the string is released? What if there was 
some initial speed?  
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Solution: Since there is a non-zero resulting force of gravity the system is uniformly 
accelerated. If the influence of the pulley, bearings and the string can be neglected then the 
force stretching the string on both sides of the pulley are the same. So in analogy with the 
previous problem we can write for the left side m1g=m1a+F and for the right F=m2g+m2a after 
excluding F we get the acceleration a=(m1- m2)/(m1+m2). The heavier body accelerates 
downward the other upward. If the initial speed it opposite to the acceleration the system first 
slows down, stops and then moves the same way as it would move from the rest. 
 
Problem 18: A toy railway has three wagons with masses m1 = 10 kg, m2 = 5 kg, m3 = 5 kg 
and an engine which pulls the first wagon behind it by the force of 40 N. The first wagon 
pulls the second and that pulls the third one. The rails are horizontal. How will the train 
move? What are the forces that pull the individual wagons if we neglect all resistance forces? 
 
Solution: The total mass is m=20 kg so the uniform acceleration of the train is a=F/m=2 m/s2. 
If a force Fi acts on the i-th wagon a part of it accelerates this wagon and Fi+1 pulls the rest of 
the train. Generally we can write Fi+1=Fi – a.mi. So the forces are F1=40N, F2=20N and 
F3=20N. 
 
Problem 19: A body with the mass of m = 2kg is pulled from the rest by a constant horizontal 
force F = 40N on a horizontal plane. How it moves if  
a) the friction can be neglected? 
b) The coefficient of friction is μ = 0.2? 
 
Solution: a) aa=F/m; 
b) ab=(F-μmg)/m Friction acts always opposite to the speed. This has to be taken into account 
if there is some initial speed. 
 
Problem 20: A body with the mass of m1 = 3kg is at rest on a plane inclined from the 
horizontal direction by α = 30˚. It is connected by a string over a pulley with another body 
with the mass of m2 = 2kg which hangs freely. The influence of the pulley and string can be 
neglected. How will the system move after being release if  
a) the friction can be neglected? 
b) the coefficient of friction is μ = 0.1? 
 
Solution: If the string and pulley can be neglected the force in the string is everywhere the 
same. 
a) Only the component of weight parallel with the inclined plane has to be taken into account. 
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b) The hanging body prevailed the body on the inclined plane. This is not the general case but 
when considering friction this can’t change. In the worst case the resulting force will not be 
enough sufficient and the system stays at rest.  
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Problem 21: A cheap mallet consists of a metal part with a shape of a cylinder of the 
diameter 10 cm and mass m1 = 1.5 kg and a wooden handle a much thinner cylinder 20 cm 
long with the mass of m2 = 0.5 kg. The handle is glued to the perimeter of the metal part in its 
middle so the rotation axes are perpendicular. Where is the center of mass of this mallet? 
 
Solution: The general formula for the center of mass of a system of several particles is 

∑
∑=

i

ii
C m

rm
r


  

Formally the same formula can be used for the center of mass of a body consisting of smaller 
parts if we know their masses and centers of mass. 
Due to the symmetry our problem is one dimensional. We can coincide the x-axis with the 
axis of the handle and place the origin into its centre of mass. Then: 

cmxC 25.11
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The center of mass is in the metal part 11.25 cm from the c.o.m. of the handle. 
 
Problem 22 (Torque): When we have to use a scale with unequal arms we can find the 
correct weight by measuring twice. When we put the body of unknown mass m to the left we 
have to balance it by the weight of m1 = 330 g on the right. When we put the unknown body to 
the right we have to balance it by the weight m2 = 920 g on the left. What is the unknown 
mass m? 
 
Solution: The scales compare torque of the bodies on the left and on the right which try to 
rotate it in opposite sense. If the length of the left arm is a and of the right one b we can write: 
mga = m1gb and m2ga = mgb ⇒ m = sqrt(m1m2 = 551g) – geometrical average. 
   
Problem 23: Peter whose mass is mP = 60 kg is standing at rest on a 'long-board' with a mass 
of mB = 20 kg and Paul is standing on a ground. Suddenly Peter starts to run on his board. 
What will be the velocity of the board when Peter reaches the speed of vP = 4.2 m/s relatively 
to Paul? 
 
Solution: If any external influence can be neglected the total linear momentum of the system 
Peter-board must be constant, in our case zero. So: 0 = pP + pB = mPvP + mBvB ⇒ vB = -
vPmP/mB = -12.6 ms-1. The minus sing means obviously that the board has an opposite velocity 
than Peter! 
 
Problem 24: Peter whose mass is mP = 60 kg is standing at rest on the circumference of a 
circular disk, that can rotate around its axis, with the diameter d = 6 m and the angular 
momentum J = 1800 kgm2 and Paul is standing on a ground. Suddenly Peter starts to run on 
the disk along the circumference. What will be the angular speed of the disk when Peter’s 
velocity reaches vP = 4.2 m/s relatively to Paul? 
 
Solution: If any external influence can be neglected the total angular momentum of the system 
Peter-disk must be constant, in our case zero. So: 0 = bP +bd = mr2(vP/r) + Jωd ⇒ ωd = -mrvP/J 
= -0.42 rads-1. The minus sing means obviously that the sense of the rotations of the disk is 
opposite to the sense of Peter’s motion! 
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Problem 25: A body of the mass m1 = 3 kg hangs on a string from a pulley. On the other side 
hangs another body with the mass of m2 = 2 kg. The influence of the string and resistance in 
bearings can be neglected and the bodies are held at rest. What will be the motion after the 
system is released?  
a) If the influence of the pulley can be neglected? 
b) If the pulley is a cylinder with the mass of m3 = 1 kg and r = 10 cm? 
 
Solution: In either cases the heavier body will move down uniformly accelerated.  
a) If the influence of the pulley can be neglected then the stress forces on both sides are equal: 
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b) The weight of the heavier mass must also rotate the pulley: 
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Problem 26: A star with the mass of twice that of our Sun and a radius r1 = 7.105 km rotated 
with the period of 10 days (T1 = 864000 s). What will be the frequency of rotation of it has 
collapsed to r2 = 10 km? 
 
Solution: If we suppose that the mass change can be neglected the angular momentum 
conserves: 
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Problem 27: Adam with the mass of mA = 75 kg sits on o bench at the distance 50 cm from 
Beata with the mass of mB = 50 kg. What is the force of gravity between them? What is the 
acceleration? 
 
Solution: The force of gravity attracts all bodies that have non-zero mass. Forces acting on 
Adam and Beata have the same magnitude and opposite direction. From Newton’s law: 
|F|=1.10-6 N. But the acceleration depends on the mass and is not the same ap=1.334.10-8 ms-2; 
ab=-2.10-8 ms-2. 
 
Problem 28: The gravitational acceleration is g = 9.83 m/s2. Estimate the mass and density of 
the Earth if RE = 6378 km? 
 
Solution: The gravitational acceleration near the surface of the Earth is equal to the intensity 
of the field of gravity. So we use the Newton’s law: 
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Problem 29: The gravitational acceleration on the surface of our Moon? What would be the 
difference between the body on the Earth and the Moon? 
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Solution: The scales measure the force of gravity. Usually it is used on the Earth so it can be 
calibrated directly in mass units. κ = 6.67.10-11 Nm2kg-2; MM = 7,342.1022 kg; RM = 1,737.106 
m 
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Problem 30: A sphere of the mass of m = 10 kg is pushed the distance s = 20 m up the plane 
inclined from the horizontal direction by the angle 30o. What work has to be done and what 
potential energy the body gains? Compare cases  
a) without friction 
b) with the friction coefficient of μ = 0.1? 
 
Solution: a) If friction can be neglected the potential energy gain is equal to the work 
ΔEp=F.s= s.G.sinα=Gh=mgh=1 kJ.  
b) In the real case part of the work is changed to the thermal energy by friction and dissipated. 
So the work must be higher by ΔW=s.Fd=s.μ.G.cosα=20.0.1.100.sqrt(3/4)=173J.  
So the work 1173 J is done but only 1000 J can be in principle used back. 
 
Problem 31: We compress a spring with the stiffness of  k=100 N/m from the equilibrium by 
s = 1 cm.  
a) What is the average force we have to put in?  
b) What work has to be done?  
c) What potential energy will the spring gain? 
 
Solution: A spring has a special shape so that even relatively large deformations stay elastic 
and a simple direct proportionality relation between the force and deformation holds F(x)=kx. 
a) The average force is <F>=(F(x2)-F(x1))/2=0.5N.  
b) We can use the average force W=<F>s=5 mJ but more general and elegant is to integrate: 
dW=kxdx⇒W=kX2/2=5 mJ.  
c) If loses can be neglected the deformation work is equal to the gain of the potential energy. 
 
Problem 32: Where and at what distance from the Earth surface must the geostationary 
satellite move? What is its potential energy? 
 
Solution: The geostationary satellite has to rotate around the Earth axis with the same angular 
velocity. Since it is also a satellite it must rotate in a equator plane. When κ = 6.67.10-11 
Nm2kg-2; 
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Problem 33: The shot has the mass of m = 7.5 g. From the barrel 120 mm long it leaves with 
the speed of 390 m/s. 
a) What is its kinetic energy and what was the average force that acts on it during its flight 
through a barrel? Part of the energy of the gun-powder is dissipated and the shot also. 
b) How high it would climb if it was shot perpendicularly up? 
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Solution: a) The kinetic energy Ek=mv2/2=570J=s.Fp⇒Fp=Ek/s=4.75 kN. 
b) If loses are neglected we use the conservation of energy Ep=Ek⇒h=v2/2g=7605m 
  
Problem 34: The shot from the previous problem hits the ballistic pendulum with the mass  
M = 1 kg and stays in it. What will be the displacement angle? 
 
Solution: If the shot stays in the pendulum the linear momentum is conserved. Then we use 
conservation of kinetic and potential energy: V=mv/(m+M)=2.9m/s⇒h=V2/2g=0.42m. 
 
Problem 35: When the Cu anode of an X-Ray tube is heated and electron is released with 
negligible kinetic energy. Then it is accelerated towards the anode by a voltage difference of 
100 kV. What kinetic energy and what speed it gains? 
 
Solution: From the definition of potential Ek=Ep=qeU=100keV=1.6.10-19.105=1.6.10-14J. The 
speed calculated classically v=1.88.108m/s. It is almost 2/3 of c so the relativistic formula 
E=mc2 must be used as a basis for accurate calculation. 
 
Problem 36: What is the ratio of the submerged volume of an iceberg with the density  
ρi = 920 kg.m-3 in a see water with the density of ρw = 1025 kg.m-3? 
 
Solution: Let Vi be the volume of the iceberg and Vw=kVi volume of water displaced by the 
iceberg. According to Archimedes principle Vi ρi = kVi ρw =Vw ρw = m. so the ratio is k = ρi /ρw 
= 920/1025 = 0.9 
 
Problem 37: A balloon with the weight m = 1800 kg is descending with the acceleration  
a = 0.5 ms-2. What load has to be released to stop the descending? 
 
Solution: Should the descending be stopped, the buoyant force must be equal to the new 

weight : kg
g

mamgmmmamgFv 90)( ==∆⇒∆−=−=  

 
Problem 38: Hiero II, the king of Syracus ordered Archimedes to find out whether his new 
crown is really golden. Archimedes found out that the crown weights m = 14.7 kg in the air 
and in water with the density ρV = 1.103 kg/m3 weights mv = 13.4 kg and knew that the density 
of gold is ρAu =19300 kg.m-3. Is the crown golden?  
 
Solution: V = m/ρx; V = mv/(ρx – ρV) ⇒ ρx = ρV m/(m-mv) = 11308 kgm-3. The crown is 
probably lead. The double-weighing method is used to find out density of stuff that has 
irregular shape. 
 
Problem 39: What is the total force acting one side of an aquarium? The side is h = 1 m high 
and w = 3 m wide. 
 
Solution: Pressure of water depends on the current depth, so we have to integrate by strips dx 
high and w wide: 
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Problem 40: An airplane flying horizontally has the mass of m = 2.106 kg. The area of its 
wings is S = 1200 m2 and the density of air is ρ0 = 1.2928 kg/m3. The speed of air flow around 
the lower surface of the wings is vL = 100/s. What must be the speed of the flow around the 
upper surface vU? 
 
Solution: The pressure difference acting on the lower resp. upper surface of the wings must be 
equal to the weight of the plane. Since the plane flies horizontally we use Bernolli's equation 
with the potential energy terms cancelled:   
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Problem 41: Water flows down from a faucet of the cross section of S1 = 1.2 cm2. A 45 mm 
lower the cross section decreases to S2 = 0.35 cm2. What is the flow speed from the facet v1 
and what is the flow-rate Q? Try to outline the general dependence. 
 
Solution: We expect that there is atmospheric pressure around the stream:  
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v1=0.286 m/s, Q=34 ml s-1 
 
Problem 42: Water flows vertically up the fountain jet with the cross section of S1 = 4 cm2 
with the flow-rate of Q1 = 1 L/s. What will be the cross section S2 and flow speed v2  
Δh=20 cm above the jet? 
 
Solution: The exactly same equation as in the previous problem can be used: v1=2.5 m/s, 
v2=1.5 m/s, S2=6,66cm2 
 
Problem 43: How long L1 can a steel string hanging vertically be so it doesn't break by its 
own weight?  
b) How long L2 it can be if its cross section is S = 3 mm2 and there is a load of m = 60 kg on 
its end? The density of steel is ρ = 7.8.103 kg/m3 and a peek stress σmax = 3.14.108 Pa? 
 
Solution: We can assume the string breaks close to its upper end since there all the weight is 
supported and derive a formula for the second more general case:  

Sg
mgSL
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L
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MAX ρ
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ρ
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L1=4026m, L2=1461m 
 
Problem 44: The steel string is L = 100 m long, its density is ρ = 7.8.103 kg/m3 and Young's 
modulus E = 2.1010 Pa. It hangs vertically by one of its ends. What is its prolongation by its 
own weight? 
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Solution: Since there is different stress along the length we have to integrate. Let define 
vertical axis x with the origin at the free end of the original un-deformed string. A piece of the 
length be dx is prolonged by dl(x) that depends on the weight of the string below. We assume 
to be in the range of proportional deformation. So Hook's law holds and for dl(x) we get : 

E
gxdxxdl

E
gx

ES
gSx

dx
xdlx

dx
xdlE ρρρσ =⇒==⇒= )()()()(  

So the total prolongation ΔL we get by integration i.e. by adding pieces dl(x) over the original 
length of the string: 
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Problem 45: A pump of a house hot-water heating system is placed in the basement. It pumps 
water under a pressure of 3 atm, at a speed of 0.5 m/s through a pipe with the inner diameter 
of 4 cm. What will be the pressure and speed in a pipe with the inner diameter of 2.6 cm on 
the second floor 5 m above? 
 
Solution: Let's assume the pipes are not branched. Then from the principle of continuity: 
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 We use Bernoulli's equation with h1=0  
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Problem 46: Water level is 10 cm above the bottom in a cylinder with the cross section of  S1 
= 50 cm2. How long it takes since half of the volume leaves by a hole at the bottom with the 
cross section of S2 = 5 mm2? 
 
Solution: We define a vertical y axis with the origin at the bottom of the cylinder. Although 
S1>>S2 in this problem we can't neglect motion of the level v1: 
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Quite contrary we have to find out its dependence on the current level v1(y). 
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Problem 47: A homogeneous disk of the mass of m = 3.4 kg and diameter d = 60 cm can 
rotate around a horizontal axis fixed to a point at its circumference. Find the period T of its 
oscillations and its reduced length? 
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Solution: This is typical case of a physical pendulum: 
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Problem 48: A whale sends ultrasonic impulses with the frequency of f = 200 kHz. The 
compression modulus of water is B = 2.109 Pa and its density ρ= 1025 kg/m3.  
a) What is the speed of these (sound) waves?
b) What is their wavelength? How long it takes till the signal returns from an obstacle which
is at a distance of d = 100 m?

Solution: s
c
dm

f
cm sBc 1.0;1 0.7;1 0.4.1 313 ====== −− τλ

ρ

Problem 49: Our Sun emits light whose peak intensity is in the visible region at around 500 
nm. How does this wavelength change in diamond if the refraction index of a diamond is n = 
2.419. 

Solution: When radiation passes through an interface of two media its frequency stays 
constant while the speed of the waves and thereby the wavelength may change accordingly. 
f=c/ λ0=v/ λ; λ0=500 nm; λ= λ0/n=206.7 nm. In the air that would be in UV region but in 
diamond it is not since even the UV waves become shorter. 

Problem 50: Our Sun emits light whose peak intensity is in the visible region at around 500 
nm. What is its surface temperature? 

Solution: According to Wien's law T=2.9.10-3/500.10-9=6000K 

Problem 51: A light monochromatic wave has the wavelength of λ = 650 nm. What is the 
energy of its photons? Could this light be absorbed by Hydrogen atom?  

Solution: According to Planck law E(eV)=1240.7/650=1,91 eV. Using Bohr’s the energy 
levels are E(n)=-13.6/n2 and the first three energies: E1=-13.6eV, E2=-3.4eV; E3=-1.51eV 
→1.9eV doesn’t correspond to any of energy differences between them. If the wavelength
was λ=656.3nm its energy would be 1.89 eV which corresponds to the E2 to E3 absorption.

Problem 52: Through a piece of conductor with the resistance of R = 5 Ω, the charge of 
Q = 40 C passed within the time interval τ = 16 s. What work had to be done if the current 
decreased uniformly to zero during this time? Who did the work and where is the 
corresponding energy? 
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Solution:  
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This work could have be done by a specially programmed power source and has changed into 
the thermal energy. 
 
Problem 53: What is the current in the following diagram? What power is brought to the 
circuit by each of the power sources? What is the voltage difference in the points A, B, C, D 
and the point E? Note that the resistors Ri1 and Ri2 are the internal resistors of the respective 
power sources. 
 

 
 
 

 

 
Solution: The circuit has only one loop and the power sources are connected against each 
other. So since the sum of all resistors R=9Ω, the current is 2A going counter-clockwise. The 
voltage on each of the resistors follows Ohm’s law. The polarities are given by the current 
orientation and are denoted by the + signs. So UA=2V; UB=-14V; UC=-12V; UD=-4V; UE=0V. 
The first power source brings U1I=48W into the circuit, U2I=12W charges the second power 
source and the rest RI2=36W is dissipated into heat on the resistors. Note that separation of a 
real power source into the ideal voltage and the ideal inner resistance in series is a model. The 
inner point of this model can't be reached from outside and doesn't even exist. 
 
 
Problem 54: Between two conductor plates with the area of S = 200 cm2 there is a slab 1 mm 
thick made of glass with the relative permitivity εrs = 7. On its both surfaces there is a thin 
layer of paraffin 0.2 mm with the relative permitivity of εrp = 2. What is the capacitance of 
this capacitor?  
 
 
 
 
 

 R1=1 Ω                            R3=2 Ω 

U1=24 V  Ri1=4 Ω       R2=1 Ω      Ri2=1 Ω   U2=6 V  

 

 

   

    A                       +   B            +  C             +            D      

                  +                     E             + 
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Solution: If boundary effects can be neglected the electric field lines are perpendicular to all 
the surfaces which are equipotential. So the total capacity is the same as the capacity of three 
capacitors in series. One has 1 mm of glass and the two other 0.2 mm of paraffin: 
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Problem 55: A simple capacitor with two conductive plates and a slab of dielectric material 
with the relative permitivity εr = 5 between them has a capacity of C1 = 500 pF. It is charged 
to 5 kV and disconnected from the power source. What work has to be done to remove the 
dielectric slab?  

Solution: If the power source is disconnected the charge on the capacitor is conserved (unless 
we discharge it by bad manipulation). The capacity of a simple capacitor is directly 
proportional to the relative permitivity. Removing the slab decreases the capacity and 
increases energy so work has to be done. If the power source was not disconnected it would 
keep constant voltage on the capacitor and removing the slab would decrease the energy so 
the slab would jump out: 
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Problem 56: A capacitor consists of two conductive plates of the area S = 500 cm2 1 cm apart 
is charged to 5 kV and disconnected from the power source. What work has to be done to 
increase the distance of the plates to 4 cm? 

Solution: If the power source is disconnected the charge on the capacitor is conserved. The 
capacity of a simple capacitor is indirectly proportional to the distance of the plates. By 
increasing of this distance the capacitance decreases so the energy increases so work of the 
external agent has to be done to achieve this: 
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Problem 57: Capacitors C1 = 4 μF, C2 = 8 μF, C3 = 4 μF, C4 = 3 μF and C5 = 3 μF are 
connected according to the diagram. This combination is charged by the power source with 
the voltage U = 6000 V. What is the energy, charge and voltage on each of the capacitors and 
the whole combination? 
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Solution:  
C12=C1+C2=12 μF, C45=C4+C5=6 μF, 1/C=1/12+3/12+2/12=6/12 → C=2 μF → 
Q=CU=12mC=Q12=Q3=Q45 → U12=1000V, U3=3000V, U45=2000V → Q1=U12C1=4mC, 
Q2=U12C2=8mC, Q4=U45C4=6mC=Q5. E=QU=12mC*6kV=72J, Ei=QiUi=(4;8;36;12;12)J 
 
Problem 58: When charging an accumulator the voltage and current values are  
U1 = 6.35 V and IC = 4 A. Later when discharging the same accumulator the values change to 
U2 = 5.65 V a ID = 6 A. What are the parameters of the accumulator? What is the energy 
balance during charging and discharging? 
 
Solution: Although an accumulator has many important parameters describing its capacity, 
self-discharging etc. Here we assume just a simple model of electromotoric voltage UE in 
series with the internal resistance RI. The voltage on the internal resistance corresponds to the 
direction of the current so the voltage on the terminals must be higher during charging then it 
is in the case of discharging. However there is an energy loss on the internal resistance in both 
cases.  
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During charging part of the power U1*IC=25.4 W of the power source RI*I2
C=1.12 W is 

dissipated and the rest conserved in the accumulator. During discharging, from the power of 
the accumulator UE*ID=36.42 W another part of the previously conserved energy  
RI*I2

D=2.52 W is dissipated. The effective storage of energy is a big issue! 
 
Problem 59: If a proton flies horizontally to the North there is no force acting on it. If it flies 
vertically up with a speed of 5.106 m/s a force of the F=8.10-14 N directed to the West acts to 
it. What is the magnitude and direction of the vector of the magnetic induction B


? 

 
Solution: We use Lorentz formula BvFm


×= : The direction of B


 is horizontally to the North 

and the magnitude is B=F/qv=0.1T 
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Problem 60: Two kind of ions fly through the velocity filter that has magnetic induction B1 
and perpendicular electric intensity E to a main chamber of a mass spectrometer with the 
magnetic induction of B2. Particles of the inner standard 12C: mC = 12.0 mu move on a circle 
with the radius of rC = 22.4 cm and unknown ions on a circle with rX = 26.2 cm. How do 
these machines work? What are probably the unknown particles? 
 
Solution: From the equilibrium in the velocity filter: qE=FE=FM=qvB1⇒ v=E/B1. In the mass 
spectrometer mv2/r=qvB2 ⇒ m=qB2r/v=qB1B2r/E ⇒ mX/mC=rX/rC ⇒ mX=14.036 mu. The 
unknown particles have the mass number 14, so it could be 14N or 14C or 14O. To decide 
which of them would desire finer resolution and/or chemical separation/analysis 
 
Problem 61: What will be the total voltage U on a conductive rod with the length of L = 1.5m 
that moves perpendicularly to B of the homogeneous magnetic field with the induction B = 
0.2 T? 
 
Solution: A magnetic force acts on the charges within the rod pushing them to one end. This 
causes a build-up of electric field and the electric force acts in the opposite direction. This 
leads to the equilibrium: qvB=qE=qU/L ⇒  U=BvL=0.6 V 
 
Problem 62: What will be the speed of a conductive rod of the length of L = 1.5 m in 
homogenous magnetic field with the induction of B = 0.2 T if a voltage of U = 0.6 V is 
connected to its ends? 
 
Solution: A force depending on the current flowing through the rod acts on it: F=BLI. At the 
same time voltage on the speed of the rod is induced on its ends. The orientation is directed in 
the opposite sense then is the voltage of the power source UE(v)=BvL. The total current and 
thereby the force depend on the speed of the rod: I(v)=[U-UE(v)]/R, F(v)=BLI(v). If there is no 
mechanical resistance on the rod it motion will reach equilibrium speed so that both the total 
current and total force are zero: v=U/BL=0.6/(1.5.0.2)=2m/s. Compare this with the previous 
problem! 
 
Problem 63: What will be the total voltage U on a rotating conductive rod with the length of 
L = 1.5 m that rotates around its end with the period of T = 0.5 s in a homogeneous magnetic 
field with the induction B = 0.2 T? 
 
Solution: Each piece of the rod dr moves with different speed depending on its radius of 
rotation r so we have to integrate over all such pieces: 
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Rotating generator is easier to accomplish since the homogeneous field can be relatively 
small. 
 
Problem 64: Two beams of monochromatic light with the wavelength of λ = 550 nm fly in 
parallel and are in-phase. What will be their phase difference if one of them passes a slab with 
the refraction index of n = 1.6 and the thickness if d = 2.6 μm? What would change if the slab 
was of diamond?  
 
Solution: Δφ=2πd(n-1)/λ=17.821rad;Δφ0=mod(Δφ,2π)=5.255;nC=2.419;ΔφC=42.177rad 
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Problem 65: To what depth of water with the density of ρ0 = 1.05 gcm-3 and temperature  
t = 20 °C it is necessary to submerge a elastic balloon filled with Krypton M = 85 g/mol so it 
will not come out? 
 
Solution: The density of the Krypton compressed in the balloon depends on the surrounding 
pressure so we have to find at what depth it reaches the density of surrounding water: 
ρ(p(h))=ρ0: EOS: pV=nRT=mRT/M ⇒ ρ(p)=p.M/RT= ρ0ghM/RT ⇒ h= (ρ/ρ0).RT/gM.so 
specially for us h1= RT/gM =2.86 km 
 
Problem 66: A virus has a mass of 10-17g. In what height will its appearance be significant at 
Room Temperature of T = 300 K? 
 
Solution: A probability P~exp(-Epot/kT); The concentration of the virus is significant if the 
probability >1/e so the exponent <1: mgh<kT → h<kT/mg=41mm 
 
Problem 67: A wagon with the mass of m1=10 t moving with the velocity of v1 = 0.9 m/s 
collides with a wagon with the mass of m2 = 30 t at rest and the wagons connect at the 
moment of their collision.  
a) What will be their common velocity u? 
b) What would have to be the original velocity v2b of the second wagon so that after the 
collision both wagons are at rest? 
 
Solution: If the wagons (bodies) move together after the collision it is the case of inelastic 
collision.  
a) PA=p1=m1v1; PP=(m1+m2)u1; PA=PB⇒ u1=m1v1/(m1+m2)=0.225 m/s 
b) We want PP=0 ⇒ 0=PA=m1v1+m2v2b⇒ v2b=-m1v1/m2=-0.3 m/s. The wagons must move in 
opposite directions. 
 
Problem 68: An iron beam with the length of L = 20 m and the mass of m1 = 1500 kg is 
supported at its ends by concrete pillars of the height h = 5 m. In ¼ of its length it supports a 
machine of the mass m2 = 15000 kg. The maximum stress of concrete is pull is 2.106 Pa, in 
push 2.107 Pa and Young modulus 2.1010 Pa. The safety factor is sf=6. 
a) What must be the minimum cross section of the pillars so that they are not overloaded? 
b) What will be the deformation of the pillar with higher load? 
 
Solution: The static equilibrium desires that the sum of all forces and the sum of all torques 
are zero (vectors). Let the supporting force on the left be F1, on the right F2 and the heavy 
machine closer to the right one. Apparently, there will be more load on the right pillar so we 
can consider just this one and the other one will be over-designed, so we can calculate the 
torques relatively to the left supporting point. 
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