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Neel to valence-bond solid transition (T=0) 
• sign-problem free models exhibiting Neel and VBS phases
• evidence for “deconfined” quantum criticality
• method for direct detection of spinon confinement/deconfinement



Valence-bond basis and resonating valence-bond states
As an alternative to single-spin ↑ and ↓ states, we can use singlets and triplet pairs

static dimers
(complete basis)

arbitrary singlets
(overcomplete in
singlet subspace)

one triplet in the 
singlet soup
(overcomplete
in triplet subspace)

In the valence-bond basis (b,c) one normally includes pairs connecting
two groups of spins - sublattices A and B (bipartite system, no frustration)

(a, b) = (↑a↓b − ↓a↑b)/
√

2 a ∈ A, b ∈ B

arrows indicate the
order of the spins in 
the singlet definition

Superpositions, “resonating valence-bond” states

|Ψs〉 =
∑

α

fα|(aα
1 , bα

1 ) · · · (aα
N/2, b

α
N/2)〉 =

∑

α

fα|Vα〉



Marshallʼs sign rule for the ground-state wave function
The (a,b) singlet definition corresponds to a particular choice of ↑↓ wave-function signs

|Ψ〉 =
∑

σ

Ψ(σ)|σ〉 |σ〉 = |Sz
1 , Sz

2 , . . . , Sz
N 〉

E = 〈Ψ|H|Ψ〉 =
∑

σ

∑

τ

Ψ∗(τ)Ψ(σ)〈τ |H|σ〉

Consider this as a variational state; we want to minimize the energy

E =
∑

σ

|Ψ(σ)|2〈σ|Hdia|σ〉 +
∑

σ

|Ψ(σ)|2
∑

τ

Ψ∗(τ)
Ψ∗(σ)

〈τ |Hoff |σ〉

Let us consider a bipartite Heisenberg model

H = J
N∑

i=1

Si · Si+1 = J
N∑

i=1

[Sx
i Sx

i+1 + Sy
i Sy

i+1 + Sz
i Sz

i+1],

= J
N∑

i=1

[Sz
i Sz

i+1 + 1
2 (S+

i S−i+1 + S−i S+
i+1)] i ∈ A, i + 1 ∈ B

Diagonal and off-diagonal energy terms

To minimize E, the wave-function ratio should be negative →

sign[Ψ(Sz
1 , . . . , Sz

N )] = (−1)nB

This holds for the singlets (a, b) = (↑a↓b − ↓a↑b)/
√

2 a ∈ A, b ∈ B



Useful operator: singlet projector operator

Cij = −(Si · Sj − 1
4 )

Creates a singlet (valence bond), if one is not present on (i,j);

Graphical representation of the off-diagonal operation

Cab(a, b) = (a, b)

Cbc(a, b)(c, d) =
1
2
(c, b)(a, d)

In (b) there are non-bipartite bonds; can be eliminated using

The Heisenberg hamiltonian is a sum of singlet projectors



Calculating with valence-bond states
All valence-bond basis states are non-orthogonal
• the overlaps are obtained using transposition graphs (loops)

〈Vβ | 〈Vβ |Vα〉 |Vα〉
Each loop has two compatible spin states → 〈Vβ |Vα〉 = 2Nloop−N/2

This replaces the standard overlap for an orthogonal basis; 〈β|α〉 = δαβ

Many matrix elements can also be expressed using the loops, e.g.,

〈Vβ |Si · Sj |Vα〉
〈Vβ |Vα〉 =

{
0, for λi #= λj
3
4φij , for λi = λj

λi is the loop index (each loop has a label), staggered phase factor

φij =
{
−1, for i, j on different sublattices
+1, for i, j on the same sublattice

More complicated cases derived by K.S.D. Beach and  A.W.S., Nucl. Phys. B 750, 142 (2006)



Solution of the frustrated chain at the Majumdar-Ghosh point

H =
N∑

i=1

[
J1Si · Si+1 + J2Si · Si+2

]

We will show that this state is an eigenstate when J2/J1=1/2

|ΨA〉 = |(1, 2)(3, 4)(5, 6) · · · 〉

Act with one “segment” of these terms on the state; graphically

Eigenstate for g=1/2; one can also show that itʼs the lowest eigenstate

H = −
N∑

i=1

(Ci,i+1 + gCi,i+2) + N
1 + g

4
,

Write H in terms of singlet projectors

Cij = −(Si · Sj − 1
4 )



Amplitude-product states

Good variational ground state for bipartite models can be constructed

fα =
∏

r

h(r)nα(r),

|Ψs〉 =
∑

α

fα|(aα
1 , bα

1 ) · · · (aα
N/2, b

α
N/2)〉 =

∑

α

fα|Vα〉

Let the wave-function coefficients be products of “amplitudes” (real positive numbers)

The amplitudes h(r), r=1,3,...,N/2 (in one dimension) are adjustable parameters

What are the properties of such states (independently of any model H)?
• given fixed h(r), one can study the state using Monte Carlo sampling of bonds
• elementary move by reconfiguring two bonds
• simple accept/reject probability (Metropolis algorithm)

Test of two cases for the amplitudes in 1D:

h(r) = e−r/κ

h(r) = r−κ

Liang, Doucot, Anderson (1990) 



Spin and dimer correlations obtained with MC sampling (N=256)
exponentially-decaying amplitudes

The state is always a valence-bond solid

dimer correlation: D(rij) = 〈(si · si+x̂)(sj · sj+x̂)〉
Used to defined VBS order parameter
• subtract average = C2(1), gives (-1)r sign oscillations in VBS state



power-law decaying amplitudes

Spin and dimer correlations obtained with MC sampling for different N at r=N/2

There is a “quantum phase transition” when κ≈1.52
• Long-range antiferromagnetic order for κ<1.52
• Valence-bond-solid order for κ>1.52

The critical state is similar to the ground state of the Heisenberg chain
• but not quite C(r)∼1/r and D(r)∼1/r for Heisenberg chain

• C(r)∼1/r and D(r)∼1/r1/2 for amplitude-product state
• exponents depend on details of the amplitudes



Neel to VBS Quantum 
Phase transitions

Introduction to quantum phase transitions

Finite-size scaling at critical points

“J-Q” models exhibiting Neel - VBS transitions

Simulation results
• exponents, emergent U(1) symmetry

Method for detecting spinon deconfinement



2D quantum-criticality (T=0 transition)
 “Manually” dimerized S=1/2 Heisenberg models

Singlet formation on strong bonds ➙ Neel - disordered transition

Examples: bilayer, dimerized single layer

weak interactions

strong interactions

2D quantum spins map onto (2+1)D classical spins (Haldane) 
• Continuum field theory: nonlinear σ-model  (Chakravarty, Halperin, Nelson)
⇒3D classical Heisenberg (O3) universality class expected

Ground state (T=0) phases



Example: 2D Heisenberg model (T→0) simulations
Finite-size scaling of the sublattice magnetization

Simulations & theory agree: O(3) universality class (e.g., η≈0.03) for bilayer

ordered

near-critical

〈M2〉 ∼ L−(1+η)At critical point:

!M =
1
N

∑

i

(−1)xi+yi !Si  In simulations we calculate <M2>

many papers, e.g., L. Wang and A.W.S., Phys. Rev. B 73, 014431 (2006)



Finite-size scaling, 
critical exponents
Order parameter close to Tc in a classical 
system or at critical coupling gc at T=0 in 
a quantum system

m ∼
{

(Tc − T )β

(gc − g)β

At Tc or gc in finite system of length L:

m ∼ L−β/ν

A quantity A in the neighborhood
of the critical point scales as

A(L, T ) = L−κ/νf(tLν)

t =
T − Tc

Tc

Data collapse: plot

ALκ/ν versus tLν



What is the nature of the non-magnetic ground state for g=J2/J1≈1/2?

H =
∑

〈i,j〉

Jij
!Si · !Sj

= J1

= J2

A challenging problem: frustrated quantum spins

Quantum phase transition between AF and VBS state expected at J2/J1≈0.45
• but difficult to study in this model
• exact diagonalization only up to 6×6
• sign problems for QMC

= 〈!Si · !Sj〉
Are there models with AF-VBS
transitions that do not have QMC
sign problems?

= (| ↑1↓2〉 − | ↓1↑2〉)/
√

2

• No spin (magnetic) order
• Broken translational symmetry

• most likely a Valence-bond solid (crystal) [Read & Sachdev (1989)]



• no sign problems in QMC simulations
• has an AF-VBS transition at J/Q≈0.04
• microscopic interaction not necessarily realistic for materials
• macroscopic physics (AF-VBS transition) relevant for
‣ testing and stimulating theories (e.g., quantum phase transitions)
‣ there may already be an experimental realization of the critical point

2D S=1/2 Heisenberg model with 4-spin interactions

H = J
∑

〈ij〉

Si · Sj − Q
∑

〈ijkl〉

(Si · Sj −
1

4
)(Sk · Sl −

1

4
)

= 〈!Si · !Sj〉

Questions
• is the transition continuous?
‣ normally order-order transitions are first 

order (Landau-Ginzburg)
‣ theory of “deconfined” quantum critical 

points has continuous transition
•  nature of the VBS quantum fluctuations
‣ emergent U(1) symmetry predicted

A.W.S, Phys. Rev. Lett. 98, 227202 (2007)



= 〈!Si · !Sj〉

Deconfined quantum criticality

weakly 1st order argued by
Jiang et al., JSTAT, P02009 (2008)
Kuklov et al., PRL 101, 050405 (2008)

Senthil et al., Science 303, 1490 (2004)

Generic continuous AF-VBS transition
• beyond the Ginzburg-Landau paradigm 
   (generically 1st order AF-VBS point)

Spinon deconfinement at
the critical point

Confinement inside VBS
phase associated with new
length scale and emergent
U(1) symmetry

[Read & Sachdev (1989)]



(C-H)n projects out the ground state from an arbitrary state

(C −H)n|Ψ〉 = (C −H)n
∑

i

ci|i〉 → c0(C − E0)n|0〉

H =
∑

〈i,j〉

!Si · !Sj = −
∑

〈i,j〉

Hij , Hij = (1
4 − !Si · !Sj)

S=1/2 Heisenberg model

Project with string of bond operators

Hab|...(a, b)...(c, d)...〉 = |...(a, b)...(c, d)...〉

Hbc|...(a, b)...(c, d)...〉 =
1
2

|...(c, b)...(a, d)...〉

∑

{Hij}

n∏

p=1

Hi(p)j(p)|Ψ〉 → r|0〉 (r = irrelevant)

Action of bond operators

Simple reconfiguration of bonds (or no change; diagonal)
• no minus signs for A→B bond ‘direction’ convetion 
• sign problem does appear for frustrated systems

A BAB

(a,b)

(a,d)

(c,d)(c,b)

(i, j) = (| ↑i↓j〉 − | ↓i↑j〉)/
√

2

Projector Monte Carlo in the valence-bond basis
Liang, 1991; AWS, Phys. Rev. Lett 95, 207203 (2005)



Expectation values
We have to project bra and ket states 〈A〉 = 〈0|A|0〉

|Vr〉〈Vl| A

〈A〉 =
∑

g,k〈Vl|P ∗
g APk|Vr〉∑

g,k〈Vl|P ∗
g Pk|Vr〉

=
∑

g,k WglWkr〈Vl(g)|A|Vr(k)〉
∑

g,k WglWkr〈Vl(g)|Vr(k)〉

∑

k

Pk|Vr〉 =
∑

k

Wkr|Vr(k)〉 → ( 1
4 − E0)nc0|0〉

∑

g

〈Vl|P ∗
g =

∑

g

〈Vl(g)|Wgl → 〈0|c0( 1
4 − E0)n



Results: VBS phase in the J-Q model
➭ VBS order parameter
    columnar dimer-dimer correlations

➭ AF (Neel) order parameter
   sublattice magnetization

➤ J/Q=0.0 → VBS       ➤ J/Q=0.1 → antiferromagnet

D2 = 〈D2
x + D2

y〉, Dx =
1
N

N∑

i=1

(−1)xiSi · Si+x̂, Dy =
1
N

N∑

i=1

(−1)yiSi · Si+ŷ

!M =
1
N

∑

i

(−1)xi+yi !SiM2 = 〈 !M · !M〉



Singlet-triplet gap scaling → Dynamic exponent z
z relates length and time scales:
ωq ∼ |q|z finite size → 

There is an improved estimator
for the gap in the VB basis QMC∆ ∼ L−z

Finite-size scaling of L∆

∆(L) =
a1

L
+

a2

L2
+ · · ·Critical gap scaling: ⇒ z = 1

The gap at J=0 is small;
    Δ/Q=0.07
The VBS is near-critical



Exponents; finite-size scaling
Correlation lengths (spin, dimer): ξs,d
Binder ratio (for spins): qs=<M4>/<M2>2

long-distance spin and dimer correlations: Cs,d(L/2,L/2)
All scale with a single set of 

critical exponents at gc≈0.04
(with subleading corrections)

ν = 0.78(3), η = 0.26(3)

z=1,η≈0.3: consistent with deconfined quantum-criticality 
•  z=1 field theory and ”large” η predicted (Senthil et al.)

g =
J

Q



T,L scaling properties
R. G. Melko and R. Kaul, PRL 100, 017203 (2008)

Additional confirmation 
of a critical point
• finite-T stochastic series expansion
• larger systems (because T>0)
• good agreement on critcal Q/J

z = 1, η ≈ 0.35
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FIG. 6: Scaling of χu and ρs at J = 0.038 ≈ Jc, with z = 1
and d = 2. These plots are the universal functions Y(x, 0) and
Z(x, 0) up to the non-universal scale factor c on the x-axis.
The expected asymptotes (see text) are plotted as dashed
lines Y(x → 0, 0) = Aρ/x and Z(x → ∞, 0) = Aχxd/z. From
fits to the data, we find Aχ/c2 = 0.041(4) and Aρc = 0.37(3),
allowing us to estimate a universal model-independent num-
ber associated with the QCP, Aρ

p

Aχ ≈ 0.075(4).

support for a z = 1 QCP between 0.038 ≤ J ≤ 0.040.

Finally, we hold the second argument of the scaling
functions [Eqs. (2,3)] constant by tuning the system to
g = 0. One then expects a data collapse for ρs/T and
Lχu when they are plotted as a function of LzT (with z =
1). Fig. 6 shows this collapse for simulations carried out
with extremely anisotropic arguments LT , varying over
almost three orders of magnitude. There is an excellent
data collapse over 8 orders of magnitude of the range of
the universal functions, with no fit parameters. This data
together with that in Fig. 4 provide our most striking
evidence for the existence of a QCP with z = 1 in the
proximity of J/Q ≈ 0.038.

Discussion: In this paper we have presented exten-
sive data for the SU(2) symmetric JQ model which in-
dicates that the Néel order (present when J $ Q) is
destroyed at a continuous quantum transition as Q is in-
creased [6]. In the finite-T quantum critical fan above
this QCP, scaling behavior is found that confirms the
dynamic scaling exponent z = 1 to high accuracy. The
anomalous dimension of the Néel field at this transition is
determined to be ηN ≈ 0.35(3), almost an order of mag-
nitude more than its value of 0.038 [13] for a conventional
O(3) transition. For sufficiently large values of Q we find
that the system enters a spin-gapped phase with VBS or-
der. To the accuracy of our simulations, our results are
fully consistent with a direct continuous QCP between
the Néel and VBS phases, with a critical coupling be-
tween J/Q ≈ 0.038 and J/Q ≈ 0.040. We have found no
evidence for double-peaked distributions, indicating an
absence of this sort of first-order behavior on the rela-
tively large length scales studied here. It is interesting to

compare our results to the only theory currently available
for a continuous transition out of the Néel state into a
quantum paramagnetic VBS state in an S = 1/2, SU(2)
symmetric quantum magnet: the deconfined quantum
criticality scenario [4], in which the Néel-VBS transition
is described by the non-compact CP

1 field theory. All of
the qualitative observations above, including an unusu-
ally large ηN [14] agree with the predictions of this theory.
Indeed, our estimate for ηN is in remarkable numerical
agreement with a recent field-theoretic computation [15]
of this quantity which finds, ηN = 0.3381. With regard
to a detailed quantitative comparison, we have provided
the first step by computing many universal quantities,
Xχ(x), XS(x), ηN ≈ 0.35 [Fig. 3], Y(x, 0), Z(x, 0) and
Aρ

√

Aχ ≈ 0.075 [Fig. 6] in the JQ model. Analogous

computations in the CP
1 model, although currently un-

available [16] are highly desirable to further demonstrate
that the JQ model realizes this new and exotic class of
quantum criticality.

We acknowledge scintillating discussions with S. Chan-
drasekharan, A. del Maestro, T. Senthil, and especially
S. Sachdev and A. Sandvik. This research (RGM)
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spin stiffness, uniform susceptibility

staggered spin structure factor and susceptibility



What kind of VBS; columnar or plaquette?
➭ look at joint probability distribution P(Dx,Dy)

Dx Dx

Dy Dy

|0〉 =

∑

k

ck|Vk〉

The simulations sample the ground state;

Graph joint probability distribution                      P (Dx, Dy)

Dx =
〈Vk| 1

N

∑N
i=1(−1)xiSi · Si+x̂|Vp〉

〈Vk|Vp〉

Dy =
〈Vk| 1

N

∑N
i=1(−1)yiSi · Si+ŷ|Vp〉

〈Vk|Vp〉

➭ 4 peaks expected; Z4-symmetry unbroken in finite system

critical



VBS fluctuations in the theory of deconfined quantum-critical points
➣ plaquette and columnar VBS “degenerate” at criticality
➣ Z4 “lattice perturbation” irrelevant at critical point
    - and in the VBS phase for L<Λ∼ξa, a>1 ❨spinon confinement length❩
➣ emergent U(1) symmetry
➣ ring-shaped distribution expected for L<Λ

Dx Dx

Dy Dy

L=32
J=0



Loop updates in the valence-bond basis
AWS and H. G. Evertz, ArXiv:0807.0682

(ai, bi) = (↑i↓j − ↓i↑j)/
√

2

Put the spins back in a way compatible with the valence bonds

and sample in a combined space of spins and bonds

Loop updates similar to those in finite-T methods
(world-line and stochastic series expansion methods)
• valence-bond trial wave functions can be used
• larger systems accessible
• sample spins, but measure using the valence bonds

|Ψ〉〈Ψ|

A

More efficient ground state QMC algorithm → larger lattices 



T=0 results with the improved valence-bond algorithm

Universal exponents? Two different models:

Studies of J-Q2 model and J-Q3 model on L×L lattices with L up to 64 

D2 = 〈D2
x + D2

y〉, Dx =
1
N

N∑

i=1

(−1)xiSi · Si+x̂, Dy =
1
N

N∑

i=1

(−1)yiSi · Si+ŷ

!M =
1
N

∑

i

(−1)xi+yi !SiM2 = 〈 !M · !M〉

Exponents ηs, ηd, and ν from the squared order parameters 

Cij = 1
4 − Si · Sj

H2 = −Q2

∑

〈ijkl〉

CklCij

H3 = −Q3

∑

〈ijklmn〉

CmnCklCij

H1 = −J
∑

〈ij〉

Cij

J. Lou, A.W. Sandvik, N. Kawashima, arXiv:0908.0740



Now using coupling ratio

J-Q2 model; qc=0.961(1)

ηs = 0.35(2)
ηd = 0.20(2)
ν = 0.67(1)

J-Q3 model; qc=0.600(3)

ηs = 0.33(2)
ηd = 0.20(2)
ν = 0.69(2)

q =
Qp

Qp + J
, p = 2, 3

ηs, ν in perfect agreement with the
finite-T results by Kaul and Melko
•previous T=0 results may have been affected 

by scaling corrections in small latticed



Experimental realizations of deconfined quantum-criticality? 

EtMe3Sb[Pd(dmit)2]2 shows
no magnetic order
• May be a realization of the 

deconfined quantum-critical 
point [Xu and Sachdev, PRB 
79, 064405 (2009)]

 VBS state

Layered triangular-lattice systems based on [Pd(dmit)2]2 dimers

Y. Shimizu et al, J. Phys.: Condens. Matter 19, 145240 (2007)

J = 200-250 K



η ≈ 0.35

T. Itou et al, Phys. Rev. B 77, 104413 (2008)

NMR spin-lattice relaxation rate is sensitive to η

Quantum-critical scaling 
with exponent η in good
agreement with the QMC
calculations

1
T1
∼ T η



SU(N) generalization of the J-Q model

Heisenberg model with SU(N) spins has VBS state for large N
• Hamiltonian consisting of SU(N) singlet projectors 
• In large-N mean-field theory Nc≈5.5 (Read & Sachdev, PRL 1988)
• QMC gives Nc≈4.5 (Tanabe & Kawashima, 2007; K. Beach et al. 2008)

The valence-bond loop projector QMC  has a simple generalization
• N “colors” instead of 2 spin states
• Each loop has N “orientations”
• Stronger VBS order expected in SU(N) J-Q model

J. Lou, A.W. Sandvik, N. Kawashima, arXiv:0908.0740



SU(2); qc=0.961(1)

ηs = 0.35(2)
ηd = 0.20(2)
ν = 0.67(1)

ηs = 0.42(5)
ηd = 0.64(5)
ν = 0.70(2)

SU(4); qc=0.082(2)

SU(4)

SU(3)

SU(N) J-Q2 criticality

SU(3); qc=0.335(2)

ηs = 0.38(3)
ηd = 0.42(3)
ν = 0.65(3)



J-Q3 model SU(3) J-Q2 model

q = 0.85 q = 0.65

Order parameter histograms P(Dx,Dy), L=32

q = 0.635
(qc ≈ 0.60)

q = 0.45
(qc ≈ 0.33)



D4 =
∫

rdr

∫
dφP (r,φ) cos(4φ)

VBS symmetry cross-over

Λ ∼ ξa ∼ q−aν

Finite-size scaling gives U(1)
(deconfinement) length-scale

J-Q3 model

    SU(3) 
J-Q2 model

α ≈ 1.3



Is it possible to directly observe deconfinement of spinons?
Valence bond projector method: direct access 
to the distribution of the triplet in an excited state

Singlet propagation

|ΨS〉 |ΨT 〉

Triplet propagation

(| ↑↓〉 − | ↓↑〉)/
√

2

(| ↑↓〉 + | ↓↑〉)/
√

2

=

=

Creating a triplet corresponds to acting with Sz operators

S
z(q) =

∑

r

eiq·r
S

z(r)S
z(q)|ΨS(0)〉 = |ΨT (q)〉

In principle triplets with arbitrary momentum can be studied
• but phases cause problems in sampling
• in practice q close to (0,0) and (π,π) are accessible



Deconfinement of spinons in the 1D Heisenberg model
Probability distribution of the triplet bond length
- a triplet bond corresponds to two spinons; are they bound?

q = π − n2π/L q = n2π/L

n = 0

n = 1

n = 2

n = 3

Pq(r)
Jy

Jx

Jy/Jx = 1/2

A.W. Sandvik, manuscript in preparation



Λ

Spinon deconfinement for Jy/Jx→0

= spin correlation length

= confinement length (average triplet size)

Λ ∝ ξ

In this case

Λ ∼ ξa, a > 1

At a deconfined
quantum-critical
point

ξ



Summary and Conclusions

Simulation methods in the valence bond basis
• May be the most efficient tools for studying ground state of many     

unfrustrated quantum spin models
• Direct way to investigate spinon confinement/deconfinement

Unfrustrated multi-spin interactions
• J-Q model and wide range of generalizations
• Give unprecedented access to VBS states and transitions

Neel-VBS transition in square-lattice J-Q model
• Finite-size behavior indicated deconfined quantum-critical point
• Same exponents for two models; strengthens the case
• Emergent U(1) symmetry; cross-over quantified

Experimental realizations of deconfined quantum-criticality
• EtMe3Sb[Pd(dmit)2]2 is the most promising candidate so far
• NMR 1/T1 shows scaling with the QMC value for ηs


