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Introduction; path integrals and series representation

SSE algorithm for the S=1/2 Heisenberg model
• all details needed to make a simple butvery efficient program
• essentially lattice-independent (bipartite) formulation

Examples: properties of chains, ladders, planes
• critical state of the Heisenberg chain and odd number of coupled chains
• gapped (quantum diordered) state of even number of coupled chains
• long-range order in 2D
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Path integrals in quantum statistical mechanics

〈A〉 =
1
Z

Tr{Ae−βH}

We want to compute a thermal expectation value

where β=1/T (and possibly T→0)

Z =
∑

α0

∑

α1

· · ·
∑

αL−1

〈α0|e−∆τ H |αL−1〉 · · · 〈α2|e−∆τ H |α1〉〈α1|e−∆τ H |α0〉

Choose a basis and insert complete sets of states;

Z = Tr{e−βH} = Tr

{
L∏

l=1

e−∆τ H

}
“Time slicing” of the partition function

∆τ = β/L

Z ≈
∑

{α}

〈α0|1−∆τH|αL−1〉 · · · 〈α2|1−∆τH|α1〉〈α1|1−∆τH|α0〉

Use approximation for imaginary time evolution operator. Simplest way

Leads to error           . Limit                 can be taken ∆τ → 0∝ ∆τ



Example: hard-core bosons

H = K = −
∑

〈i,j〉

Kij = −
∑

〈i,j〉

(a†jai + a†iaj) ni = a†iai ∈ {0, 1}

Equivalent to S=1/2 XY model 

H = −2
∑

〈i,j〉

(Sx
i Sx

j + Sy
i Sy

j ) = −
∑

〈i,j〉

(S+
i S−

j + S−
i S+

j ), Sz = ±1
2
∼ ni = 0, 1

“World line” representation of

Z =
∑

{α}

W ({α}), W ({α}) = ∆nK
τ nK = number of “jumps”

world line moves for 
Monte Carlo sampling

Z ≈
∑

{α}

〈α0|1−∆τH|αL−1〉 · · · 〈α2|1−∆τH|α1〉〈α1|1−∆τH|α0〉



〈A〉 =
1
Z

∑

{α}

〈α0|e−∆τ |αL−1〉 · · · 〈α2|e−∆τ H |α1〉〈α1|e−∆τ HA|α0〉

〈A〉 =

∑
{α} A({α})W ({α})
∑

{α} W ({α}) −→ 〈A〉 = 〈A({α})〉W

Expectation values

We want to write this in a form suitable for MC importance sampling

W ({α}) = weight
A({α}) = estimatorFor any quantity diagonal in the 

occupation numbers (spin z)

A({α}) = A(αn) or A({α}) =
1
L

L−1∑

l=0

A(αl)

Average over all slices → count number of kinetic jumps

〈Kij〉 =
〈nij〉

β
, 〈K〉 =

〈nK〉
β

, 〈K〉 ∝ N → 〈nK〉 ∝ βN

There should be of the order βN “jumps” (regardless of approximation used)

Kinetic energy (here full energy). Use

Ke−∆τ K ≈ K Kij({α}) =
〈α1|Kij |α0〉

〈α1|1 −∆τK|α0〉
∈ {0, 1}

1
0
1



Including interactions

For any diagonal interaction V

Product over all times slices →
e−∆τ H = e−∆τ Ke−∆τ V + O(∆2

τ ) → 〈αl+1|e−∆τ H |αl〉 ≈ e−∆τ Vl〈αl+1|e−∆τ K |αl〉

W ({α}) = ∆nK
τ exp

(
−∆τ

L−1∑

l=0

Vl

)

local updates 
consider probability of inserting/removing 
events within a time window

The continuous time limit

Limit Δτ→0: number of kinetic jumps remains finite, store events only

Special methods (loop
and worm updates)
developed for efficient
sampling of the paths
in the continuum

⇐ Evertz, Lana, Marcu (1993), Prokofev et al (1996)
     Beard & Wiese (1996)



e−βH =
∞∑

n=0

(−β)n

n!
Hn

Z =
∞∑

n=0

(−β)n

n!

∑

{α}n

〈α0|H|αn−1〉 · · · 〈α2|H|α1〉〈α1|H|α0〉

Series expansion representation

Start from the Taylor expansion

Very similar to the path integral;                          and weight factor outside   1−∆τH → H

For hard-core bosons the (allowed) path weight is W ({α}n) = βn/n!

C = 〈n2〉 − 〈n〉2 − 〈n〉

E =
1
Z

∞∑

n=0

(−β)n

n!

∑

{α}n+1

〈α0|H|αn+1〉 · · · 〈α2|H|α1〉〈α1|H|α0〉

= − 1
Z

∞∑

n=1

(−β)n

n!
n

β

∑

{α}n

〈α0|H|αn〉 · · · 〈α2|H|α1〉〈α1|H|α0〉 =
〈n〉
β

For any model, the energy is

From this follows: narrow n-distribution with 〈n〉 ∝ Nβ, σn ∝
√

Nβ

Z =
∑

S

(−β)n(L− n)!
L!

∑

{α}L

∑

{Si}

〈α0|SL|αL−1〉 · · · 〈α2|S2|α1〉〈α1|S1|α0〉, Si ∈ {0,H}

Fixed-length scheme: cut-off at N=L, fill in with unit operators I

Here n is the number of Si=H instances in the sequence S1,...,SL



Stochastic Series expansion (SSE): S=1/2 Heisenberg model
Write H as a bond sum for arbitrary lattice

H = J
Nb∑

b=1

Si(b) · Sj(b),

H1,b = 1
4 − Sz

i(b)S
z
j(b),

H2,b = 1
2 (S+

i(b)S
−
j(b) + S−i(b)S

+
j(b)).

Diagonal (1) and off-diagonal (2) bond operators

H = −J
Nb∑

b=1

(H1,b −H2,b) +
JNb

4

〈↑i(b)↓j(b) |H1,b| ↑i(b)↓j(b)〉 = 1
2 〈↓i(b)↑j(b) |H2,b| ↑i(b)↓j(b)〉 = 1

2

〈↓i(b)↑j(b) |H1,b| ↓i(b)↑j(b)〉 = 1
2 〈↑i(b)↓j(b) |H2,b| ↓i(b)↑j(b)〉 = 1

2

Four non-zero matrix elements

2D square lattice
bond and site labels

Z =
∑

α

∞∑

n=0

(−1)n2
βn

n!

∑

Sn

〈
α

∣∣∣∣∣

n−1∏

p=0

Ha(p),b(p)

∣∣∣∣∣ α

〉Partition function

Sn = [a(0), b(0)], [a(1), b(1)], . . . , [a(n− 1), b(n− 1)]Index sequence:

n2 = number of a(i)=2
(off-diagonal operators)
in the sequence



Propagated states: |α(p)〉 ∝
p−1∏

i=0

Ha(i),b(i) |α〉

Z =
∑

α

∑

SL

(−1)n2
βn(L− n)!

L!

∑

SL

〈
α

∣∣∣∣∣

L−1∏

p=0

Ha(p),b(p)

∣∣∣∣∣ α

〉
For fixed-length scheme

W (α, SL) =
(

β

2

)n (L− n)!
L!

In a program:

s(p) = operator-index string
• s(p) = 2*b(p) + a(p)-1
• diagonal; s(p) = even
• off-diagonal; s(p) = off

σ(i) = spin state, i=1,...,N
• only one has to be stored

W>0 (n2 even) for bipartite lattice 
Frustration leads to sign problem

SSE effectively provides a discrete representation of the time continuum 
• computational advantage; only integer operations in sampling



Linked vertex storage

0 1

2 3

0 1

2 3

0 1

2 3

0 1

2 3

The “legs” of a  vertex represents 
the spin states before (below) and 
after (above) an operator has acted

Spin states between operations are redundant; represented by links
• network of linked vertices will be used for loop updates of vertices/operators

X( ) = vertex list
• operator at p→X(v)
   v=4p+l, l=0,1,2,3
• links to next and
   previous leg



Monte Carlo sampling scheme

Change the configuration; (α, SL)→ (α′, S′
L)

Attempt at p=0,...,L-1. Need to know |α(p)>
• generate by flipping spins when off-diagonal operator

Diagonal update: [0, 0]p ↔ [1, b]p

W (α, SL) =
(

β

2

)n (L− n)!
L!

Paccept([0, 0]→ [1, b]) = min
[

βNb

2(L− n)
, 1

]

Paccept([1, b]→ [0, 0]) = min
[
2(L− n + 1)

βNb
, 1

]

Acceptance probabilities

W (a = 0)
W (a = 1)

=
L− n + 1

β/2
W (a = 1)
W (a = 0)

=
β/2

L− n

n is the current power
• n → n+1 (a=0 → a=1)
• n → n-1  (a=1 → a=0)

Pselect(a = 0→ a = 1) = 1/Nb, (b ∈ {1, . . . , Nb})
Pselect(a = 1→ a = 0) = 1

Paccept = min
[
W (α′, SL)
W (α, SL)

Pselect(α′, S′
L → α, SL)

Pselect(α, SL → α′, S′
L)

, 1
]



do p = 0 to L− 1
if (s(p) = 0) then

b = random[1, . . . , Nb]; if σ(i(b)) = σ(j(b)) cycle
if (random[0− 1] < Pinsert(n)) then s(p) = 2b; n = n + 1 endif

elseif (mod[s(p), 2] = 0) then
if (random[0− 1] < Premove(n)) then s(p) = 0; n = n− 1 endif

else
b = s(p)/2; σ(i(b)) = −σ(i(b)); σ(j(b)) = −σ(j(b))

endif
enddo

Diagonal update; pseudocode implementation

Local off-diagonal update

Switch the type (a=1 ↔ a=2) of two operators on the same spins
• constraints have to be satisfied
• inefficient, cannot change the winding number



do v0 = 0 to 4L− 1 step 2
if (X(v0) < 0) cycle
v = v0
if (random[0− 1] < 1

2 ) then
traverse the loop; for all v in loop, set X(v) = −1

else
traverse the loop; for all v in loop, set X(v) = −2
flip the operators in the loop

endif
enddo

 constructing all loops, flip probability 1/2

Operator-loop update

• a given loop is only  
constructed once

• vertices can be erased
• X(v) < 0 = erased 
• X(v) = -1 not flipped loop
• X(v) = -2 flipped loop

moving horizontally
in the list corresponds
to changing v even↔odd
• flipbit(v,0) flips bit 0 of v

Pseudocode

Many spins and operators can be changed simultaneously

 construct and flip a loop

v = v0
do

X(v) = −2
p = v/4; s(p) = flipbit(s(p), 0)
v′ = flipbit(v, 0)
v = X(v′); X(v′) = −2
if (v = v0) exit

enddo



Vfirst(:) = −1; Vlast(:) = −1
do p = 0 to L− 1

if (s(p) = 0) cycle
v0 = 4p; b = s(p)/2; s1 = i(b); s2 = j(b)
v1 = Vlast(s1); v2 = Vlast(s2)
if (v1 "= −1) then X(v1) = v0; X(v0) = v1 else Vfirst(s1) = v0 endif
if (v2 "= −1) then X(v2) = v0; X(v0) = v2 else Vfirst(s2) = v0 + 1 endif
Vlast(s1) = v0 + 2; Vlast(s2) = v0 + 3

enddo

Constructing the linked vertex list

creating the last links across the “time” boundary
do i = 1 to N

f = Vfirst(i)
if (f != −1) then l = Vlast(i); X(f) = l; X(l) = f endif

enddo

Use arrays to keep track of the first and 
last (previous) vertex leg on a given spin
• Vfirst(i) = location v of first leg on site i
• Vlast(i) = location v of last (currently) leg
• these are used to create the links
• initialize all elements to −1

Traverse operator list s(p), p=0,...,L−1
• vertex legs v=4p,4p+1,4p+2,4p+3



We also have to modify the stored spin state after the loop update
• we can use the information in Vfirst() and X() to determine spins to be flipped
• spins with no operators, Vfirst(i)=−1, flipped with probability 1/2

do i = 1 to N
v = Vfirst(i)
if (v = −1) then

if (random[0-1]< 1/2) σ(i) = −σ(i)
else

if (X(v) = −2) σ(i) = −σ(i)
endif

enddo

v is the location of the first
vertex leg on spin i
• flip it if X(v)=−2
• (do not flip it if X(v)=−1)
• no operation on i if vfirst(i)=−1

Determination of the cut-off L
• adjust during equilibration
• start with arbitrary (small) n

Keep track of number of operators n
• increase L if n is close to current L
• e.g., L=n+n/3

Example; 16×16 system, β=16 ⇒
• evolution of L
• n distribution after equilibration
• truncation is no approximation



Does it work?
Compare with exact results
• 4×4 exact diagonalization
• Bethe Ansatz; long chains

⇐ Energy for long 1D chains

• SSE results for 106 sweeps
• Bethe Ansatz ground state E/N
• SSE can achieve the ground
   state limit (T→0) 

Susceptibility of the 4×4 lattice ⇒
• SSE results from 1010 sweeps
• improved estimator gives smaller
   error bars at high T (where the
   number of loops is larger)



Correlations, criticality and long-range order
Example: 2D Ising model. Correlation function C(rij) = 〈σiσj〉

single

Three different behaviors

C(r) =






e−r/ξ, T > Tc

r−(2−D+η), T = Tc

m2 + e−r/ξ, T < Tc

η = 1/8

The correlation length diverges at Tc: ξ ∼ |T − Tc|−ν

In quantum system
we can have ordered,
disordered, and
critical ground states
• quantum phase
   transitions versus
   some parameter
• nature of the ground
   state reflected in
   finite-T properties



Properties of the Heisenberg chain; large-scale SSE results

Magnetic susceptibility
anomalous behavior as T→0
• low-T results seem to disagree
   with known T=0 value obtained
   using the Bethe Ansatz method

χ(T ) =
1

2πc
+

1
4πc ln(T0/T )

• Reason: logarithmic correction
   at low T>0

Eggert, Affleck, Takahashi, 
PRL 73, 332 (1994) 

• Low-T form expected based
   on low-energy field theory

c = πJ/2, T0 ≈ 7.7
• For the standard chain

• Other interactions → same   
   form, different parameters

Long chains needed for studying
low-T behavior (T < finite-size gap)



C(r) = A
(−1)r

r
ln

(
r

r0

)1/2

A=0.21, r0=0.08

Low-energy field theory prediction

T=0 spin correlations

SSE: converge to T=0 limit
• β dependence of C(N/2), N = 4096 ⇒
• C(r) vs r and and r=N/2 ⇓



Ladder systems
E. Dagotto and T. M. Rice, Science 271, 618 (1996)

Coupled Heisenberg chains; Lx×Ly spins, Ly→∞, Lx finite
• systems with even and odd Ly have qualitatively different properties

• spin gap Δ>0 for  Ly even, Δ→0 when Lx→∞
• critical state, similar to single chain, for odd Ly

• the 2D limit is approached in different ways

Consider anisotropic couplings; Jx and Jy

• the correct physics for all Jy/Jx can be understood based on large Jy/Jx

• short-range valence bond states (more later)

(↑↓ − ↓↑)/
√

2 ↑ ↓
Ly =2,4,... : Δ=Jy for Jx=0
• gap persists for Jx>0
Ly =3,5,... : Δ=0 for Jx=0
• critical state for Jx>0

Jy = 1, Jx = 0 0 < Jx/Jy ! 1



χ(T ) =
1

2πc
+

1
4πc ln(T0/T )

χ(T ) =
a√
T

e−∆/T

Properties of Heisenberg ladders; large-scale SSE results

Magnetic susceptibility Low-T theoretical forms:

Eggert, Affleck, Takahashi, PRL 73, 332 (1994) 
Odd Ly: from nonlinear -sigma model Even Ly: from large Jy/Jx expansion

Troyer, Tsunetsugu, Wurz, PRB 50, 13515 (1994)

SSE results for large Lx (up to 4096, giving Lx→∞ limit for T shown); 



χ(T ) =
a√
T

e−∆/T ⇒ −T ln (
√

Tχ) = ∆− T ln (a)

Extracting the gap for evel-Ly systems

From the low-T susceptibility form:



T=0 spin correlations of ladders

Expected asymptotic behaviors

C(r) = A
(−1)r

r
ln

(
r

r0

)1/2

C(r) = Ae−r/ξ(odd Ly) (even Ly)

We also expect short-distance behavior reflecting 2D order for large Ly

short-long distance
cross-over behavior
starts to become
visible, but larger
Ly needed to see
signs of 2D order
for r<Ly

• L×L lattices used
   to study 2D case



Correlation length for even-Ly

C(r) ∝ e−r/ξ, ξ ∝ 1
∆

We need system lengths Lx >> ξ to compute ξ reliably. Use:

ξ2 =
1
q2

(
S(π,π)

S(π − q, π)
− 1

)



ξ ∼ Jx

Jy

Correlation length versus Jy/Jx for Ly=2

the single chain is critical (1/r correlations) ➝ ξ diverges as Jy/Jx ➝ 0


