
B Problem Sets

B.1 Problem Set 1: Geometry and Dynamics

1. De Sitter Space

(a) Show in the context of expanding FRW models that if the combination ⇢ + 3P is always

positive, then there was a Big Bang singularity in the past. [A sketch of a(t) vs. t may be

helpful.]

(b) Show that the line element for a positively curved FRW model (k = +1) with only vacuum

energy (P = �⇢) is

ds2 = dt2 � `2 cosh2(t/`)
⇥
d�2 + sin2 � d⌦2

⇤
.

Does this model have an initial Big Bang singularity?

2. Friedmann Equation

Consider a universe with pressureless matter, a cosmological constant and spatial curvature.

(a) Show that the Friedmann equation can be written as the equation of motion of a particle

moving in one dimension with total energy zero and potential

V (a) = �4⇡G

3

⇢m,0

a
+

k

2
� ⇤

6
a2 ,

where ⇤ ⌘ 8⇡G⇢⇤ = const, ⇢m,0 ⌘ ⇢m(t0) and a0 ⌘ a(t0) ⌘ 1. Sketch V (a) for the

following cases: i) k = 0, ⇤ < 0, ii) k 6= 0, ⇤ = 0, and iii) k = 0, ⇤ > 0. Assuming

that the universe “starts” with da/dt > 0 near a = 0, describe the evolution in each case.

Where applicable determine the maximal value of the scale factor.

(b) Now consider the case k > 0, ⇤ = 0. Show that the normalization of the scale factor,

a0 ⌘ 1, implies k = H2
0 (⌦m,0�1). Rewrite the Friedmann equation in conformal time and

confirm that the following is a solution

a(⌘) =
⌦m,0

2(⌦m,0 � 1)

h
1� cos(

p
k⌘)

i
.

Integrate this result to obtain

t(⌘) = H�1
0

⌦m,0

2(⌦m,0 � 1)3/2

hp
k⌘ � sin(

p
k⌘)

i
.

Show that the universe collapses to a ‘Big Crunch’ at tBC = ⇡H�1
0 ⌦m,0(⌦m,0 � 1)�3/2.

How many times can a photon circle this universe before tBC?
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132 B. Problem Sets

3. Flatness Problem

Consider an FRW model dominated by a perfect fluid with pressure P = w⇢, for w = const.

Let the time-dependent density parameter be

⌦(t) ⌘ ⇢(t)

⇢crit(t)
,

where ⇢crit(t) ⌘ 3H2/8⇡G. Show that

d⌦

d ln a
= (1 + 3w)⌦(⌦� 1) .

Discuss the evolution of ⌦(a) for di↵erent values of w.

4. Einstein’s Biggest Blunder

(a) Consider a universe filled with a perfect fluid with ⇢ > 0 and P � 0. Show there is no

static isotropic homogeneous solution to Einstein’s equations.

(b) Now, consider a universe filled with pressureless matter (Pm = 0) and allow for a cos-

mological constant ⇤ in the Einstein equation, Gµ⌫ � ⇤gµ⌫ = 8⇡GTµ⌫ . Show that it is

possible to obtain a static solution if

⇤ = 4⇡G⇢m,0 .

However, show that this solution is unstable to small perturbations �⇢m ⌧ ⇢m.

5. Accelerating Universe

Consider flat FRW models (k = 0) with pressureless matter (Pm = 0) and a non-zero cosmolog-

ical constant ⇤ 6= 0, that is, with ⌦m,0 + ⌦⇤,0 = 1.

(a) Show that the normalised solution (a0 ⌘ 1) for ⌦m,0 6= 0 can be written as

a(t) =

✓
⌦m,0

1� ⌦m,0

◆1/3 ⇣
sinh

h
3
2H0(1� ⌦m,0)

1/2t
i⌘2/3

.

Verify that a(t) has the expected limits at early times, H0t ⌧ 1, and at late times, H0t � 1.

Hence show that the age of the universe t0 in these models is

t0 =
2
3H

�1
0 (1� ⌦m,0)

�1/2 sinh�1
h
(1/⌦m,0 � 1)1/2

i
,

and roughly sketch this as a function of ⌦m,0.

(b) Show that the energy density of the universe becomes dominated by the cosmological

constant term at the following redshift

1 + z⇤ =

✓
1� ⌦m,0

⌦m,0

◆1/3

,

but that it begins accelerating earlier at 1 + za = 2
1
3 (1 + z⇤).
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