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Similarly, whatever the nature of Planck-scale physics, it leads to some
effective continuum quantum field theory. This quantum field theory might
well be an accurate approximation to the underlying physics already at dis-
tances of 100 Planck lengths, corresponding to momenta of 1017 GeV. From
here to the scale of weak interactions, and from there up to the wavelength
of light, and from there to the size of the universe, quantum field theory can
be treated as the basic framework for the equations of physics. By recogniz-
ing the symmetries of the particular set of field equations that Nature has
provided us, we can learn to compute all of the details of physical processes
over this whole enormous domain. And, by contemplating the origin of these
symmetries, perhaps we will also be able to see through to the next level and
unlock the true structure of spacetime.
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Appendix

Reference Formulae

This Appendix collects together some of the formulae that are most
used in Feynman diagram calculations,

A.1 Feynman Rules

pPage 120. Finally, each diagram can potentiall
explained on page 93. ,

¢4theor:£:1 2 1 2.2 A

Scalar propagator: —_— = \i
p TP + de (4.1)
@* vertex: = —i) (A.2)

External scalar: — (A.3)

(Counterterm vertices for loop calculations are given on page 325 )

Quantum Electrodynamics: [ — - m)yp — 1(FL)2 - e@’y“zﬁAﬂ

Dirac propagator: —_— = \i(ﬁ )
p PorBin (A4)
Photon propagator: SANNAN T
- Pt (A.5)

(Feynman gauge; see nase 907 faw e v . -
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W
QED vertex: //5\\ = iQey" (A.6)
(Q = —1 for an electron)
>—<_ = 4*(p) (initial)
External fermions: p (A7)
>——>—— = 4°(p) (final)
p
>—->_ = 9°(p) (initial)
External antifermions: ~P (A.8)
>—<— = v°(p) (final)
p—>
|\/\/v\/\ =¢,(p) (initial)
External photons: R (A.9)
|\/\?9x_/:/\ =€,(p) (final)

(Counterterm vertices for loop calculations are given on page 332.)

Non-Abelian Gauge Theory:
L=9(if —m)yp — 18, A2 — 8,A2)% + g AZpy toyp
_ gfabC(aﬂAg)AubAuc _ %92(feabAZAg)(fechucAud)
The fermion and gauge boson propagators are the same as in QED, times
an identity matrix in the gauge group space. Similarly, the polarization of

external particles is treated the same as in QED, but each external particle
also has an orientation in the group space.

a,
Fermion vertex: = igy*t® (A.10)
a, ,,
9f**[g" (k — p)”
3-boson vertex: Py vk = + g (p — q)* (A.11)
b’y ;\ c,p +gpﬂ(q—k)y]
a, [ b’ v —i92 [fa,befcde (gypguo_guogup)

4-boson vertex:

+ facefbde (g;wgpcr_gpwgup) (A12)

e d,o + fode foee(ghv gPo —ghe gvo)]




= —1 for an electron)

— u*(p) (initial)

(A7)
=2°(p) (final)
= 7° initial
=00 e
:vs(p) (ﬁnal)
=€ initial
= €eu(p) (initial) (A9)

= €,(p) (final)

iven on page 332.)

JALPYHEY

a zb ecd Auc pvd

A ALt AR A5

the same as in QED, times

imilarly, the polarization of
), but each external particle

(A.10)
k—p)f
2 (p — q) (A.11)
(g —k)"]

~cde (gppgllo _guagvﬂ)
bde (g"* gP° —g"° g¥°) (A.12)

bee (g gP7 —g"Pg" )]

A2 Polarizations of External Particles
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b, u
Ghost vertex: ; = —gfabepr (A.13)
a"'% 'V.,.c
i8ab
Ghost propagator: Qoosvorons ; ........ b = = (A.14)

(Counterterm vertices for loop calculations are given on pages 528 and 532.)

Other theories. Fe

ynman rules for other theories can be found on the fol-
lowing pages:

Yukawa theory page 118

Scalar QED page 312
Linear sigma model page 353

Electroweak theory pages 716, 743, 753

A.2 Polarizations of External Particles

The spinors 4*(p) and v* (p) obey the Dirac equation in the form

0= (#=m)u*(p) = @*(p)(y — m)

s bz (A.15)
= (I +m)v’(p) = 5°(p) (P + m),
where p = 7#Pu- The Dirac matrices obey the anticommutation relations
{777} = 29, (A.16)
We use a chiral basis,
0 o+ -1 0
oo 5
where
o =(1,0), " =(1,-0). (A.18)

In this basis the normalized Dirac spinors can be written

“0-(36) vw-(E0).

where £ and 7 are two-component spinors normalized to unity. In the high-

energy limit these expressions simplify to

o[ H1—5-o)er R
u(p) ~ @(2 ), v(p) ~ \/55(-2(1 p. 0')7)3>' (A.20)

s(1+p-o)es
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Using the standard basis for the Pauli matrices,

1_(0 1 s (0 —i e i
0—(1 0), 0—<i 0), 0'—(0 _1>, (A.21)

we have, for example, £ = (§) for spin up in the z direction, and £° = (%) for
spin down in the z direction. For antifermions the physical spin is opposite to
that of the spinor: n° = ((1)) corresponds to spin down in the z direction, and
SO on.

In computing unpolarized cross sections one encounters the polarization
sums

Y w@E ) =g+m, Y @) (p)=F-m (A.22)

For polarized cross sections one can either resort to the explicit formulae
(A.19) or insert the projection matrices

) (). e

which project onto right- and left-handed spinors, respectively. Again, for
antifermions, the helicity of the spinor is opposite to the physical helicity of
the particle.

Many other identities involving Dirac spinors and matrices can be found
in Chapter 3.

Polarization vectors for photons and other gauge bosons are convention-
ally normalized to unity. For massless bosons the polarization must be trans-
verse:

e* =(0,¢€), where p- € =0. (A.24)
If p is in the +z direction, the polarization vectors are
1 1
e# = —(0,1,1,0), e# = —(0,1,—1,0), A.25
ﬁ( ) \/5( ) (A.25)

for right- and left-handed helicities, respectively.
In computing unpolarized cross sections involving photons, one can re-
place
Y. ge— ~gw, (A.26)

polarizations

by virtue of the Ward identity. In the case of massless non-Abelian gauge
bosons, one must also sum over the emission of ghosts, as discussed in Sec-
tion 16.3. In the massive case, one must in addition include the emission of
Goldstone bosons, as discussed in Section 21.1.
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Using the standard basis for the Pauli matrices,

- 01 2_ 0_1' 3_ 1 0
0_<1 0), 0—<¢ O), o—(o _1), (A21)

we have, for example, £° = (;) for spin up in the 2 direction, and ¢° = (9) for
spin down in the z direction. For antifermions the physical spin is opposite to
that of the spinor: n° = (é) corresponds to spin down in the z direction, and
SO on.

In computing unpolarized cross sections one encounters the polarization
sums

Y w@up) =F+m, > v (p)o(p)=g-m (A.22)
S S

For polarized cross sections one can either resort to the explicit formulae

(A.19) or insert the projection matrices

(1;75)7 (1—275>’ (A.23)

which project onto right- and left-handed spinors, respectively. Again, for
antifermions, the helicity of the spinor is opposite to the physical helicity of
the particle.

Many other identities involving Dirac spinors and matrices can be found
in Chapter 3.

Polarization vectors for photons and other gauge bosons are convention-
ally normalized to unity. For massless bosons the polarization must be trans-
verse:

e* = (0,¢€), where p - € = 0. (A.24)
If p is in the 42 direction, the polarization vectors are
1 1
e = —(0,1,1,0), e = —(0,1,—1,0), A.25
\/5( ) \/5( ) (A.25)

for right- and left-handed helicities, respectively.
In computing unpolarized cross sections involving photons, one can re-
place
Z 6;.61/ — —YGuv, (A26)

polarizations

by virtue of the Ward identity. In the case of massless non-Abelian gauge
bosons, one must also sum over the emission of ghosts, as discussed in Sec-
tion 16.3. In the massive case, one must in addition include the emission of
Goldstone bosons, as discussed in Section 21.1.
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A.3 Numerator Algebra

Traces of v matrices can be evaluated ag follows:
tr(l) =4
tr(any odd # of ¥'s) =0
br(y#y") = 4gmv
(Y 7Py7) = 4(grvgeo _ 929" + g7 gv)
tr(v%) =0
br(v*y*7%) = 0
(VY VP Y5) = —giemveo

(A.27)

(Y Py ) = (.- L i Y

| (A.28)
Contractions of 7 matrices with each other simplify to:
'7”7;4 =4
VY Y = —29¥
YV = 4gve 5

YAV Y = ~2y 7y
(These identities ap

ply in four di i ;
Contmcion imensions only; see the following section.)

€ symbol can also be simplified:

0, .
Ea,ﬁ"y Cagfyg =-24
3
€ e gy = —66~, A
o (A.30)

€afpoe = —2(6”,,6"0 — (5“06”p)
. In some calculations, it is useful to rearran
1y mealés of Fierz identities. Let uy, .
7(1 = 9%)u; be the left-handed j
rearrangement formula ig

ge p.roducts of fermion bilinears
-+, Uugq be Dirac spinors, and let Wit =

ion. Then the most important Fiery

127 uzr ) (i i
(ry Upp)(Uspy,uyr) = —(U1L’Y”U4L)(T73L7uU2L)- (A.31)

Additional formulae can b
€ generated b ing i
for the 2 x 2 blocks of Dirac matrices: R e fouowmg identities

(O"u apB\o = ’ o o
) 5( ﬂ).y,s 26a,y€,35, (Ou)ag(a‘#),yg = 26a7€g5. (A.32)

I}l non-Abelian gauge theories
matrices t* 7
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near x = —n. Here v is the Euler-Mascheroni constant, v ~ 0.5772. The

following combination of terms often appears in calculations:
d
r@2-2) ,1\2-% 1 /2
— = =—=(-—-logA — log(4 o , A.52
aee(z) (@nE\e AT HIEUM+0() ), (A52)
with e =4 — (. i
Notice that A is positive if it is a combination of masses and spacelike mo-
mentum invariants. If A contains timelike momenta, it may become negative.
Then these integrals acquire imaginary parts, which give the discontinuities

of S-matrix elements. To compute the S-matrix in a physical region, choose
the correct branch of the function by the prescription

d d
1\n—3 1 \n—3
(Z) s (A = 2'6) ’ )
where —ie (not to be confused with € in the previous paragraph!

negative imaginary part.

Traces in Eq. (A.27) that do not involve 75 are independent of dimen-
sionality. However, since

) gives a tiny

glwg;w = 6Hp =d (A54)
in d dimensions, the contraction identities (A.29) are modified:
Y =d
1YY = —(d—2)y" (A.55)
VYN = 49" — (4—d)yy”

VYNV TV = =297 9PyY + (4—d)y Py

A.5 Cross Sections and Decay Rates

Once the squared matrix element for a scattering process is known, the dif-
ferential cross section is given by

_ 1 d3pf 1
= 2EA2EB [U_A—UBI f (27‘(‘)3 2Ef

2
X [M(pasps — {ps})|” (27)46@ (pa+ps — 2-Ds).
The differential decay rate of an unstable particle to a given final state is

1 dp; 1 2
ar = m( f WE) [MOma — {p D) 2m) 6@ (o4 — X py). (A57)

For the special case of a two-
space takes the simple form

(A.56)

particle final state, the Lorentz-invariant phase
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near x = —n. Here v is the Euler-Mascheroni constant, v =~ 0.5772. The
following combination of terms often appears in calculations:

r2-9,1\2-5 1 /2
(dejg(Z) ? = o <g —log A —  + log(4n) + (’)(e)), (A.52)
with e =4 —d. .

Notice that A is positive if it is a combination of masses and spacelike mo-
mentum invariants. If A contains timelike momenta, it may become negative.
Then these integrals acquire imaginary parts, which give the discontinuities
of S-matrix elements. To compute the S-matrix in a physical region, choose
the correct branch of the function by the prescription

(1P e Layred b

where —ie (not to be confused with € in the previous paragraph!) gives a tiny
negative imaginary part.

Traces in Eq. (A.27) that do not involve v® are independent of dimen-
sionality. However, since

9" g =8, =d (A.54)
in d dimensions, the contraction identities (A.29) are modified:
Yy, =d
Vv = —(d-2)y"
VY = 4977 — (4=d)y"yP
VY'YV Y = =297 + (4—d)v*yPH°

(A.55)

A.5 Cross Sections and Decay Rates

Once the squared matrix element for a scattering process is known, the dif-
ferential cross section is given by

p 1 ( d3ps 1 >
o= —
2EA2Eg|va—vs| \'5 (2)3 2E; (A.56)
2
x [M(pa,p8 — {ps})|” (27)*6D (pa+p5 — X pf).

The differential decay rate of an unstable particle to a given final state is

3
% ﬁ (l;IéTp)J; ﬁ) [M(ma — {ps})|* 27)*6@ (pa — S py). (A5T)

For the special case of a two-particle final state, the Lorentz-invariant phase
space takes the simple form

(11 [ 222 1 im0 5 —somr = [4%m 1 (2IB1\ [y e

A.6  Physical Constants and Conversion Factors 809

where |p| is the magnitude of the 3-momentum of either particle in the center-
of-mass frame.

A.6 Physical Constants and Conversion Factors

Precisely known physical constants:

¢ =2.998 x 10 cm/s
h=6.582 x 10722 MeV s
e=-1.602 x 10~1° C
62
4dmhe 5 137.04
% =1.166 x 10° GeV—2

= 0.00730

The values f)f the strong and weak interaction coupling constants depend on
the conventions used to define them, as explained in Sections 17.6 and 21.3.
For the purpose of estimation, however, one can use the following values:

@5(10 GeV) = 0.18

as(mz) =0.12
sin?6,, = 0.23
Particle masses (times c2):
e: 0.5110 MeV p: 938.3 MeV
p: 105.6 MeV n: 939.6 MeV
T: 1777 MeV 7 139.6 MeV
W*: 80.2GeV 70 135.0 MeV

Z%: 91.19 Gev

Useful combinations:

Bohr radius: ag =

I
o= 5.292 x 109 cm

e

electron Compton wavelength: A= =3.862 x 107! ¢
MeC
classical electron radius: Ty = ol =2.818 x 10713 ¢m
MeC
Th i 8mr2
omson cross section: o = 3 £ = 0.6652 barn
annihilatinm amame ~o a0 L 4dra? RA R nharn
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Conversion factors:

(1GeV)/c2=1.783 x 107 g
(1 GeV)™!(hc) = 0.1973 x 1073 cm = 0.1973 fm;
(1 GeV)™2(hc)? = 0.3894 x 10~%" cm? = 0.3894 mbarn
1 barn = 10™%* cm?
(1 volt/meter)(ekic) = 1.973 x 10™2° GeV?
(1 tesla)(ehc?) = 5.916 x 10717 GeV?

A complete, up-to-date tabulation of the fundamental constants and the prop-
erties of elementary particles is given in the Review of Particle Properties,
which can be found in a recent issue of either Physical Review D or Physics
Letters B. The most recent Review as of this writing is published in Physical
Review D50, 1173 (1994).



