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Example:
Particles with 
hard and soft 
cores (2 dim)

Monte Carlo Simulations

What happens when the temperature is lowered ?
2



Monte Carlo Simulations

Transition into liquid state has taken place
Slow movement & growth of droplets
- simulation is not strictly equilibrated

Is there a better way to reach equilibrium at low T?
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Simulated Annealing

Annealing: Removal of
crystal defects by heating
followed by slow cooling

Simulated Annealing:
MC simulation with
slowly decreasing T
- Can help to reach
   equilibrium faster

Optimization method:
express optimization of
many parameters as
minimization of a 
cost function, treat as
energy in MC simulation

Similar scheme in quantum mechanics?
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Thermal and Quantum Annealing

Adiabatic Theorem:
For small v, the system stays in the ground state of H[s(t)]

Useful paradigm for quantum computing?

Can quantum annealing be more efficient than thermal annealing?
Ray, Chakrabarty,Chakrabarty (PRB 1989), Kadowaki, Nishimory (PRE 1998),...

Simulated (Thermal) Annealing
Reduce T as a function of time in a Monte Carlo simulation
- efficient way to equilibrate a simulation
- powerful as optimization algorithm

Reduce quantum fluctuations as a function of time
- start with simple quantum system H0 (s=0):
- end with a complicated classical potential H1 (s=1)

Quantum Annealing

s = s(t) = vt, v = 1/t
max

H(s) = (1� s)H0 + sH1 [H0, H1] 6= 0
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Quantum Annealing & Quantum Computing

The D-wave “quantum annealer”; 512 flux qubits
- Claimed to solve some hard optimization problems
- Is it really doing quantum annealing?
- Is quantum annealing really better  
  than simulated annealing 
  (on a classical computer)?

Hamiltonian implemented in D-wave quantum annealer....
6



Hamiltonian of the D-Wave Device

→ Studies of dynamics of transverse-field Ising models

||Matthias Troyer

Performance of simulated annealing, simulated quantum 
annealing and D-Wave on hard spin glass instances
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FIG. 6. The 476-qubit DW2 device architecture and
qubit connectivity.

Appendix C: The D-Wave Two Chip

1. The Chimera

The Chimera graph of the D-Wave Two (DW2) chip
used in this study is shown in Fig. 6. The chip is an
8⇥8 array of unit cells where each unit cell is a balanced
K4,4 bipartite graph of superconducting flux qubits. In
the ideal Chimera graph the degree of each (internal)
vertex is 6. On our chip, only a subset of 476 qubits, is
functional. The temperature of the device ⇠ 15mK.

The chip is designed to solve a very specific type
of problems, namely, Ising-type optimization problems
where the cost function is that of the Ising Hamiltonian
[see Eq. (1) of the main text]. The Ising spins, s

i

= ±1
are the variables to be optimized over and the sets {J

ij

}
and {h

i

} are the programmable parameters of the cost
function. In addition, hiji denotes a sum over all active
edges of the Chimera graph.

2. The D-Wave Two annealing schedule

The DW2 performs the annealing by implementing the
time-dependent Hamiltonian

H(t) = �A(t)
X

i

�x

i

+B(t)HIsing , (C1)

with t 2 [0, ta] where the allowed range of annealing times
ta, due to engineering restrictions, is between 20µs and
20ms. The annealing schedules A(t) and B(t) used in
the device are shown in Fig. 7. There are four anneal-
ing lines, and their synchronization becomes harder for
faster annealers. The filtering of the input control lines
introduces some additional distortion in the annealing
control.

FIG. 7. Annealing schedule of the D-Wave chip. The
functions A(t) and B(t) are the amplitudes of the (transverse-
field) driver and classical Ising Hamiltonians, respectively.
Also shown is the temperature in units of energy (kB = 1).

3. Gauge averaging on the D-Wave device

Calibration inaccuracies stemming mainly from the
digital to analog conversions of the problem parameters,
cause the couplings J

ij

and h
i

realized on the DW2 chip
to be slightly di↵erent from the intended programmed
values (with a typical ⇠ 5% variation). Therefore, in-
stances encoded on the device will be generally di↵erent
from the intended instances. Additionally, other, more
systematic biases exist which cause spins to prefer one
orientation over another regardless of the encoded pa-
rameters. To neutralize these e↵ects, it is advantageous
to perform multiple annealing rounds (or ‘programming
cycles’) on the device, where each such cycle corresponds
to a di↵erent encoding or ‘gauge’ of the same problem
instance onto the couplers of the device [9]. To real-
ize these di↵erent encodings, we use a gauge freedom
in realizing the Ising spin glass: for each qubit we can
freely define which of the two qubits states corresponds
to s

i

= +1 and s
i

= �1. More formally this corresponds
to a gauge transformation that changes spins s

i

! ⌘
i

s
i

,
with ⌘

i

= ±1 and the couplings as J
ij

! ⌘
i

⌘
j

J
ij

and
h
i

! ⌘
i

h
i

. The simulations are invariant under such a
gauge transformation, but due to calibration errors which
break the gauge symmetry, the results returned by the
DW2 are not.

4. Performance of the DW2 chip as a function of
annealing time

Since the DW2 chip is a putative quantum annealer, it
is only natural to ask how its performance, namely, the
typical time-to-solution ts it yields, depends on annealing
time ta. Ideally, the longer ta is, the better the perfor-
mance we expect [52]. However, in practice, decohering
interactions with the environment are present which be-

Chimera lattice, picture from
Martin-Mayor & Hen, arXiv:1502.02494

Interactions Jij are programmable
- restricted to “Chimera lattice”

Hard optimization problems map
onto frustrated Ising model

H1 =
NX

i=1

NX

j=1

Jij�
z
i �

z
j , �z

i 2 {�1,+1}

Tune the strength of the field

adiabatically from s=0 to s=1 

s = s(t) = vt, v = 1/t
max

H(s) = (1� s)H0 + sH1

H0 = �
NX

i=1

�x

i

= �
NX

i=1

(�+
i

+ ��
i

)

[H0, H1] 6= 0
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Quantum Phase Transition

Ground state changes qualitatively as s changes
- trivial (easy to prepare) for s=0
- complex (solution of hard optimization problem) at s=1
→ expect a quantum phase transition at some s=sc

- trivial x-oriented ferromagnet at s=0 (→→→)
- z-oriented (↑↑↑or ↓↓↓, symmetry broken) at s=1
- sc=1/2 in 1D,  appr. 0.25 in 2D

as in the clean transverse-field Ising ferromagnet

(N ! 1)

How long does it take (versus problem size N)?

Have to pass through sc and beyond adiabatically

H(s) = �s
X

hiji

�z

i

�z

i+1 � (1� s)
NX

i=1

�x

i

One can expect a quantum phase transition in the system

H(s) = (1� s)H0 + sH1 [H0, H1] 6= 0
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Landau-Zener Problem

Single spin in magnetic field, with mixing term

H = �h�z � ✏�x = �h�z � ✏(�+ + ��)

-1 -0.5 0 0.5 1
h

-1.0

-0.5

0.0

0.5

1.0

E l

"

"#

#

�

Eigen energies are

E = ±
p

h2 + ✏2

Time-evolution:

h(t) = �h0 + vt
To stay adiabatic
when crossing h=0,
the velocity must be

v < �2 (time > ��2)
Suggests the smallest gap is important in general
- but states above the gap play role in many-body system

Smallest gap: Δ=2ε

What can we expect at a quantum phase transition?
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Dynamic Critical Exponent and Gap
Dynamic exponent z at a phase transition
- relates time and length scales

Continuous quantum phase transition
- excitation gap at the transition
   depends on the system size and z as

� ⇠ 1

Lz
=

1

Nz/d
, (N = Ld)

At a continuous transition (classical or quantum):
- large (divergent) correlation length

⇠r ⇠ |�|�⌫ , ⇠t ⇠ ⇠zr ⇠ |�|�⌫z δ = distance from critical 
point (in T or other param)

Classical (thermal) phase transition
- Fluctuations regulated by temperature T>0
Quantum (ground state, T=0) phase transition
- Fluctuations regulated by parameter g in Hamiltonian

Classical and quantum phase transitions

There are many similarities between classical and quantum transitions
- and also important differences
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FIGURE 3. Temperature (T ) or coupling (g) dependence of the order parameter (e.g., the magnetization
of a ferromagnet) at a continuous (a) and a first-order (b) phase transition. A classical, thermal transition
occurs at some temperature T = Tc, whereas a quantum phase transition occurs at some g= gc at T = 0.

where the spin correlations decay exponentially with distance [60].
While quasi-1D antiferromagnets were actively studied experimentally already in the

1960s and 70s, these efforts were further stimulated by theoretical developments in the
1980s. Haldane conjectured [55], based on a field-theory approach, that the Heisenberg
chain has completely different physical properties for integer spin (S = 1,2, . . .) and
“half-odd integer” spin (S = 1/2,3/2, . . .). It was known from Bethe’s solution that the
S = 1/2 chain has a gapless excitation spectrum (related to the power-law decaying
spin correlations). Haldane suggested the possibility of the S= 1 chain instead having a
ground state with exponentially decaying correlations and a gap to all excitations; a kind
of spin liquid state [26]. This was counter to the expectation (based on, e.g., spin wave
theory) that increasing S should increase the tendency to ordering. Haldane’s conjecture
stimulated intense research activities, theoretical as well as experimental, on the S = 1
Heisenberg chain and 1D systems more broadly. There is now completely conclusive
evidence from numerical studies that Haldane was right [61, 62, 63]. Experimentally,
there are also a number of quasi-one-dimensional S = 1/2 [64] and S = 1 [65] (and
also larger S [66]) compounds which show the predicted differences in the excitation
spectrum. A rather complete and compelling theory of spin-S Heisenberg chains has
emerged (and includes also the VBS transitions for half-odd integer S), but even to this
date various aspects of their unusual properties are still being worked out [67]. There are
also many other variants of spin chains, which are also attracting a lot of theoretical and
experimental attention (e.g., systems including various anisotropies, external fields [68],
higher-order interactions [69], couplings to phonons [70, 71], long-range interactions
[72, 73], etc.). In Sec. 4 we will use exact diagonalization methods to study the S= 1/2
Heisenberg chain, as well as the extended variant with frustrated interactions (and also
including long-range interactions). In Sec. 5 we will investigate longer chains using the
SSE QMC method. We will also study ladder-systems consisting of several coupled
chains [9], which, for an even number of chains, have properties similar to the Haldane
state (i.e., exponentially decaying spin correlations and gapped excitations).

2.4. Models with quantum phase transitions in two dimensions

The existence of different types of ground states implies that phase transitions can
occur in a system at T = 0 as some parameter in the hamiltonian is varied (which

146
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In both cases phase transitions can be
- first-order (discontinuous): finite correlation length ξ as g→gc or g→gc
- continuous: correlation length diverges, ξ~|g-gc|-ν or ξ~|T-Tc|-ν
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Classical (thermal) phase transition
- Fluctuations regulated by temperature T>0
Quantum (ground state, T=0) phase transition
- Fluctuations regulated by parameter g in Hamiltonian

Classical and quantum phase transitions

There are many similarities between classical and quantum transitions
- and also important differences
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FIGURE 3. Temperature (T ) or coupling (g) dependence of the order parameter (e.g., the magnetization
of a ferromagnet) at a continuous (a) and a first-order (b) phase transition. A classical, thermal transition
occurs at some temperature T = Tc, whereas a quantum phase transition occurs at some g= gc at T = 0.

where the spin correlations decay exponentially with distance [60].
While quasi-1D antiferromagnets were actively studied experimentally already in the

1960s and 70s, these efforts were further stimulated by theoretical developments in the
1980s. Haldane conjectured [55], based on a field-theory approach, that the Heisenberg
chain has completely different physical properties for integer spin (S = 1,2, . . .) and
“half-odd integer” spin (S = 1/2,3/2, . . .). It was known from Bethe’s solution that the
S = 1/2 chain has a gapless excitation spectrum (related to the power-law decaying
spin correlations). Haldane suggested the possibility of the S= 1 chain instead having a
ground state with exponentially decaying correlations and a gap to all excitations; a kind
of spin liquid state [26]. This was counter to the expectation (based on, e.g., spin wave
theory) that increasing S should increase the tendency to ordering. Haldane’s conjecture
stimulated intense research activities, theoretical as well as experimental, on the S = 1
Heisenberg chain and 1D systems more broadly. There is now completely conclusive
evidence from numerical studies that Haldane was right [61, 62, 63]. Experimentally,
there are also a number of quasi-one-dimensional S = 1/2 [64] and S = 1 [65] (and
also larger S [66]) compounds which show the predicted differences in the excitation
spectrum. A rather complete and compelling theory of spin-S Heisenberg chains has
emerged (and includes also the VBS transitions for half-odd integer S), but even to this
date various aspects of their unusual properties are still being worked out [67]. There are
also many other variants of spin chains, which are also attracting a lot of theoretical and
experimental attention (e.g., systems including various anisotropies, external fields [68],
higher-order interactions [69], couplings to phonons [70, 71], long-range interactions
[72, 73], etc.). In Sec. 4 we will use exact diagonalization methods to study the S= 1/2
Heisenberg chain, as well as the extended variant with frustrated interactions (and also
including long-range interactions). In Sec. 5 we will investigate longer chains using the
SSE QMC method. We will also study ladder-systems consisting of several coupled
chains [9], which, for an even number of chains, have properties similar to the Haldane
state (i.e., exponentially decaying spin correlations and gapped excitations).

2.4. Models with quantum phase transitions in two dimensions

The existence of different types of ground states implies that phase transitions can
occur in a system at T = 0 as some parameter in the hamiltonian is varied (which
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In both cases phase transitions can be
- first-order (discontinuous): finite correlation length ξ as g→gc or g→gc
- continuous: correlation length diverges, ξ~|g-gc|-ν or ξ~|T-Tc|-ν
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Exponentially small gap at a first-order
(discontinuous) transition

� ⇠ e�aL

Exactly how does z enter in the adiabatic criterion? 

Important issue for quantum annealing!
P. Young et al. (PRL 2008)
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Kibble-Zurek Velocity and Scaling

The adiabatic criterion for passing through a continuous 
phase transition involves exponents z and ν:

Kibble 1978
- defects in early universe
Zurek 1981
- classical phase transitions
Polkovnikov 2005
- quantum phase transitions

Same criterion for classical
and quantum phase transitions
- adiabatic (quantum)
- quasi-static (classical)

Generalized finite-size scaling hypothesis

A(�, v, L) = L�/⌫g(�L1/⌫ , vLz+1/⌫)

A(�, v,N) = N�/⌫0
g(�N1/⌫0

, vNz0+1/⌫0
), ⌫0 = d⌫, z = z/d

Will use for spin glasses of interest in quantum computing

Apply to well-understood classical system first...

Must have v < vKZ, with

vKZ ⇠ L�(z+1/⌫)
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Fast and Slow Classical Ising Dynamics

Repeat many times, collect averages, analyze,....

12



100 102 104 106 108

v Lz+1/ν

10-4

10-3

10-2

10-1

100

<
m

2 >
 L

2β
/ν

L = 12
L = 24
L = 48
L = 64
L = 96
L = 128
L = 192
L = 256
L = 500
L = 1024
polynomial fit
power-law fit

104 105 10610-3

10-2
L = 128

Velocity Scaling, 2D Ising Model

Repeat process many times, average data for T=Tc

Used known 2D 
Ising exponents
β=1/8, ν=1

Result: z ≈2.17
consistent with
values obtained
in other ways

Adjusted z for
optimal scaling
collapse

Liu, Polkovnikov,
Sandvik, PRB 2014

Can we do something like this for quantum models?

hm2(� = 0, v, L)i = L�2�/⌫f(vLz+1/⌫)
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Quantum Dynamics

What can imaginary time tell us about real-time dynamics?

Time evolution 
| (t)i = U(t, t0)| (t0)i

Difficult to study numerically for a many-body system
- exact diagonalization of small systems
- DMRG for 1D systems (moderate sizes and times)

| (⌧)i = U(⌧, ⌧0)| (⌧0)i U(⌧, ⌧0) = T⌧exp


�
Z ⌧

⌧0

d⌧ 0H[s(⌧ 0)]

�

Can be implemented in Quantum Monte Carlo
De Grandi, Polkovnikov, Sandvik, PRB2011

Schrödinger dynamics in imaginary time t=iτ
Alternative approach:

Time evolution operator with time-dependent H

U(t, t0) = Ttexp


i

Z t

t0

dt0H[s(t0)]

�

14



Quantum Dynamics

How different? Which one is more adiabatic?

Example: linear ramp of transverse-field Ising ferromagnet

Start from eigenstate of H(s=0) at t=0

- Instantaneous ground state | 0(t)i = | 0(s[t])i

- Actual state during evolution | (t)i

Distance between these states given by log-fidelity

� ln[F (t)] = �1

2
ln
�
|h 0(t)| (t)i|2

�

Integrate Schrödinger equation numerically for small L
- compare real and imaginary time

2D square-lattice system; N=L2

H(s) = �s
X

hiji

�z

i

�z

j

� (1� s)
NX

i=1

�x

i

s 2 [0, 1], s = vt
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Example: 4×4 lattice

Main peak
reflects quantum
phase transition
at Sc≈0.25

0 0.2 0.4 0.6 0.8 1
t/tmax

0.00

0.02

0.04

0.06

0.08

0.10

-ln
(F
)

 real time
 imaginary time

v = 1/40
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Example: 4×4 lattice

Main peak
reflects quantum
phase transition
at Sc≈0.25

Imaginary time
more efficient in
reaching ground 
state for s→1

0 0.2 0.4 0.6 0.8 1
t/tmax

0.000

0.005

0.010

0.015

0.020

0.025

-ln
(F
)

 real time
 imaginary time

v = 1/80
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Example: 4×4 lattice

Main peak
reflects quantum
phase transition
at Sc≈0.25

Imaginary time
more efficient in
reaching ground 
state for s→1

0 0.2 0.4 0.6 0.8 1
t/tmax

0.000

0.001

0.002

0.003

0.004

0.005

-ln
(F
)

 real time
 imaginary time

v = 1/160
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Example: 4×4 lattice

Dynamic exponent z is same in real and  imaginary time! 
De Grandi, Polkovnikov, Sandvik,  PRB 2011

Differences
between real
and imaginary 
time come in
only at order v3

Same dynamic
susceptibility
accessed in real
and imaginary
time

0 0.2 0.4 0.6 0.8 1
t/tmax

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

-ln
(F
)

 real time
 imaginary time

v = 1/320

Use imaginary time for large systems
19



Quantum Monte Carlo Algorithm

Simpler scheme: evolve with just a H-product
(Liu, Polkovnikov, Sandvik, PRB 2013)

Implemented in quantum Monte Carlo as:

| (⌧)i =
1X

n=0

Z ⌧

⌧0

d⌧n

Z ⌧n

⌧0

d⌧n�1 · · ·
Z ⌧2

⌧0

d⌧1[�H(⌧n)] · · · [�H(⌧1)]| (0)i

| (⌧)i = U(⌧, ⌧0)| (⌧0)i

Schrödinger dynamic in imaginary time t=iτ

U(⌧, ⌧0) = T⌧exp


�
Z ⌧

⌧0

d⌧ 0H[s(⌧ 0)]

�

How is this method implemented?

| (sM )i = H(sM ) · · ·H(s2)H(s1)| (0)i, si = i�s, �s =
sM
M

Time unit is ∝1/N, velocity is v / N�s

Difference in v-dependence between product evolution 
and imaginary-time Schrödinger dynamics is O(v2)
- same critical scaling behavior, dynamic susceptibilities
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h (0)|H(s1) · · ·H(s7)|H(s7) · · ·H(s1)| (0)i

QMC Algorithm Illustration

H1(i) = �(1� s)(�+
i + ��

i )

H2(i, j) = �s(�z
i �

z
j + 1)

Transverse-field Ising model: 2 types of operators:

12345677654321 12345677654321 12345677654321
12345677654321

Represented as “vertices”

Similar to ground-state projector QMC

How to analyze results versus velocity v?

12345677654321

MC sampling of networks of vertices

N = 4

M = 7
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Dynamic Critical Exponent and Gap
Dynamic exponent z at a phase transition
- relates time and length scales

Continuous quantum phase transition
- excitation gap at the transition
   depends on the system size and z as

� ⇠ 1

Lz
=

1

Nz/d
, (N = Ld)

At a continuous transition (classical or quantum):
- large (divergent) correlation length

⇠r ⇠ |�|�⌫ , ⇠t ⇠ ⇠zr ⇠ |�|�⌫z δ = distance from critical 
point (in T or other param)

Classical (thermal) phase transition
- Fluctuations regulated by temperature T>0
Quantum (ground state, T=0) phase transition
- Fluctuations regulated by parameter g in Hamiltonian

Classical and quantum phase transitions

There are many similarities between classical and quantum transitions
- and also important differences
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FIGURE 3. Temperature (T ) or coupling (g) dependence of the order parameter (e.g., the magnetization
of a ferromagnet) at a continuous (a) and a first-order (b) phase transition. A classical, thermal transition
occurs at some temperature T = Tc, whereas a quantum phase transition occurs at some g= gc at T = 0.

where the spin correlations decay exponentially with distance [60].
While quasi-1D antiferromagnets were actively studied experimentally already in the

1960s and 70s, these efforts were further stimulated by theoretical developments in the
1980s. Haldane conjectured [55], based on a field-theory approach, that the Heisenberg
chain has completely different physical properties for integer spin (S = 1,2, . . .) and
“half-odd integer” spin (S = 1/2,3/2, . . .). It was known from Bethe’s solution that the
S = 1/2 chain has a gapless excitation spectrum (related to the power-law decaying
spin correlations). Haldane suggested the possibility of the S= 1 chain instead having a
ground state with exponentially decaying correlations and a gap to all excitations; a kind
of spin liquid state [26]. This was counter to the expectation (based on, e.g., spin wave
theory) that increasing S should increase the tendency to ordering. Haldane’s conjecture
stimulated intense research activities, theoretical as well as experimental, on the S = 1
Heisenberg chain and 1D systems more broadly. There is now completely conclusive
evidence from numerical studies that Haldane was right [61, 62, 63]. Experimentally,
there are also a number of quasi-one-dimensional S = 1/2 [64] and S = 1 [65] (and
also larger S [66]) compounds which show the predicted differences in the excitation
spectrum. A rather complete and compelling theory of spin-S Heisenberg chains has
emerged (and includes also the VBS transitions for half-odd integer S), but even to this
date various aspects of their unusual properties are still being worked out [67]. There are
also many other variants of spin chains, which are also attracting a lot of theoretical and
experimental attention (e.g., systems including various anisotropies, external fields [68],
higher-order interactions [69], couplings to phonons [70, 71], long-range interactions
[72, 73], etc.). In Sec. 4 we will use exact diagonalization methods to study the S= 1/2
Heisenberg chain, as well as the extended variant with frustrated interactions (and also
including long-range interactions). In Sec. 5 we will investigate longer chains using the
SSE QMC method. We will also study ladder-systems consisting of several coupled
chains [9], which, for an even number of chains, have properties similar to the Haldane
state (i.e., exponentially decaying spin correlations and gapped excitations).

2.4. Models with quantum phase transitions in two dimensions

The existence of different types of ground states implies that phase transitions can
occur in a system at T = 0 as some parameter in the hamiltonian is varied (which
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In both cases phase transitions can be
- first-order (discontinuous): finite correlation length ξ as g→gc or g→gc
- continuous: correlation length diverges, ξ~|g-gc|-ν or ξ~|T-Tc|-ν

3

Classical (thermal) phase transition
- Fluctuations regulated by temperature T>0
Quantum (ground state, T=0) phase transition
- Fluctuations regulated by parameter g in Hamiltonian

Classical and quantum phase transitions

There are many similarities between classical and quantum transitions
- and also important differences
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FIGURE 3. Temperature (T ) or coupling (g) dependence of the order parameter (e.g., the magnetization
of a ferromagnet) at a continuous (a) and a first-order (b) phase transition. A classical, thermal transition
occurs at some temperature T = Tc, whereas a quantum phase transition occurs at some g= gc at T = 0.

where the spin correlations decay exponentially with distance [60].
While quasi-1D antiferromagnets were actively studied experimentally already in the

1960s and 70s, these efforts were further stimulated by theoretical developments in the
1980s. Haldane conjectured [55], based on a field-theory approach, that the Heisenberg
chain has completely different physical properties for integer spin (S = 1,2, . . .) and
“half-odd integer” spin (S = 1/2,3/2, . . .). It was known from Bethe’s solution that the
S = 1/2 chain has a gapless excitation spectrum (related to the power-law decaying
spin correlations). Haldane suggested the possibility of the S= 1 chain instead having a
ground state with exponentially decaying correlations and a gap to all excitations; a kind
of spin liquid state [26]. This was counter to the expectation (based on, e.g., spin wave
theory) that increasing S should increase the tendency to ordering. Haldane’s conjecture
stimulated intense research activities, theoretical as well as experimental, on the S = 1
Heisenberg chain and 1D systems more broadly. There is now completely conclusive
evidence from numerical studies that Haldane was right [61, 62, 63]. Experimentally,
there are also a number of quasi-one-dimensional S = 1/2 [64] and S = 1 [65] (and
also larger S [66]) compounds which show the predicted differences in the excitation
spectrum. A rather complete and compelling theory of spin-S Heisenberg chains has
emerged (and includes also the VBS transitions for half-odd integer S), but even to this
date various aspects of their unusual properties are still being worked out [67]. There are
also many other variants of spin chains, which are also attracting a lot of theoretical and
experimental attention (e.g., systems including various anisotropies, external fields [68],
higher-order interactions [69], couplings to phonons [70, 71], long-range interactions
[72, 73], etc.). In Sec. 4 we will use exact diagonalization methods to study the S= 1/2
Heisenberg chain, as well as the extended variant with frustrated interactions (and also
including long-range interactions). In Sec. 5 we will investigate longer chains using the
SSE QMC method. We will also study ladder-systems consisting of several coupled
chains [9], which, for an even number of chains, have properties similar to the Haldane
state (i.e., exponentially decaying spin correlations and gapped excitations).

2.4. Models with quantum phase transitions in two dimensions

The existence of different types of ground states implies that phase transitions can
occur in a system at T = 0 as some parameter in the hamiltonian is varied (which
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In both cases phase transitions can be
- first-order (discontinuous): finite correlation length ξ as g→gc or g→gc
- continuous: correlation length diverges, ξ~|g-gc|-ν or ξ~|T-Tc|-ν

3

Exponentially small gap at a first-order
(discontinuous) transition

� ⇠ e�aL

Exactly how does z enter in the adiabatic criterion? 

Important issue for quantum annealing!
P. Young et al. (PRL 2008)
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Kibble-Zurek Velocity and Scaling

The adiabatic criterion for passing through a continuous 
phase transition involves exponents z and ν:

Kibble 1978
- defects in early universe
Zurek 1981
- classical phase transitions
Polkovnikov 2005
- quantum phase transitions

Same criterion for classical
and quantum phase transitions
- adiabatic (quantum)
- quasi-static (classical)

Generalized finite-size scaling hypothesis

A(�, v, L) = L�/⌫g(�L1/⌫ , vLz+1/⌫)

A(�, v,N) = N�/⌫0
g(�N1/⌫0

, vNz0+1/⌫0
), ⌫0 = d⌫, z = z/d

Will use for spin glasses of interest in quantum computing

Apply to well-understood classical system first...

Must have v < vKZ, with

vKZ ⇠ L�(z+1/⌫)
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Kibble-Zurek scaling in imaginary time

Computational advantage:
All s=values in one simulation!

“Asymmetric” expectation values

hAik = h (0)|
1Y

i=M

H(si)
MY

i=k

H(si)A
kY

i=1

H(si)| (0)ihAik = h (0)|
1Y

i=M

H(si)
MY

i=k

H(si)A
kY

i=1

H(si)| (0)i

Collect data, do scaling analysis...

Same leading-order (in v)
behavior as conventional
expectation values

Test on clean 2D Ising model
in transverse field

Using H-product dynamics

Animation of single configuration!
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0.15 0.20 0.25 0.30
S

0.0

0.2

0.4

0.6

0.8

1.0

U L = 12
L = 16
L = 32
L = 48
L = 56
L = 60

0.24 0.25

0.8

0.9

2D Transverse-Ising, Scaling Example

A(�, v, L) = L�/⌫g(�L1/⌫ , vLz+1/⌫)

Example: Binder cumulant

Step function should form,
jump fromU=0 to 1 at sc

- crossing points for
   finite system size

Do similar studies for quantum spin glasses

If z, ν known, sc not: use

vLz+1/⌫
= constant

for 1-parameter scaling

z = 1, ⌫ ⇡ 0.70
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Note on QMC Simulation Dynamics

Recent work claimed the D-wave
machine shows behavior similar to 
“simulated quantum annealing”
[S. Boixio, M. Troyer et al., Nat. Phys. 2014]

H(s) evolved in simulation time

Is this the same as Hamiltonian
quantum dynamics?

NO! Only accesses the dynamics
of the QMC method

3

The 3-regular graphs have d = 1 and we will use N for
the size. To convert to unprimed exponents the upper
critical dimension should then be used; d = d

u

.
The existence of a characteristic velocity suggests a

generalized finite-size scaling form for singular quantities
at the critical point. For quantities calculated at the final
time t

f

when s = s
c

, and when v / vKZ or lower, the
order parameter takes the form

hq2i ⇠ N�2�/⌫0
f(vNz

0
r+1/⌫0

), (8)

and we can extract �, ⌫0, z0 by analyzing results for two
di↵erent values of the quench parameter r [31].

Hamiltonian versus simulation dynamics.—Before pre-
senting QAQMC results for the 3-regular graphs, let us
comment on stochastic simulation-time dynamics and the
method of changing H as a function of the simulation
time. This approach is normally considered with thermal
QMC simulations [15, 37] but can also be implemented in
the QAQMC. To illustrate this we use the ferromagnetic
d = 1 TFIM. We use a relatively large number of opera-
tors in the operator sequence in (4), m = 4N2 (su�cient
for ground-state convergence at all s in equilibrium), and
keep s the same for all operators. The simulation starts
at s = 0 and s is changed linearly at velocity v until
s
c

= 1/2 is reached. At this stage the magnetization is
calculated. The procedure is repeated many times to ob-
tain hm2

z

i. The velocity is defined using a time unit of
a sweep of either local updates (a Metropolis procedure
where small segments of spins are flipped) or cluster up-
dates (a generalization of the Swendsen-Wang, SW, clus-
ter updates [38, 39]) throughout the system. Using the
scaling ansatz (8) for hm2

z

i, we extract the dynamic ex-
ponent characterizing the approach to the critical point
with the local and cluster updates, and compare with
the exponent computed with QAQMC with s is evolv-
ing within the operator string in Eq. (4). In the latter
case there is no dependence on the type of MC updates
(but cluster updates give results with smaller statistical
errors for a given simulation time) and we should detect
Hamiltonian dynamics with z = 1.

The scaling analysis for all the cases is presented in
Fig. 1. The static exponents are known (those of the
d = 2 classical Ising model), � = 1/8 and ⌫ = 1, and
we use these to produce scaling plots according to the
form (8). We suspect that the simulation-time dynamics
should be the same as in the classical d = 2 Ising model
with local and SW updates, and therefore test scaling
with z = 2.17 and z = 0.30, respectively (as recently
computed using KZ scaling in Ref. 31). In all cases the
data collapse is very good for su�ciently large systems
and low velocities. The straight lines in the log-log plots
have slopes given by the exponent

x =
d� 2�/⌫

zr + 1/⌫
=

1� 2�/⌫0

z0r + 1/⌫0
, (9)
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FIG. 1: (Color online) Velocity scaling for linear quenches of
the TFIM: Quantum quench with QAQMC Hamiltonian dy-
namics in imaginary time (a), and simulation-time quenches
with Metropolis dynamics (b) and SW cluster dynamics (c).
The observed deviations from the common scaling functions
are expected at an N -dependent high velocity [31].

as expected for v
KZ

. v ⌧ 1 [31]. For v ⇡ vKZ there is a
cross-over to equilibrium finite-size scaling, where hm2

z

i /
N�2�/⌫ . For v of order 1 there is high-velocity cross-over
(not clearly seen in Fig. 1) into a size-independent hm2

z

i,
governed by another scaling form [31]. The above results
confirm that evolving a model in simulation time does not
access Hamiltonian dynamics and has little relevance for
studying QA (hence conclusions on QA computing drawn
in Ref. 13 are questionable).

QA of 3-regular graphs.—The critical temperature of
the classical antiferromagnetic 3-regular graphs is known
exactly, T

c

= �2 ln�1[1�2/(1+
p
2)], and the exponents,

including z for SA with local updates, are also known;
� = 1, ⌫0 = 3, z0 = 2/3 (d

u

= 6) [16, 17]. We have tested
the scaling approach on this system and reproduced all
the exponents to within a few percent [40]. Adding the
transverse field (2), the quantum-critical point s

c

is only
known approximately. Based on analytical and numerical
calculations with the cavity method a value s

c

⇡ 0.37 was
found in Ref. 18, and QMC calculations of excitation gaps

Demonstration for 1D Ising model
with transverse field shows this
z =1 for true Hamiltonian dynamics
z = 2.17 or z=0.30 for simulation-time
dynamics (local or cluster updates)

Imaginary-time method = true Hamiltonian dynamics
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N=8

3-regular graphs with anti-ferro couplings

N spins, randomly connected, coordination-number 3

- sc ≈ 0.37 from quantum cavity approximation
- QMC consistent with this sc, power-law gaps at sc

The quantum model was studied recently: 
Farhi, Gosset, Hen, Sandvik, Shor, Young, Zamponi, PRA 2012

More detailed studies with quantum annealing

Analyze <q2> using QMC and velocity scaling

Edwards-Anderson spin-glass order parameter

q =
1

N

NX

i=1

�z
i (1)�

z
i (2)

(1) and (2) are independent simulations (replicas)

Classical model has mean-field glass transition
- Tc known exactly (Krazakala et al.)
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Extracting Quantum-glass transition

Using Binder cumulant

U(s, v,N) = U [(s� sc)N
1/⌫0

, vNz0+1/⌫0
]

But now we don’t know 
the exponents. Use

v / N�↵, ↵ > z0 + 1/⌫0

- do several α
- check for consistency

Consistent with previous
work, but smaller errors

Next, critical exponents...

sc = 0.3565 +/- 0.0012

Best result for α=17/12 

4
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FIG. 2: (Color online) Crossing points between Binder cumu-
lants for 3-regular graphs with N and N+64 spins, extracted
using the curves shown in the inset. The results were obtained
in quenches with v ⇠ N�↵ for ↵ = 17/12. The curve in the
main panel is a power-law fit for extrapolating sc.

were in good agreement with this estimate. The error
bars on these calculations is several percent.

We find s
c

using r = 1 QAQMC with v / N�↵, where
↵ exceeds the KZ exponent z0 + 1/⌫0 (which is unknown
but later computable for a posteriori verification). Then
hq2i ⇠ N�2�/⌫0

at s
c

because f(x) in Eq. (8) approaches
a constant when x ! 0. As illustrated in Fig. 2, quench-
ing past the estimated s

c

, we use a curve crossing analysis
of the Binder cumulant, U = (3� hq4i/hq2i2)/2, and ob-
tain s

c

= 0.3565(12). This value agrees well with the
previous results but has smaller uncertainty.

Performing additional quenches to s
c

using protocols
with both r = 1 and r = 2/3 in Eq. (5) we extract all
the critical exponents. An example of scaling collapse
for r = 1 is shown in Fig. 3. Here all exponents are
treated as adjustable parameters for obtaining optimal
data collapse. The vertical and horizontal scalings give
the ratio �/⌫0 and the KZ exponent z0+1/⌫0, respectively,
and the slope in the linear regime is the exponent (9).
Combining results for r = 1 and r = 2/3 we obtain the
exponents � = 0.54(1), ⌫0 = 1.26(1), and z0 = 0.52(2).

Interestingly, the exponents are far from those ob-
tained using Landau theory [41] and other methods [42]
for large-d and fully connected (d = 1 [43]) Ising models
in a transverse field; � = 1, ⌫0 = 2 and z0 = 1/4 (d

u

= 8)
[41]. One might have expected the same mean-field ex-
ponents for these systems, as in the classical case. A
QMC calculation for the fully-connected model [44] was
not in complete agreement with the Landau values. It
was argued that z = 4, which, with d

u

= 8, agrees with
our z0 ⇡ 1/2 for the 3-regular graphs. However, � was
close to 1 and ⌫ = 1/4 (⌫0 = 2) was argued. It would
be interesting to study n-regular graphs and follow the
exponents from n = 3 to large n.

Implications for quantum computing.—The critical ex-
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FIG. 3: (Color online) Optimized scaling collapse of the or-
der parameter in critical quenches of 3-regular graphs, giving
the exponents listed in the text. The line has slope given in
Eq. (9) and the points above it deviate due to high-velocity
cross-overs [31] not captured by Eq. (8). For N ! 1 the
linear behavior should extend to infinity.

ponents contain information relevant to QA quantum
computing. In the classical case the KZ exponent is
z0 + 1/⌫0 = 1, while in the quantum system z0 + 1/⌫0 ⇡
1.31. Thus, by Eq. (7) the adiabatic annealing time grows
faster with N in QA. Furthermore, since the critical or-
der parameter scales asN�2�/⌫0

, the critical cluster is less
dense with QA, i.e., it is further from the state sought
when s ! 1 (the solution of the optimization problem).
Thus, in both these respects QA performs worse than SA
in passing through the critical point (while QA on the
fully-connected model, with the exponents of Ref. [41],
would reach s

c

faster than SA, though the critical clus-
ter is still less dense). QA can be made faster than SA
by following a protocol (5) with su�ciently large r, but
this may not be practical when s

c

is not known and the
goal is anyway to proceed beyond this point. While our
results do not contain any quantitative information on
the process continuing from s

c

to s = 1, it is certainly
discouraging that the initial stage of QA is ine�cient.

It would be interesting to run the D-Wave machine
[11, 12] as well on a problem with a critical point and
study velocity scaling. This would give valuable insights
into the nature of the annealing process.
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Study evolution to sc

- several system sizes N
- several velocities
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lants for 3-regular graphs with N and N+64 spins, extracted
using the curves shown in the inset. The results were obtained
in quenches with v ⇠ N�↵ for ↵ = 17/12. The curve in the
main panel is a power-law fit for extrapolating sc.

were in good agreement with this estimate. The error
bars on these calculations is several percent.

We find s
c

using r = 1 QAQMC with v / N�↵, where
↵ exceeds the KZ exponent z0 + 1/⌫0 (which is unknown
but later computable for a posteriori verification). Then
hq2i ⇠ N�2�/⌫0

at s
c

because f(x) in Eq. (8) approaches
a constant when x ! 0. As illustrated in Fig. 2, quench-
ing past the estimated s

c

, we use a curve crossing analysis
of the Binder cumulant, U = (3� hq4i/hq2i2)/2, and ob-
tain s

c

= 0.3565(12). This value agrees well with the
previous results but has smaller uncertainty.

Performing additional quenches to s
c

using protocols
with both r = 1 and r = 2/3 in Eq. (5) we extract all
the critical exponents. An example of scaling collapse
for r = 1 is shown in Fig. 3. Here all exponents are
treated as adjustable parameters for obtaining optimal
data collapse. The vertical and horizontal scalings give
the ratio �/⌫0 and the KZ exponent z0+1/⌫0, respectively,
and the slope in the linear regime is the exponent (9).
Combining results for r = 1 and r = 2/3 we obtain the
exponents � = 0.54(1), ⌫0 = 1.26(1), and z0 = 0.52(2).

Interestingly, the exponents are far from those ob-
tained using Landau theory [41] and other methods [42]
for large-d and fully connected (d = 1 [43]) Ising models
in a transverse field; � = 1, ⌫0 = 2 and z0 = 1/4 (d

u

= 8)
[41]. One might have expected the same mean-field ex-
ponents for these systems, as in the classical case. A
QMC calculation for the fully-connected model [44] was
not in complete agreement with the Landau values. It
was argued that z = 4, which, with d

u

= 8, agrees with
our z0 ⇡ 1/2 for the 3-regular graphs. However, � was
close to 1 and ⌫ = 1/4 (⌫0 = 2) was argued. It would
be interesting to study n-regular graphs and follow the
exponents from n = 3 to large n.

Implications for quantum computing.—The critical ex-
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FIG. 3: (Color online) Optimized scaling collapse of the or-
der parameter in critical quenches of 3-regular graphs, giving
the exponents listed in the text. The line has slope given in
Eq. (9) and the points above it deviate due to high-velocity
cross-overs [31] not captured by Eq. (8). For N ! 1 the
linear behavior should extend to infinity.

ponents contain information relevant to QA quantum
computing. In the classical case the KZ exponent is
z0 + 1/⌫0 = 1, while in the quantum system z0 + 1/⌫0 ⇡
1.31. Thus, by Eq. (7) the adiabatic annealing time grows
faster with N in QA. Furthermore, since the critical or-
der parameter scales asN�2�/⌫0

, the critical cluster is less
dense with QA, i.e., it is further from the state sought
when s ! 1 (the solution of the optimization problem).
Thus, in both these respects QA performs worse than SA
in passing through the critical point (while QA on the
fully-connected model, with the exponents of Ref. [41],
would reach s

c

faster than SA, though the critical clus-
ter is still less dense). QA can be made faster than SA
by following a protocol (5) with su�ciently large r, but
this may not be practical when s

c

is not known and the
goal is anyway to proceed beyond this point. While our
results do not contain any quantitative information on
the process continuing from s

c

to s = 1, it is certainly
discouraging that the initial stage of QA is ine�cient.

It would be interesting to run the D-Wave machine
[11, 12] as well on a problem with a critical point and
study velocity scaling. This would give valuable insights
into the nature of the annealing process.
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hq2(sc)i / N�2�/⌫0
f(vNz0+1/⌫0

)

Velocity Scaling at the Glass Transition

β/ν‘ ≈ 0.43(2)
z’+1/ν’ ≈ 1.3(2)

Significance of the exponents

β/ν‘ ≈ 0.42(2)
z’+1/ν’ ≈ 1.4(2)

Same as fully connected
(Sherrington-Kirkpatrick)?

Differ from values
expected for d=∞:
(Read, Sachdev, Ye, 1995)

β/ν‘ ≈ 1/2
z’+1/ν’ ≈ 3/4

Why disagreement?
- log corrections?
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Relevance to Quantum Computing

Reaching sc, the degree of ordering scales as
p
< hq2i > ⇠ N��/⌫0

�/⌫0 ⇡ 0.43

Classical
β/ν‘ = 1/3
z’+1/ν’ = 1

Let’s compare with the know classical exponents
(finite-temperature transition of 3-regular random graphs)

Quantum
β/ν‘ ≈ 0.43
z’+1/ν’ ≈ 1.3

h

T
glass phase

• It takes longer for quantum 
annealing to reach its critical point

• And the state is further from ordered 
(further from the optimal solution)

Proposal: Do velocity scaling with the D-wave machine!

The time needed to stay adiabatic up to sc scales as

t ⇠ Nz0+1/⌫ z0 + 1/⌫0 ⇡ 1.3
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