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Lecture outline

- 2D Heisenberg antiferromagnets, order and criticality

- 3D dimerized models and TlCuCl3

- Pitfalls in order-parameter extrapolations

- Crossing-point methods for critical points
     - formal analysis of scaling function
     - tests on 2D Ising model
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Classical (thermal) phase transition
- Fluctuations regulated by temperature T>0
Quantum (ground state, T=0) phase transition
- Fluctuations regulated by parameter g in Hamiltonian

Classical and quantum phase transitions

There are many similarities between classical and quantum transitions
- and also important differences
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FIGURE 3. Temperature (T ) or coupling (g) dependence of the order parameter (e.g., the magnetization
of a ferromagnet) at a continuous (a) and a first-order (b) phase transition. A classical, thermal transition
occurs at some temperature T = Tc, whereas a quantum phase transition occurs at some g= gc at T = 0.

where the spin correlations decay exponentially with distance [60].
While quasi-1D antiferromagnets were actively studied experimentally already in the

1960s and 70s, these efforts were further stimulated by theoretical developments in the
1980s. Haldane conjectured [55], based on a field-theory approach, that the Heisenberg
chain has completely different physical properties for integer spin (S = 1,2, . . .) and
“half-odd integer” spin (S = 1/2,3/2, . . .). It was known from Bethe’s solution that the
S = 1/2 chain has a gapless excitation spectrum (related to the power-law decaying
spin correlations). Haldane suggested the possibility of the S= 1 chain instead having a
ground state with exponentially decaying correlations and a gap to all excitations; a kind
of spin liquid state [26]. This was counter to the expectation (based on, e.g., spin wave
theory) that increasing S should increase the tendency to ordering. Haldane’s conjecture
stimulated intense research activities, theoretical as well as experimental, on the S = 1
Heisenberg chain and 1D systems more broadly. There is now completely conclusive
evidence from numerical studies that Haldane was right [61, 62, 63]. Experimentally,
there are also a number of quasi-one-dimensional S = 1/2 [64] and S = 1 [65] (and
also larger S [66]) compounds which show the predicted differences in the excitation
spectrum. A rather complete and compelling theory of spin-S Heisenberg chains has
emerged (and includes also the VBS transitions for half-odd integer S), but even to this
date various aspects of their unusual properties are still being worked out [67]. There are
also many other variants of spin chains, which are also attracting a lot of theoretical and
experimental attention (e.g., systems including various anisotropies, external fields [68],
higher-order interactions [69], couplings to phonons [70, 71], long-range interactions
[72, 73], etc.). In Sec. 4 we will use exact diagonalization methods to study the S= 1/2
Heisenberg chain, as well as the extended variant with frustrated interactions (and also
including long-range interactions). In Sec. 5 we will investigate longer chains using the
SSE QMC method. We will also study ladder-systems consisting of several coupled
chains [9], which, for an even number of chains, have properties similar to the Haldane
state (i.e., exponentially decaying spin correlations and gapped excitations).

2.4. Models with quantum phase transitions in two dimensions

The existence of different types of ground states implies that phase transitions can
occur in a system at T = 0 as some parameter in the hamiltonian is varied (which
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In both cases phase transitions can be
- first-order (discontinuous): finite correlation length ξ as g→gc or g→gc

- continuous: correlation length diverges, ξ~|g-gc|-ν or ξ~|T-Tc|-ν

We will discuss continuous phase transitions
3



Squared magnetization (order parameter) for L×L Ising lattices

critical scaling
(non-trivial 
power-law)

disordered
(trivial power-
law 1/N = 1/L-2)

ordered
(size independent)

Finite-size scaling and extrapolations
Monte Carlo simulations are done on finite lattices
- typically periodic boundary conditions
We have to analyze the size dependence of computed
quantities and extract the behavior in the thermodynamic limit
- using input from theoretical expectations as much as possible
Example: 2D Ising model

H = �J
X

hi,ji

�i�j , m =
1

N

NX

i=1

�i, �i 2 {�1,+1}
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Long-range order in 2D S=1/2 Heisenberg antiferromagnet

H = J
�

�i,j⇥

Si · Sj

Long-range order: <ms2> > 0 for N→∞

⌃ms =
1
N

N�

i=1

�i
⌃Si, �i = (�1)xi+yi (2D square lattice)

Sublattice magnetization

 Quantum Monte Carlo 
- finite-size calculations
- no approximations
- extrapolation to infinite size

Reger & Young 1988
ms = 0.30(2)
� 60 % of classical value
AWS & HG Evertz 2010

ms = 0.30743(1)

L⨉L lattices up to 256⨉256, T=0
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T=0 Néel-paramagnetic quantum phase transition
Example: Dimerized S=1/2 Heisenberg models
• every spin belongs to a dimer (strongly-coupled pair)
• many possibilities, e.g., bilayer, dimerized single layer

⇒ 3D classical Heisenberg (O3) universality class
   - QMC confirmed

Singlet formation on strong bonds ➙ Néel - disordered transition
  Ground state (T=0) phases

� = spin gaps

weak interactions

strong interactions
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FIGURE 5. QMC results for the squared sublattice magnetization in the two-dimensional Heisenberg
model with columnar dimerization. (a) shows results versus the coupling ratio g for different lattice sizes
and (b) shows the size dependence for several values of g. A quantum phase transition where the Néel
order vanishes occurs at g≈ 1.9.

renormalization-group treatments of one such field theory—the nonlinear σ -model in
2+1 dimensions [5, 84]. Based on symmetry arguments alone, one would then expect
the transition to be in the universality class of the 3D classical Heisenberg model. There
are, however, subtle issues in the quantum-classical mapping, and QMC simulations are
therefore needed to test various predictions. We will see examples of such comparisons
between results of simulations and field theories in Sec. 5.While results for the transition
in the bilayer (a) [85] and columnar dimer (b) [86] systems in Fig. 4 (and several
other cases [87, 88]) are in good agreement with the expectations, recent studies of
the staggered dimers (c) show unexpected deviations [89] that are still not understood.

2.4.2. Frustrated systems

The prototypical example of frustration is a system with antiferromagnetic inter-
actions on a triangular lattice. Looking at this problem first within the Ising model,
the spins on a single triangle cannot simultaneously be anti-parallel to both their
neighbors—there are six configurations with minimum energy, and these all have one
“frustrated” bond (two parallel neighbors), as shown in Fig. 6. Being a consequence of
the lattice, this is often referred to as geometric frustration. Upon increasing the system
size, the ground-state degeneracy grows with the system size, and in the ensemble in-
cluding all these configurations there is no order of any kind [90, 91]. In the case of the
classical XY (planar vector) or Heisenberg (vectors in three dimensions) model, there is,
however, order at T = 0 (but not at T > 0, according to the Mermin-Wagner theorem).
The energy is minimized by arranging the spins in a plane at 120◦ angle with respect
to their neighbors on the same triangle, as shown for a single triangle in Fig. 6. This is
referred to as a three-sublattice Néel state. There have been many studies of the S = 1/2
variant of this model. This was, in fact, the system for which the RVB spin-liquid state
was initially proposed [92]. There is now, however, compelling numerical evidence for
the three-sublattice Néel order actually surviving the quantum fluctuations [93, 94].
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Experimental realization: TlCuCl3  (a 3D coupled-dimer system)

SSE simulations of the loss of order
Single-layer columnar coupled dimers

T low enough to give the ground state
- T = a/L, a=2-4 (a may have to increase with size)

A linear behavior on 1/L is expected throughout the ordered phase
- becomes more difficult to see as the critical point is approached
Power-law form <ms2> ~ 1/L1-η, η≈0.03, expected at gc
- we will discuss extraction of critical points later 
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TlCuCl3 

From: M Matsumoto, B Normand, 
TM Rice, M Sigrist, PRB (2004)
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Field- and pressure-induced magnetic quantum phase transitions in TlCuCl3

Masashige Matsumoto,1,2 B. Normand,3 T. M. Rice,1 and Manfred Sigrist1
1Theoretische Physik, ETH-Hönggerberg, CH-8093 Zürich, Switzerland

2Department of Physics, Faculty of Science, Shizuoka University, 836 Oya, Shizuoka 422-8529, Japan
3Département de Physique, Université de Fribourg, CH-1700 Fribourg, Switzerland

!Received 15 September 2003; published 25 February 2004"

Thallium copper chloride is a quantum spin liquid of S!1/2 Cu2" dimers. Interdimer superexchange
interactions give a three-dimensional magnon dispersion and a spin gap significantly smaller than the dimer
coupling. This gap is closed by an applied hydrostatic pressure of approximately 2 kbar or by a magnetic field
of 5.6 T, offering a unique opportunity to explore both types of quantum phase transition and their associated
critical phenomena. We use a bond-operator formulation to obtain a continuous description of all disordered
and ordered phases, and thus of the transitions separating these. Both pressure- and field-induced transitions
may be considered as the Bose–Einstein condensation of triplet magnon excitations, and the respective phases
of staggered magnetic order as linear combinations of dimer-singlet and dimer-triplet modes. We focus on the
evolution with applied pressure and field of the magnetic excitations in each phase, and in particular on the
gapless !Goldstone" modes in the ordered regimes which correspond to phase fluctuations of the ordered
moment. The bond-operator description yields a good account of the magnetization curves and of magnon
dispersion relations observed by inelastic neutron scattering under applied fields, and a variety of experimental
predictions for pressure-dependent measurements.

DOI: 10.1103/PhysRevB.69.054423 PACS number!s": 75.10.Jm, 75.40.Cx, 75.40.Gb

I. INTRODUCTION

Thallium copper chloride1–3 presents an insulating, quan-
tum magnetic system of dimerized S!1/2 Cu2" ions. Inelas-
tic neutron scattering !INS" measurements of the elementary
magnon excitations4,5 reveal a strong dispersion in all three
spatial dimensions indicative of significant interdimer inter-
actions. The dispersion minimum gives a spin gap #0
!0.7 meV, which is significantly smaller than the antiferro-
magnetic !AF" dimer superexchange parameter J$5 meV.
The corresponding critical field, Hc!5.6 T, makes TlCuCl3
one of the few known inorganic systems in which the gap
may be closed by application of laboratory magnetic fields.2
Neutron-diffraction measurements at fields H#Hc revealed
that a field-induced AF order in the plane normal to the ap-
plied field appears simultaneously with the uniform
moment.6 Recent INS measurements of the magnon spectra
in finite fields,7 including those exceeding Hc ,8 have pro-
vided dynamical information concerning the elementary ex-
citations, in particular the linear Goldstone mode,9 in the
phase of field-induced magnetic order.
TlCuCl3 !Fig. 1" is one member of a group of related

compounds. The potassium analog KCuCl3 !Refs. 1,2,10–
13,7" is similarly dimerized, but has significantly weaker in-
terdimer couplings,14 resulting in a large spin gap of 2.6
meV. A further material in the same class, NH4CuCl3, has no
spin gap and exhibits magnetic order with a very small mo-
ment, but also shows a complicated low-temperature struc-
ture which gives rise to magnetization plateaus only at 1/4
and 3/4 of the saturation value.15 While the apparent increase
of interdimer couplings with anion size may suggest a con-
tribution of the anion to superexchange processes, it should
be noted that the physical origin of the properties of
NH4CuCl3 may be rather different from the other
members.16 Turning from chemical to physical pressure,

Tanaka et al.17 found by magnetization measurements under
hydrostatic pressure that TlCuCl3 has a pressure-induced
magnetically ordered phase, with a very small critical pres-
sure for the onset of magnetic order, Pc%2 kbar. Oosawa
et al.18 have shown very recently by elastic neutron-
scattering measurements under a pressure of 1.48 GPa that
the pressure-induced ordered phase has a strong staggered
moment !60% of the saturation value", again reflecting the
low value of Pc . The magnetic Bragg reflections are found
at reciprocal-lattice points Q!(0,0,2&) !following the nota-
tion of Ref. 4", as in the field-induced ordered phase of
TlCuCl3. The aim of the present work is to compare and
contrast the field- and pressure-induced ordered phases of the
system, and to provide a complete description of the static
magnetization and dynamical excitations at all fields and
pressures.

FIG. 1. Structure of TlCuCl3: small circles represent Cl$ ions,
medium-sized circles Cu2" ions, and large circles Tl" ions.

PHYSICAL REVIEW B 69, 054423 !2004"

0163-1829/2004/69!5"/054423!20"/$22.50 ©2004 The American Physical Society69 054423-1

Figure 4.1: Crystal structure of TlCuCl
3

: small circles represent Cl� ions, medium-sized

circles Cu2+ ions, and large circles Tl+ ions. Dimers are formed between S = 1

2

Cu2+ pairs,

with superexchange via Cl� [3–9]. This graph is from Ref. [10].

couplings are di↵erent.

A universal aspect of the ordering temperature, from systems close to the quantum-

critical point to deep inside the Néel phase, is uncovered based on an unbiased quantum

Monte Carlo calculation. A scaling procedure of direct relevance to experiments is devel-

oped. The results also provide new insights into the relevant energy scales present in the 3D

Néel state and demonstrate an e↵ective decoupling of thermal and quantum fluctuations.

4.1 TlCuCl3 and Dimer Spin Models

The strong interdimer interaction of TlCuCl
3

is revealed by elementary magnon exitation

with neutron scattering experiment [6, 88]. Quantum phase transitions can be realized in

3D Network of dimers
- couplings can be 
  changed by pressure
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Quantum and classical criticality in a dimerized
quantum antiferromagnet
P. Merchant1, B. Normand2, K. W. Krämer3, M. Boehm4, D. F. McMorrow1 and Ch. Rüegg1,5,6*

A quantum critical point (QCP) is a singularity in the phase diagram arising because of quantum mechanical fluctuations.
The exotic properties of some of the most enigmatic physical systems, including unconventional metals and superconductors,
quantum magnets and ultracold atomic condensates, have been related to the importance of critical quantum and thermal
fluctuations near such a point. However, direct and continuous control of these fluctuations has been di�cult to realize, and
complete thermodynamic and spectroscopic information is required to disentangle the e�ects of quantum and classical physics
around a QCP. Here we achieve this control in a high-pressure, high-resolution neutron scattering experiment on the quantum
dimer material TlCuCl3. By measuring the magnetic excitation spectrum across the entire quantum critical phase diagram,
we illustrate the similarities between quantum and thermal melting of magnetic order. We prove the critical nature of the
unconventional longitudinal (Higgs) mode of the ordered phase by damping it thermally. We demonstrate the development of
two types of criticality, quantum and classical, and use their static and dynamic scaling properties to conclude that quantum
and thermal fluctuations can behave largely independently near a QCP.

In classical isotropic antiferromagnets, the excitations of
the ordered phase are gapless spin waves emerging on the
spontaneous breaking of a continuous symmetry1. The classical

phase transition, occurring at the critical (Néel) temperature TN,
is driven by thermal fluctuations. In quantum antiferromagnets,
quantum fluctuations suppress long-range order, and can destroy it
completely even at zero temperature2. The ordered and disordered
phases are separated by a QCP, where quantum fluctuations restore
the broken symmetry and all excitations become gapped, giving
them characteristics fundamentally di�erent from the Goldstone
modes on the other side of the QCP (Fig. 1). At finite temperatures
around a QCP, the combined e�ects of quantum and thermal
fluctuations bring about a regime where the characteristic energy
scale of spin excitations is the temperature itself, and this quantum
critical regime has many special properties3.

Physical systems do not often allow the free tuning of a
quantum fluctuation parameter through a QCP. The quantum
critical regime has been studied in some detail in heavy-fermion
metals with di�erent dopings, where the quantum phase transition
(QPT) is from itinerant magnetic phases to unusual metallic or
superconducting ones4–6, in organic materials where a host of
insulating magnetic phases become (super)conducting7,8, and in
cold atomic gases tuned from superfluid toMott-insulating states9,10.
However, the dimerized quantum spin system TlCuCl3 occupies
a very special position in the experimental study of QPTs. The
quantum disordered phase at ambient pressure and zero field has
a small gap to spin excitations. An applied magnetic field closes
this gap, driving a QPT to an ordered phase, a magnon condensate
in the Bose–Einstein universality class, with a single, nearly
massless excitation11,12.

Far more remarkably, an applied pressure also drives a QPT
to an ordered phase13, occurring at the very low critical pressure

pc = 1.07 kbar (ref. 14) and sparking detailed studies15,16. This
ordered phase is a di�erent type of condensate, whose defining
feature is a massive excitation, a Higgs boson or longitudinal
fluctuationmode of theweakly orderedmoment17,18. This excitation,
which exists alongside the two transverse (Goldstone) modes
of a conventional well-ordered magnet, has been characterized
in detail by neutron spectroscopy with continuous pressure
control through the QPT (ref. 19) and subsequently by di�erent
theoretical approaches20,21. TlCuCl3 is therefore an excellent system
for answering fundamental questions about the development of
criticality, the nature of the quantum critical regime, and the
interplay of quantum and thermal fluctuations by controlling both
the pressure and the temperature.

Here we present inelastic neutron scattering (INS) results that
map the evolution of the spin dynamics of TlCuCl3 throughout the
quantum critical phase diagram in pressure and temperature. The
spin excitations we measure exhibit di�erent forms of dynamical
scaling behaviour arising from the combined e�ects of quantum
and thermal fluctuations, particularly on crossing the quantum
critical regime and at the line of phase transitions to magnetic
order (Fig. 1). To probe these regions, we collected spectra up to
1.8 meV for temperatures between T =1.8 K and 12.7 K, and over
a range of applied hydrostatic pressures. Our measurements were
performed primarily at p = 1.05 kbar (' pc at the lowest
temperatures), 1.75 kbar and 3.6 kbar, and also for all pressures at
T = 5.8 K. Most measurements were made at the ordering
wavevector, Q0 = (0 4 0) reciprocal lattice units (r.l.u.), and so
concern triplet mode gaps. From the INS selection rules, only one
transverse mode of the ordered phase is observable at Q = Q0,
and it is gapped (�T2 = 0.38 meV) owing to a 1% exchange
anisotropy19. These features allow an unambiguous separation of
the intensity contributions from modes of each transverse or

1London Centre for Nanotechnology and Department of Physics and Astronomy, University College London, London WC1E 6BT, UK, 2Department of
Physics, Renmin University of China, Beijing 100872, China, 3Department of Chemistry and Biochemistry, University of Bern, CH–3012 Bern, Switzerland,
4Institut Laue Langevin, BP 156, 38042 Grenoble Cedex 9, France, 5Laboratory for Neutron Scattering, Paul Scherrer Institute, CH–5232 Villigen,
Switzerland, 6DPMC–MaNEP, University of Geneva, CH–1211 Geneva, Switzerland. *e-mail: christian.rueegg@psi.ch
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Figure 4 | Quantum and classical criticality. a, Scattered neutron intensity at p=pc as a function of temperature. Points show the energies ✏Q extracted
from the intensity for the modes becoming gapless (L and T1, yellow) and gapped (T2, black) as T !0. b, �Q as a function of T at p=pc. Error bars in a and
b indicate uncertainties in the resolution deconvolution. c, Complete experimental phase diagram, showing quantum disordered (QD), quantum critical
(QC), classical critical (CC) and renormalized classical (RC-AFM) phases. The dashed lines denote energy scales marking crossovers in behaviour. Grey
symbols denote TN(p) (ref. 14), blue symbols labelled TSL(p) show the limit of classical critical scaling in the data for the staggered magnetization, ms(T),
and the blue bars are taken from �Q/✏Q(T) (see text). d, Linear proportionality of the measured TN(p) and ms(p) (ref. 14). e, Scaling of TN and ms, including
one high-p data point (open circle) taken from ref. 25 for an absolute calibration of ms. Data for ms are normalized by Tmax =35 K, the maximum of the
magnetic susceptibility13,16. Red lines in d and e represent scaling behaviour discussed in the text and error bars are the statistical uncertainties in the
intensity measurements determining ms.

on the calculated quantities, but no detectable qualitative ones (for
example, on exponents). From our measurements, the best fits to
the pressure exponents for ms and TN lie close to the classical value
of 0.35 (ref. 14), although the quantum value of 0.5 is not beyond
the error bars very close to the QCP. From experiment, the two
quantities scale well together near the QCP, as shown in Fig. 4d,e,
but depart from universal scaling16 around an ordered moment of
0.4µB/Cu (Fig. 4e).

We have shown that the e�ects on the spectrum of quantum
and thermal melting are qualitatively very similar. Both result
in the systematic evolution of excitations whose gap increases
away from the classical phase transition line, rather than simply
a loss of coherence due to thermal fluctuations. Microscopically,
quantum fluctuations in a dimer-based system cause enhanced
singlet formation and loss of interdimer magnetic correlations,

whereas thermal fluctuations act to suppress the spin correlation
function hSi · Sji on both the dimer and interdimer bonds. These
correlation functions may be estimated from neutron-scattering
intensities23 and also measured in dimerized optical lattices of
ultracold fermions29. In TlCuCl3, both methods of destroying
interdimer coherence cause the triplet modes to evolve in the same
way. A key question in the understanding of quantum criticality is
whether quantum and thermal fluctuations can be considered as
truly independent, andwhether this independencemay be taken as a
definition of the quantumcritical regime16. Our experimental results
suggest that weak departures from universality become detectable at
(p,T ) values away from the quantum critical and classical critical
regimes, and particularly as we increase the excitation energy,
presumably as microscopic details of the fluctuation redistribution
cause a mixing of quantum and thermal e�ects.

NATURE PHYSICS | VOL 10 | MAY 2014 | www.nature.com/naturephysics 377
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Universality of the Neel temperature in 3D dimerized systems?
                                                                                               [S. Jin, AWS, PRB2012]

RAPID COMMUNICATIONS

SONGBO JIN AND ANDERS W. SANDVIK PHYSICAL REVIEW B 85, 020409(R) (2012)

J1

J2

(a) (b) (c)

FIG. 1. (Color online) Dimerized 3D lattices: (a) columnar
dimers, (b) staggered dimers, and (c) double cube. For a system of
length L, the number of spins is N = L3 in (a) and (b), and N = 2L3

in (c). The two different coupling strengths J1 and J2 are indicated
by thin (black dashed and solid) and thick (red) lines, respectively.

not just close to the quantum-critical point but extending to
strongly ordered systems. Our results give a parameter-free
scaling function that can be compared with experiments.

Quantum Monte Carlo calculations. We have used the
stochastic series expansion (SSE) QMC method with very
efficient loop updates5–7 to calculate the squares 〈m2

z〉 and
〈m2

sz〉 of the z components of the uniform and staggered
magnetizations,

mz = 1
N

N∑

i=1

Sz
i , msz = 1

N

N∑

i=1

φiS
z
i , (2)

where the phases φi = ±1 correspond to the sublattices of the
bipartite systems in Fig. 1. The uniform susceptibility is χ =
〈m2

z〉/(NT ). We also study the Binder ratio R2 = 〈m4
sz〉/〈m2

sz〉2

and the spin stiffness constants ρα
s in all lattice directions (α =

x,y,z), ρα
s = d2E(θα)/dθ2

α , where E is the internal energy per
spin and θα a uniform twist angle imposed between spins in
planes perpendicular to the α axis. The stiffness constants can
be related to winding number fluctuations in the simulations.7

We use standard finite-size scaling7 to extract TN . At TN , the
stiffness constants scale with the system length as ρα

s ∝ L2−d ,
where the dimensionality d = 3. Thus, ρα

s L should be size
independent at TN , while this quantity vanishes (diverges) for
T > TN (T < TN ). In practice, this means that curves versus
T (at fixed g) for two different system sizes L cross each other
at a point which drifts (due to scaling corrections) toward TN

with increasing L. The dimensionless Binder ratio also has this
kind of behavior and provides us with a different TN estimate
to check for consistency. Figures 2(a) and 2(b) show examples
of these crossing behaviors for ρx

s L and R2. The crossing
points drift in different directions and bracket TN . Figure 2(c)
shows the L dependence of crossing points extracted from data
for (L,L + 2) system pairs, for R2 and two different stiffness
constants. Power-law fits are used to extrapolate to infinite
size. The mutual consistency of the TN value so obtained using
different quantities gives us confidence in the accuracy of this
procedure.

To extract the T = 0 sublattice magnetization, we carry out
simulations at temperature T = J1/L. Note that, in a Néel
phase with TN > 0, any T (L) such that T (L → ∞) → 0 can
be used for extrapolations to the thermodynamic limit and
T = 0. Our choice is a natural way to to scale the temperature
since the lowest spin waves have energy ∝1/L. We also did
some calculations with T = 1/2L and obtained consistent
extrapolated results. Examples of the L dependence are shown
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FIG. 2. (Color online) Procedures used to extract the critical
temperature TN . (a) and (b) show ρx

s L and R2, respectively, for
the columnar dimer model at coupling ratio g = 3.444. The error
bars are smaller than the symbols. Using polynomial fits to data for
two lattice sizes, L and L + 2, crossing points between the curves
are extracted. Results are shown in (c), along with fits of the form
TN (L) = TN (∞) + a/Lw (to the large-L data for which this form
obtains). Extrapolations of the three quantities give TN = 0.7996(3),
0.7996(6), and 0.7999(5) for L → ∞, all consistent with each other
within errors bars.

in Fig. 3 for the double-cube model at several different
coupling ratios. Taking into account rotational averaging in
spin space, the final result for the sublattice magnetization is
given by the L → ∞ extrapolated 〈m2

sz〉 (for which we use a
polynomial fit, as shown in Fig. 3), ms =

√
3〈m2

sz〉.
Universality of TN versus ms . Following the above pro-

cedures, we have calculated TN and ms accurately for all
three dimer models at several coupling ratios g, from close
to gc to deep inside the Néel phase. We graph TN versus
ms in Fig. 4. TN is scaled by three different energy units:
the interdimer coupling J1 in Fig. 4(a), the sum of couplings
Js connected to each spin in Fig. 4(b), and the temperature
T ∗ at which the susceptibility exhibits a peak in Fig. 4(c).
Before discussing these normalizations of TN in detail, let us
examine the reason for the linear behavior, TN ∝ ms , seen in
the QMC results for small [and in Figs. 4(b) and 4(c) even quite
large] ms .
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FIG. 3. (Color online) Extrapolation of the sublattice magneti-
zation obtained in simulations with T = J1/L of the double-cube
Heisenberg model at different coupling ratios g. The error bars are
much smaller than the symbols. The fitting function used for L → ∞
extrapolations is a + b/L2 + c/L3 (where we exclude the linear term
because it comes out very close to zero in fits including it).
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FIG. 4. (Color online) The Néel temperature TN vs the sublattice
magnetization for the three different dimerized models and with
TN normalized in three different ways. TN is measured in units of
(a) the interdimer coupling J1, (b) the total coupling Js per spin, and
(c) the peak temperature T ∗ of the susceptibility. A linear dependence
obtains in all cases for small to moderate ms , as indicate by fitted lines.
Note that ms ! 1/2 for S = 1/2.

A semiclassical mean-field argument (inspired by
the “renormalized classical” picture developed in two
dimensions1) leading to TN ∝ ms is the following: To compute
TN in a classical system of spins of length S, one replaces the
coupling of a spin S0 to the total spin of its neighbors δ,
J

∑
δ Sδ , by the thermal average J

∑
δ〈Sδ〉. In the presence of

quantum fluctuations, this mean field seen by S0 is reduced,
which is taken into account by a renormalization, 〈Sδ〉 →
(ms/S)〈Sδ〉. The thermal fluctuations are, thus, added on top of
the quantum fluctuations at T = 0, under the assumption that
the quantum effects will not change appreciably for T > 0 (i.e.,
the thermal fluctuations are assumed to be solely responsible
for further reducing the order). Note that S0 should not be
renormalized here, but is computed as a thermal expectation
value and should satisfy the self-consistency condition 〈Sδ〉 =
〈S0〉. The final magnetization curve is given by (ms/S)〈S0〉.
In this procedure of decoupling the classical and quantum
fluctuations, one clearly effectively has J → (ms/S)J and,
thus, TN ∝ ms .

The assumption that the quantum renormalization factor
ms/S is T independent up to TN can be valid only if TN is
small. The energy scale in which to measure TN when stating
this condition should be dictated by the spin-wave velocity,
which stays nonzero at the quantum-critical point17 [i.e., not
by the long-distance energy scale ρs(T = 0), which vanishes
as g → gc and is unrelated to the density of thermally excited
spin waves]. A linear dependence is seen in Fig. 4 up to rather
large values of ms (where TN ∼ J1). A linear dependence was
also recently found in the columnar dimer model based on
high-T expansions18 (with much larger error bars).

Returning now to the issue of how to best normalize TN ,
we note that in Fig. 4(a), where the interdimer coupling J1
is used, the curve for the double-cube model is significantly
above the other two. This is clearly because the constant J1
does not account for the different average couplings in the
models. Using instead the sum Js of couplings connected to
each spin, i.e., Js = 5 + g for the columnar and staggered
dimers and 6 + g for the double cube (setting J1 = 1), the
curves, shown in Fig. 4(b), collapse almost on top of each
other. Note that also the curves for the columnar and staggered
dimers are closer to each other than in Fig. 4(a), although they
have the same definition of Js . This can be the case because Js

rescales the curves nonuniformly, since ms(g) and, therefore,
Js(ms), is different for the two models. The linearity of TN/Js

versus ms is also much clearer than before and extends all the
way up to ms ≈ 0.3.

Although the data collapse is already quite good in TN/Js ,
we can do even better when normalizing with a physical
quantity that measures the effective lattice-scale energy. One
such energy scale in antiferromagnets is the temperature at
which the uniform magnetic susceptibility χ exhibits a peak.
This peak is due to the crossover from the high-T Curie form
to the low-T weakly temperature-dependent form typical of
antiferromagnets. The peak temperature T ∗, thus, reflects the
short-distance energy scale at which antiferromagnetic corre-
lations become significant. T ∗ is often used experimentally
to extract the value of the exchange constant, using, e.g.,
the “Bonner-Fisher” curve in one dimension.19 In spatially
anisotropic systems such as the dimerized models we consider
here, a natural assumption is that T ∗ reflects an effective
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FIG. 1. (Color online) Dimerized 3D lattices: (a) columnar
dimers, (b) staggered dimers, and (c) double cube. For a system of
length L, the number of spins is N = L3 in (a) and (b), and N = 2L3

in (c). The two different coupling strengths J1 and J2 are indicated
by thin (black dashed and solid) and thick (red) lines, respectively.

not just close to the quantum-critical point but extending to
strongly ordered systems. Our results give a parameter-free
scaling function that can be compared with experiments.

Quantum Monte Carlo calculations. We have used the
stochastic series expansion (SSE) QMC method with very
efficient loop updates5–7 to calculate the squares 〈m2

z〉 and
〈m2

sz〉 of the z components of the uniform and staggered
magnetizations,

mz = 1
N

N∑

i=1

Sz
i , msz = 1

N

N∑

i=1

φiS
z
i , (2)

where the phases φi = ±1 correspond to the sublattices of the
bipartite systems in Fig. 1. The uniform susceptibility is χ =
〈m2

z〉/(NT ). We also study the Binder ratio R2 = 〈m4
sz〉/〈m2

sz〉2

and the spin stiffness constants ρα
s in all lattice directions (α =

x,y,z), ρα
s = d2E(θα)/dθ2

α , where E is the internal energy per
spin and θα a uniform twist angle imposed between spins in
planes perpendicular to the α axis. The stiffness constants can
be related to winding number fluctuations in the simulations.7

We use standard finite-size scaling7 to extract TN . At TN , the
stiffness constants scale with the system length as ρα

s ∝ L2−d ,
where the dimensionality d = 3. Thus, ρα

s L should be size
independent at TN , while this quantity vanishes (diverges) for
T > TN (T < TN ). In practice, this means that curves versus
T (at fixed g) for two different system sizes L cross each other
at a point which drifts (due to scaling corrections) toward TN

with increasing L. The dimensionless Binder ratio also has this
kind of behavior and provides us with a different TN estimate
to check for consistency. Figures 2(a) and 2(b) show examples
of these crossing behaviors for ρx

s L and R2. The crossing
points drift in different directions and bracket TN . Figure 2(c)
shows the L dependence of crossing points extracted from data
for (L,L + 2) system pairs, for R2 and two different stiffness
constants. Power-law fits are used to extrapolate to infinite
size. The mutual consistency of the TN value so obtained using
different quantities gives us confidence in the accuracy of this
procedure.

To extract the T = 0 sublattice magnetization, we carry out
simulations at temperature T = J1/L. Note that, in a Néel
phase with TN > 0, any T (L) such that T (L → ∞) → 0 can
be used for extrapolations to the thermodynamic limit and
T = 0. Our choice is a natural way to to scale the temperature
since the lowest spin waves have energy ∝1/L. We also did
some calculations with T = 1/2L and obtained consistent
extrapolated results. Examples of the L dependence are shown
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FIG. 2. (Color online) Procedures used to extract the critical
temperature TN . (a) and (b) show ρx

s L and R2, respectively, for
the columnar dimer model at coupling ratio g = 3.444. The error
bars are smaller than the symbols. Using polynomial fits to data for
two lattice sizes, L and L + 2, crossing points between the curves
are extracted. Results are shown in (c), along with fits of the form
TN (L) = TN (∞) + a/Lw (to the large-L data for which this form
obtains). Extrapolations of the three quantities give TN = 0.7996(3),
0.7996(6), and 0.7999(5) for L → ∞, all consistent with each other
within errors bars.

in Fig. 3 for the double-cube model at several different
coupling ratios. Taking into account rotational averaging in
spin space, the final result for the sublattice magnetization is
given by the L → ∞ extrapolated 〈m2

sz〉 (for which we use a
polynomial fit, as shown in Fig. 3), ms =

√
3〈m2

sz〉.
Universality of TN versus ms . Following the above pro-

cedures, we have calculated TN and ms accurately for all
three dimer models at several coupling ratios g, from close
to gc to deep inside the Néel phase. We graph TN versus
ms in Fig. 4. TN is scaled by three different energy units:
the interdimer coupling J1 in Fig. 4(a), the sum of couplings
Js connected to each spin in Fig. 4(b), and the temperature
T ∗ at which the susceptibility exhibits a peak in Fig. 4(c).
Before discussing these normalizations of TN in detail, let us
examine the reason for the linear behavior, TN ∝ ms , seen in
the QMC results for small [and in Figs. 4(b) and 4(c) even quite
large] ms .
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FIG. 3. (Color online) Extrapolation of the sublattice magneti-
zation obtained in simulations with T = J1/L of the double-cube
Heisenberg model at different coupling ratios g. The error bars are
much smaller than the symbols. The fitting function used for L → ∞
extrapolations is a + b/L2 + c/L3 (where we exclude the linear term
because it comes out very close to zero in fits including it).
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FIG. 4. (Color online) The Néel temperature TN vs the sublattice
magnetization for the three different dimerized models and with
TN normalized in three different ways. TN is measured in units of
(a) the interdimer coupling J1, (b) the total coupling Js per spin, and
(c) the peak temperature T ∗ of the susceptibility. A linear dependence
obtains in all cases for small to moderate ms , as indicate by fitted lines.
Note that ms ! 1/2 for S = 1/2.

A semiclassical mean-field argument (inspired by
the “renormalized classical” picture developed in two
dimensions1) leading to TN ∝ ms is the following: To compute
TN in a classical system of spins of length S, one replaces the
coupling of a spin S0 to the total spin of its neighbors δ,
J

∑
δ Sδ , by the thermal average J

∑
δ〈Sδ〉. In the presence of

quantum fluctuations, this mean field seen by S0 is reduced,
which is taken into account by a renormalization, 〈Sδ〉 →
(ms/S)〈Sδ〉. The thermal fluctuations are, thus, added on top of
the quantum fluctuations at T = 0, under the assumption that
the quantum effects will not change appreciably for T > 0 (i.e.,
the thermal fluctuations are assumed to be solely responsible
for further reducing the order). Note that S0 should not be
renormalized here, but is computed as a thermal expectation
value and should satisfy the self-consistency condition 〈Sδ〉 =
〈S0〉. The final magnetization curve is given by (ms/S)〈S0〉.
In this procedure of decoupling the classical and quantum
fluctuations, one clearly effectively has J → (ms/S)J and,
thus, TN ∝ ms .

The assumption that the quantum renormalization factor
ms/S is T independent up to TN can be valid only if TN is
small. The energy scale in which to measure TN when stating
this condition should be dictated by the spin-wave velocity,
which stays nonzero at the quantum-critical point17 [i.e., not
by the long-distance energy scale ρs(T = 0), which vanishes
as g → gc and is unrelated to the density of thermally excited
spin waves]. A linear dependence is seen in Fig. 4 up to rather
large values of ms (where TN ∼ J1). A linear dependence was
also recently found in the columnar dimer model based on
high-T expansions18 (with much larger error bars).

Returning now to the issue of how to best normalize TN ,
we note that in Fig. 4(a), where the interdimer coupling J1
is used, the curve for the double-cube model is significantly
above the other two. This is clearly because the constant J1
does not account for the different average couplings in the
models. Using instead the sum Js of couplings connected to
each spin, i.e., Js = 5 + g for the columnar and staggered
dimers and 6 + g for the double cube (setting J1 = 1), the
curves, shown in Fig. 4(b), collapse almost on top of each
other. Note that also the curves for the columnar and staggered
dimers are closer to each other than in Fig. 4(a), although they
have the same definition of Js . This can be the case because Js

rescales the curves nonuniformly, since ms(g) and, therefore,
Js(ms), is different for the two models. The linearity of TN/Js

versus ms is also much clearer than before and extends all the
way up to ms ≈ 0.3.

Although the data collapse is already quite good in TN/Js ,
we can do even better when normalizing with a physical
quantity that measures the effective lattice-scale energy. One
such energy scale in antiferromagnets is the temperature at
which the uniform magnetic susceptibility χ exhibits a peak.
This peak is due to the crossover from the high-T Curie form
to the low-T weakly temperature-dependent form typical of
antiferromagnets. The peak temperature T ∗, thus, reflects the
short-distance energy scale at which antiferromagnetic corre-
lations become significant. T ∗ is often used experimentally
to extract the value of the exchange constant, using, e.g.,
the “Bonner-Fisher” curve in one dimension.19 In spatially
anisotropic systems such as the dimerized models we consider
here, a natural assumption is that T ∗ reflects an effective
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FIG. 5. (Color online) (a) Susceptibility vs temperature of the
staggered dimer model at different coupling ratios. The system size is
L = 12, for which the peak height and location are already L → ∞
converged. (b) The peak temperature vs the coupling ratio for the
three different models.

average coupling. In Fig. 5(a) we show examples of the
susceptibility close to its peak, and in Fig. 5(b) we show the
dependence of T ∗ on g for all three models. Normalizing TN

with T ∗ leads to remarkably good data collapse, as shown
in Fig. 4(c). Deviations from a common curve are barely
detectable. Although we cannot prove that this function is
really universal for all 3D networks of dimers, the results are
very suggestive of this.

Discussion. The universal behavior implies that the T > 0
disordering mechanism in the 3D Néel state is completely
governed by a single lattice-scale energy (which, as we have
shown here, can be taken as the peak temperature T ∗ of the
susceptibility) and the T = 0 sublattice magnetization ms . The
extended linear behavior seen in Figs. 4(b) and 4(c) shows
that the quantum and classical fluctuations at T < TN are
completely decoupled all the way from g = gc (excluding gc

itself, where TN = 0) to quite far away from the quantum-
critical point. Depending on a lattice-scale energy instead of
the quantum-critical spin stiffness, the linear behavior is not
fundamentally a quantum-critical effect. We have discussed
the linearity and decoupling of the fluctuations in terms of a
semiclassical mean-field theory, the validity of which implies
that the quantum-critical regime2 commences only above TN .
Deviations from linearity at larger ms show that the quantum
fluctuations are affected (become T dependent) here, due to
the high density of excited spin waves as T → TN because
TN is high. It is remarkable that this coupling of quantum
and classical fluctuations also takes place in an, apparently,
universal fashion for different systems. It would be interesting
to explain this more quantitatively, by deriving the full function
TN versus ms analytically. Progress in the linear regime has
been made recently in work parallel to ours.20

From a practical point of view, the data collapse of
TN/T ∗ versus ms is very useful, because all the quantities
involved can be measured experimentally and do not rely on
microscopic details. The universal curve can be used to test
the 3D Heisenberg scenario without adjustable parameters.
The universality likely applies not only to dimer networks, but
also to systems where the quantum fluctuations are regulated
in other ways.
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Couplings vs pressure not known experimentally
- plot TN vs ms to avoid  this issue and study universality
- but how to normalize TN? Three normalizations

(a) weaker copling J1
(b) sum Js of couplings per spin
(c) peak T* of magnetic susceptibility
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T* normalization is in principle accessible experimentally
- some experimental susc. results available
- neutron data analyzed with this normalization

Same features observed in models and experiment
- experimental slope about 25% lower if g-factor 2 assumed
   (what exactly is the g-factor?)

Universality is not a feature of quantum-criticality
- extends far from the quantum critical point
- linear behavior is expected from semiclassical theory
   (decoupling of quantum and thermal fluctuations)
- deviations show coupling of quantum and thermal fluctuations
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Figure 4 | Quantum and classical criticality. a, Scattered neutron intensity at p=pc as a function of temperature. Points show the energies ✏Q extracted
from the intensity for the modes becoming gapless (L and T1, yellow) and gapped (T2, black) as T !0. b, �Q as a function of T at p=pc. Error bars in a and
b indicate uncertainties in the resolution deconvolution. c, Complete experimental phase diagram, showing quantum disordered (QD), quantum critical
(QC), classical critical (CC) and renormalized classical (RC-AFM) phases. The dashed lines denote energy scales marking crossovers in behaviour. Grey
symbols denote TN(p) (ref. 14), blue symbols labelled TSL(p) show the limit of classical critical scaling in the data for the staggered magnetization, ms(T),
and the blue bars are taken from �Q/✏Q(T) (see text). d, Linear proportionality of the measured TN(p) and ms(p) (ref. 14). e, Scaling of TN and ms, including
one high-p data point (open circle) taken from ref. 25 for an absolute calibration of ms. Data for ms are normalized by Tmax =35 K, the maximum of the
magnetic susceptibility13,16. Red lines in d and e represent scaling behaviour discussed in the text and error bars are the statistical uncertainties in the
intensity measurements determining ms.

on the calculated quantities, but no detectable qualitative ones (for
example, on exponents). From our measurements, the best fits to
the pressure exponents for ms and TN lie close to the classical value
of 0.35 (ref. 14), although the quantum value of 0.5 is not beyond
the error bars very close to the QCP. From experiment, the two
quantities scale well together near the QCP, as shown in Fig. 4d,e,
but depart from universal scaling16 around an ordered moment of
0.4µB/Cu (Fig. 4e).

We have shown that the e�ects on the spectrum of quantum
and thermal melting are qualitatively very similar. Both result
in the systematic evolution of excitations whose gap increases
away from the classical phase transition line, rather than simply
a loss of coherence due to thermal fluctuations. Microscopically,
quantum fluctuations in a dimer-based system cause enhanced
singlet formation and loss of interdimer magnetic correlations,

whereas thermal fluctuations act to suppress the spin correlation
function hSi · Sji on both the dimer and interdimer bonds. These
correlation functions may be estimated from neutron-scattering
intensities23 and also measured in dimerized optical lattices of
ultracold fermions29. In TlCuCl3, both methods of destroying
interdimer coherence cause the triplet modes to evolve in the same
way. A key question in the understanding of quantum criticality is
whether quantum and thermal fluctuations can be considered as
truly independent, andwhether this independencemay be taken as a
definition of the quantumcritical regime16. Our experimental results
suggest that weak departures from universality become detectable at
(p,T ) values away from the quantum critical and classical critical
regimes, and particularly as we increase the excitation energy,
presumably as microscopic details of the fluctuation redistribution
cause a mixing of quantum and thermal e�ects.
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FIG. 3. (Color online) Extrapolation of the sublattice magneti-
zation obtained in simulations with T = J1/L of the double-cube
Heisenberg model at different coupling ratios g. The error bars are
much smaller than the symbols. The fitting function used for L → ∞
extrapolations is a + b/L2 + c/L3 (where we exclude the linear term
because it comes out very close to zero in fits including it).

0.00

0.05

0.10

0.15

T N
 /J

s

Columnar Dimer
Staggered Dimer
Double Cube

0.0

0.5

1.0

T N
 /J

1

0 0.1 0.2 0.3 0.4
ms

0.0

0.2

0.4

0.6

0.8

T N
 /T

*

(a)

(b)

(c)
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obtains in all cases for small to moderate ms , as indicate by fitted lines.
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A semiclassical mean-field argument (inspired by
the “renormalized classical” picture developed in two
dimensions1) leading to TN ∝ ms is the following: To compute
TN in a classical system of spins of length S, one replaces the
coupling of a spin S0 to the total spin of its neighbors δ,
J

∑
δ Sδ , by the thermal average J

∑
δ〈Sδ〉. In the presence of

quantum fluctuations, this mean field seen by S0 is reduced,
which is taken into account by a renormalization, 〈Sδ〉 →
(ms/S)〈Sδ〉. The thermal fluctuations are, thus, added on top of
the quantum fluctuations at T = 0, under the assumption that
the quantum effects will not change appreciably for T > 0 (i.e.,
the thermal fluctuations are assumed to be solely responsible
for further reducing the order). Note that S0 should not be
renormalized here, but is computed as a thermal expectation
value and should satisfy the self-consistency condition 〈Sδ〉 =
〈S0〉. The final magnetization curve is given by (ms/S)〈S0〉.
In this procedure of decoupling the classical and quantum
fluctuations, one clearly effectively has J → (ms/S)J and,
thus, TN ∝ ms .

The assumption that the quantum renormalization factor
ms/S is T independent up to TN can be valid only if TN is
small. The energy scale in which to measure TN when stating
this condition should be dictated by the spin-wave velocity,
which stays nonzero at the quantum-critical point17 [i.e., not
by the long-distance energy scale ρs(T = 0), which vanishes
as g → gc and is unrelated to the density of thermally excited
spin waves]. A linear dependence is seen in Fig. 4 up to rather
large values of ms (where TN ∼ J1). A linear dependence was
also recently found in the columnar dimer model based on
high-T expansions18 (with much larger error bars).

Returning now to the issue of how to best normalize TN ,
we note that in Fig. 4(a), where the interdimer coupling J1
is used, the curve for the double-cube model is significantly
above the other two. This is clearly because the constant J1
does not account for the different average couplings in the
models. Using instead the sum Js of couplings connected to
each spin, i.e., Js = 5 + g for the columnar and staggered
dimers and 6 + g for the double cube (setting J1 = 1), the
curves, shown in Fig. 4(b), collapse almost on top of each
other. Note that also the curves for the columnar and staggered
dimers are closer to each other than in Fig. 4(a), although they
have the same definition of Js . This can be the case because Js

rescales the curves nonuniformly, since ms(g) and, therefore,
Js(ms), is different for the two models. The linearity of TN/Js

versus ms is also much clearer than before and extends all the
way up to ms ≈ 0.3.

Although the data collapse is already quite good in TN/Js ,
we can do even better when normalizing with a physical
quantity that measures the effective lattice-scale energy. One
such energy scale in antiferromagnets is the temperature at
which the uniform magnetic susceptibility χ exhibits a peak.
This peak is due to the crossover from the high-T Curie form
to the low-T weakly temperature-dependent form typical of
antiferromagnets. The peak temperature T ∗, thus, reflects the
short-distance energy scale at which antiferromagnetic corre-
lations become significant. T ∗ is often used experimentally
to extract the value of the exchange constant, using, e.g.,
the “Bonner-Fisher” curve in one dimension.19 In spatially
anisotropic systems such as the dimerized models we consider
here, a natural assumption is that T ∗ reflects an effective
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- the upper critical dimension of the O(N) transition
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- T → 0 (T=1/2L) results for N=L3 spins with L up to 40 (128000 spins)
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FIG. 4. (Color online) The staggered magnetization, defined
for each system size as ms(L) = [3hm2

2z(L)i]1/2, graphed as
a function of 1/L2 for a range of coupling ratios g near gc.
Polynomial (here of cubic order) fits are used to extract the
values in the thermodynamic limit. Error bars on all points
are smaller than the symbol sizes.

L ! 1 includes both the system size and temperature.
Because the system is ordered for su�ciently low T and
the order parameter converges quickly to a non-zero value
below the ordering temperature, one may use the form
T = aL�b with arbitrary factor a > 0 and exponent
b > 0 to study the T ! 0 magnetization as a function of
L for the purpose of an extrapolation (T ! 0, L ! 1)
of the order parameter for g < gc. In Sec. III for studies
of the QCP we chose a = 1, b = 1, While it should be
better in principle to choose large a and b to improve
the T ! 0 convergence of ms at g < gc, in practice
one must consider a balance between computation time
and convergence rate. Our choise a = 1, b = 1 works
well in most cases. However, for coupling ratios very
close to the QCP, the temperature may be a significant
fraction of TN and thus ms(g, L) could be far from its
zero-temperature value. We have therefore performed
additional simulations at T = 1/(2L) to verify that the
extrapolation does remain well controlled and fully rep-
resentative of the thermodynamic limit in temperature
as well as in system size.

A. Exrapolation scheme

To obtain results in the thermodynamic limit, in con-
trast to Sec. III, where we used the non-trivial power-law
(16), which is known to be appropriate for extrapolating
the location of a critical point, the ground-state order
parameter inside the Néel phase can be extrapolated by
using simple polynomial fits of the forms

m2
sz(g, L) = a(g) + b(g)L�2 + c(g)L�3 + . . . , (20)

p
m2

sz(g, L) = a0(g) + b0(g)L�2 + c0(g)L�3 + . . . . (21)

Here the leading L-dependence in the extrapolation of
a non-vanishing order parameter, at fixed g inside the
ordered phase, is known [46] to be L2�d due to the di-
mensionality (d) dependent power-law decay of the trans-
verse correlation function, and d = dc = 4 here. Since a
polynomial of finite order is used to approximate a be-
havior which in principle contains an infinite number of
corrections, the extrapolated value of ms obtained with
the forms (20) and (21) will not be exactly the same, but
for reliable fits they should agree within statistical errors.
No logarithmic corrections are expected in this case,

i.e., they should fundamentally not be present in the
asymptotic large-L corrections to the non-zero-valued
sublattice magnetization. This is in contrast to the case
of the shift of critical point in Sec. III, where we con-
cluded that the e↵ects of logarithms are not detectable
in practice though they should in principle exist. Non-
trivial corrections may still play some role in the L de-
pendence of hm2

sz(g, L)i for g close to the critical point,
when the order parameter is small, but only in the form
of cross-over behaviors from near-critical at small sys-
tem sizes to asymptotic ordered-state scaling at large L.
No analytic functional form is available for the crossover
in general, and great care has to be taken to reach the
asymptotic region where Eqs. (20) and (21) are valid.
Upon approaching the critical point, increasingly larger
systems are needed, and at some point reliable extrapola-
tions are not possible because of the limits on the system
sizes set by the available computer resources.
When employing fits to the forms (20) and (21) one has

to decide on the order P of the polynomial and the range
of system sizes to include. For su�ciently large system
only the leading ⇠ L�2 correction should be needed, but
in practice it is often necessary to include higher-order
terms as well. The size of the error bars on the QMC data
points of course also play a large role here, as deviations
from the leading-order form are easier to observe with
smaller error bars.
We have systematically studied fits of order P = 3�6,

including di↵erent ranges of system sizes. Characterizing
the quality of the fits using the standard reduced �2,
for a “good” fit we require that the optimal value must
fall within three standard deviations of its mean, i.e., we
demand that

�2

dof
� 1 =

�2

nL � np
� 1  3

s
2

nL � np
, (22)

where nL is the number of data points (system sizes)
and np the number fit parameters, np = P + 1. For a
given P and largest system size L, we use all available
system sizes smaller than this size, down to a smallest
size Lmin for which the above condition is still satisfied.
We then study the behavior as a function of L for dif-
ferent P , and compare the extrapolations based on (20)
and (21), in the former case taking the square-root of the
extrapolated value. To estimate the error bars on the ex-
trapolated ms(g) we perform additional polynomial fits

Extrapolations of ms close
to gc point are challenging:
- use polynomials without
   linear term (expected)
- check dependence
   on order of polynomial
   and L-range used

[YQ Qin, B. Normand, AWS, ZY Meng, arXiv:1506:0607]

gc ⇡ 4.837
determined first
(curve-crossing method)
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2z(L)i]1/2, graphed as
a function of 1/L2 for a range of coupling ratios g near gc.
Polynomial (here of cubic order) fits are used to extract the
values in the thermodynamic limit. Error bars on all points
are smaller than the symbol sizes.

L ! 1 includes both the system size and temperature.
Because the system is ordered for su�ciently low T and
the order parameter converges quickly to a non-zero value
below the ordering temperature, one may use the form
T = aL�b with arbitrary factor a > 0 and exponent
b > 0 to study the T ! 0 magnetization as a function of
L for the purpose of an extrapolation (T ! 0, L ! 1)
of the order parameter for g < gc. In Sec. III for studies
of the QCP we chose a = 1, b = 1, While it should be
better in principle to choose large a and b to improve
the T ! 0 convergence of ms at g < gc, in practice
one must consider a balance between computation time
and convergence rate. Our choise a = 1, b = 1 works
well in most cases. However, for coupling ratios very
close to the QCP, the temperature may be a significant
fraction of TN and thus ms(g, L) could be far from its
zero-temperature value. We have therefore performed
additional simulations at T = 1/(2L) to verify that the
extrapolation does remain well controlled and fully rep-
resentative of the thermodynamic limit in temperature
as well as in system size.

A. Exrapolation scheme

To obtain results in the thermodynamic limit, in con-
trast to Sec. III, where we used the non-trivial power-law
(16), which is known to be appropriate for extrapolating
the location of a critical point, the ground-state order
parameter inside the Néel phase can be extrapolated by
using simple polynomial fits of the forms

m2
sz(g, L) = a(g) + b(g)L�2 + c(g)L�3 + . . . , (20)

p
m2

sz(g, L) = a0(g) + b0(g)L�2 + c0(g)L�3 + . . . . (21)

Here the leading L-dependence in the extrapolation of
a non-vanishing order parameter, at fixed g inside the
ordered phase, is known [46] to be L2�d due to the di-
mensionality (d) dependent power-law decay of the trans-
verse correlation function, and d = dc = 4 here. Since a
polynomial of finite order is used to approximate a be-
havior which in principle contains an infinite number of
corrections, the extrapolated value of ms obtained with
the forms (20) and (21) will not be exactly the same, but
for reliable fits they should agree within statistical errors.
No logarithmic corrections are expected in this case,

i.e., they should fundamentally not be present in the
asymptotic large-L corrections to the non-zero-valued
sublattice magnetization. This is in contrast to the case
of the shift of critical point in Sec. III, where we con-
cluded that the e↵ects of logarithms are not detectable
in practice though they should in principle exist. Non-
trivial corrections may still play some role in the L de-
pendence of hm2

sz(g, L)i for g close to the critical point,
when the order parameter is small, but only in the form
of cross-over behaviors from near-critical at small sys-
tem sizes to asymptotic ordered-state scaling at large L.
No analytic functional form is available for the crossover
in general, and great care has to be taken to reach the
asymptotic region where Eqs. (20) and (21) are valid.
Upon approaching the critical point, increasingly larger
systems are needed, and at some point reliable extrapola-
tions are not possible because of the limits on the system
sizes set by the available computer resources.
When employing fits to the forms (20) and (21) one has

to decide on the order P of the polynomial and the range
of system sizes to include. For su�ciently large system
only the leading ⇠ L�2 correction should be needed, but
in practice it is often necessary to include higher-order
terms as well. The size of the error bars on the QMC data
points of course also play a large role here, as deviations
from the leading-order form are easier to observe with
smaller error bars.
We have systematically studied fits of order P = 3�6,

including di↵erent ranges of system sizes. Characterizing
the quality of the fits using the standard reduced �2,
for a “good” fit we require that the optimal value must
fall within three standard deviations of its mean, i.e., we
demand that

�2

dof
� 1 =

�2

nL � np
� 1  3

s
2

nL � np
, (22)

where nL is the number of data points (system sizes)
and np the number fit parameters, np = P + 1. For a
given P and largest system size L, we use all available
system sizes smaller than this size, down to a smallest
size Lmin for which the above condition is still satisfied.
We then study the behavior as a function of L for dif-
ferent P , and compare the extrapolations based on (20)
and (21), in the former case taking the square-root of the
extrapolated value. To estimate the error bars on the ex-
trapolated ms(g) we perform additional polynomial fits

When is a fit good? Using the criterion:

Use data for up to size L, exclude small sizes until criterion satisfied

The procedure is very stable sufficiently far away from gc
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FIG. 5. (Color online) Extrapolated values of the submattice
magnetization as a function of the largest system size included
in the fits for values g close to the QC point gc ⇡ 4.837.
Results for di↵erent orders P of the fitting polynomial are
compared. Panels (a,b) include values of g for which the ex-
trapolations are stable already for relatively small L, while
the g values in (c,d) are very close to gc and, therefore, the
extrapolations require large sizes to stabilize. The smallest
system size included was determined using the �2 criterion
(22). Panels (a,c) and (b,d) show results of extrapolations of
hm2

sz(g, L)i and hm2
sz(g, L)i1/2, respectively, with the square-

root taken in the former case after the extrapolation.

with Gaussian noise added to the finite-size data (with
standard deviation equal to the corresponding QMC er-
ror bars). The standard deviation of the distribution of
extrapolated ms(g) values defines the statistical error.

Figure 5 show results for several values of g close to the
QCP, with cases where the fits are relatively easy (further
from gc) or more challenging (closer to gc) grouped into
panels (a,b) and (c,d), respectively. The upper panel in
each group corresponds to the square-root being taken af-
ter the extrapolation using Eq. (20), while the lower panel
corresponds to fitting the square-root for each system size
according to Eq. (21). In panels (a,b), the extrapolated
values are observed to be very stable with respect to the
range of system sizes and the order of the polynomial,
while in (c,d) the cross-over behaviors expected close to
gc are clearly manifested, leading to significant variations
as the maximum system size is increased. One can also
note significant di↵erences between the two fitting proce-
dures (taking the square root before or after the extrap-
olation), until the largest system sizes where the extrap-
olations stabilize. In all cases the two types of fits give
consistent results for the largest systems, which we take
as a sign that the extrapolations are reliable. Closer to
gc than the g-values shown in Figs. 5(c,d), we have not
been able to achieve good convergence based on system
sizes up to L = 48. Overall, in cases where the extrapo-
lations are challenging, our results show that it is better
to use the fitting form (21), taking the square-root for
each individual system. All results to be presented next
were obtained in this way with polynomial order P = 4.

B. Results in the thermodynamic limit

With all of the above considerations, we are able to
obtain reliable and high-precision extrapolations of the
staggered magnetization in the thermodynamic limit for
values of g as close to the QCP as |g � gc| ' 0.003. In
Fig. 6 we show all of our data for ms(|g � gc|) on log-
arithmic axes. If these data satisfied mean-field scaling
alone, with no discernible logarithmic corrections, one
would expect a curve of the form

ms(g) = a|g � gc|1/2, (23)

but this form (the green line in the figure) is manifestly
unable to describe the data.

For the zero-temperature order parameter, perturba-
tive renormalization-group considerations applied to the
O(N) �4 field theory at the upper critical dimension pre-
dict the form

ms(g) = a|g � gc|� | ln(|g � gc|/c)|�̂ , (24)

where � = 1/2 is the mean-field exponent and the expo-
nent of the multiplicative logarithmic correction is given
by �̂ = 3/(N +8) [30]. A fit to this form, using �̂ = 3/11
for N = 3 (blue curve in Fig. 6), yields excellent agree-
ment with the data all the way to our smallest values of
|g� gc|; the fitting parameters are a = 0.267± 0.004 and
c = 4.7 ± 0.2. For further analysis, we will fix the value
of the parameter under the logarithm to c = gc, as the
above fitted value is close to it and the precise value is
unimportant when L ! 1.
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sz(g, L)i and hm2
sz(g, L)i1/2, respectively, with the square-

root taken in the former case after the extrapolation.
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ror bars). The standard deviation of the distribution of
extrapolated ms(g) values defines the statistical error.
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from gc) or more challenging (closer to gc) grouped into
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each group corresponds to the square-root being taken af-
ter the extrapolation using Eq. (20), while the lower panel
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according to Eq. (21). In panels (a,b), the extrapolated
values are observed to be very stable with respect to the
range of system sizes and the order of the polynomial,
while in (c,d) the cross-over behaviors expected close to
gc are clearly manifested, leading to significant variations
as the maximum system size is increased. One can also
note significant di↵erences between the two fitting proce-
dures (taking the square root before or after the extrap-
olation), until the largest system sizes where the extrap-
olations stabilize. In all cases the two types of fits give
consistent results for the largest systems, which we take
as a sign that the extrapolations are reliable. Closer to
gc than the g-values shown in Figs. 5(c,d), we have not
been able to achieve good convergence based on system
sizes up to L = 48. Overall, in cases where the extrapo-
lations are challenging, our results show that it is better
to use the fitting form (21), taking the square-root for
each individual system. All results to be presented next
were obtained in this way with polynomial order P = 4.

B. Results in the thermodynamic limit

With all of the above considerations, we are able to
obtain reliable and high-precision extrapolations of the
staggered magnetization in the thermodynamic limit for
values of g as close to the QCP as |g � gc| ' 0.003. In
Fig. 6 we show all of our data for ms(|g � gc|) on log-
arithmic axes. If these data satisfied mean-field scaling
alone, with no discernible logarithmic corrections, one
would expect a curve of the form

ms(g) = a|g � gc|1/2, (23)

but this form (the green line in the figure) is manifestly
unable to describe the data.

For the zero-temperature order parameter, perturba-
tive renormalization-group considerations applied to the
O(N) �4 field theory at the upper critical dimension pre-
dict the form
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where � = 1/2 is the mean-field exponent and the expo-
nent of the multiplicative logarithmic correction is given
by �̂ = 3/(N +8) [30]. A fit to this form, using �̂ = 3/11
for N = 3 (blue curve in Fig. 6), yields excellent agree-
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FIG. 5. (Color online) Extrapolated values of the submattice
magnetization as a function of the largest system size included
in the fits for values g close to the QC point gc ⇡ 4.837.
Results for di↵erent orders P of the fitting polynomial are
compared. Panels (a,b) include values of g for which the ex-
trapolations are stable already for relatively small L, while
the g values in (c,d) are very close to gc and, therefore, the
extrapolations require large sizes to stabilize. The smallest
system size included was determined using the �2 criterion
(22). Panels (a,c) and (b,d) show results of extrapolations of
hm2

sz(g, L)i and hm2
sz(g, L)i1/2, respectively, with the square-

root taken in the former case after the extrapolation.

with Gaussian noise added to the finite-size data (with
standard deviation equal to the corresponding QMC er-
ror bars). The standard deviation of the distribution of
extrapolated ms(g) values defines the statistical error.

Figure 5 show results for several values of g close to the
QCP, with cases where the fits are relatively easy (further
from gc) or more challenging (closer to gc) grouped into
panels (a,b) and (c,d), respectively. The upper panel in
each group corresponds to the square-root being taken af-
ter the extrapolation using Eq. (20), while the lower panel
corresponds to fitting the square-root for each system size
according to Eq. (21). In panels (a,b), the extrapolated
values are observed to be very stable with respect to the
range of system sizes and the order of the polynomial,
while in (c,d) the cross-over behaviors expected close to
gc are clearly manifested, leading to significant variations
as the maximum system size is increased. One can also
note significant di↵erences between the two fitting proce-
dures (taking the square root before or after the extrap-
olation), until the largest system sizes where the extrap-
olations stabilize. In all cases the two types of fits give
consistent results for the largest systems, which we take
as a sign that the extrapolations are reliable. Closer to
gc than the g-values shown in Figs. 5(c,d), we have not
been able to achieve good convergence based on system
sizes up to L = 48. Overall, in cases where the extrapo-
lations are challenging, our results show that it is better
to use the fitting form (21), taking the square-root for
each individual system. All results to be presented next
were obtained in this way with polynomial order P = 4.

B. Results in the thermodynamic limit

With all of the above considerations, we are able to
obtain reliable and high-precision extrapolations of the
staggered magnetization in the thermodynamic limit for
values of g as close to the QCP as |g � gc| ' 0.003. In
Fig. 6 we show all of our data for ms(|g � gc|) on log-
arithmic axes. If these data satisfied mean-field scaling
alone, with no discernible logarithmic corrections, one
would expect a curve of the form

ms(g) = a|g � gc|1/2, (23)

but this form (the green line in the figure) is manifestly
unable to describe the data.

For the zero-temperature order parameter, perturba-
tive renormalization-group considerations applied to the
O(N) �4 field theory at the upper critical dimension pre-
dict the form

ms(g) = a|g � gc|� | ln(|g � gc|/c)|�̂ , (24)

where � = 1/2 is the mean-field exponent and the expo-
nent of the multiplicative logarithmic correction is given
by �̂ = 3/(N +8) [30]. A fit to this form, using �̂ = 3/11
for N = 3 (blue curve in Fig. 6), yields excellent agree-
ment with the data all the way to our smallest values of
|g� gc|; the fitting parameters are a = 0.267± 0.004 and
c = 4.7 ± 0.2. For further analysis, we will fix the value
of the parameter under the logarithm to c = gc, as the
above fitted value is close to it and the precise value is
unimportant when L ! 1.

gc ⇡ 4.837
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FIG. 4. (Color online) The staggered magnetization, defined
for each system size as ms(L) = [3hm2

2z(L)i]1/2, graphed as
a function of 1/L2 for a range of coupling ratios g near gc.
Polynomial (here of cubic order) fits are used to extract the
values in the thermodynamic limit. Error bars on all points
are smaller than the symbol sizes.

L ! 1 includes both the system size and temperature.
Because the system is ordered for su�ciently low T and
the order parameter converges quickly to a non-zero value
below the ordering temperature, one may use the form
T = aL�b with arbitrary factor a > 0 and exponent
b > 0 to study the T ! 0 magnetization as a function of
L for the purpose of an extrapolation (T ! 0, L ! 1)
of the order parameter for g < gc. In Sec. III for studies
of the QCP we chose a = 1, b = 1, While it should be
better in principle to choose large a and b to improve
the T ! 0 convergence of ms at g < gc, in practice
one must consider a balance between computation time
and convergence rate. Our choise a = 1, b = 1 works
well in most cases. However, for coupling ratios very
close to the QCP, the temperature may be a significant
fraction of TN and thus ms(g, L) could be far from its
zero-temperature value. We have therefore performed
additional simulations at T = 1/(2L) to verify that the
extrapolation does remain well controlled and fully rep-
resentative of the thermodynamic limit in temperature
as well as in system size.

A. Exrapolation scheme

To obtain results in the thermodynamic limit, in con-
trast to Sec. III, where we used the non-trivial power-law
(16), which is known to be appropriate for extrapolating
the location of a critical point, the ground-state order
parameter inside the Néel phase can be extrapolated by
using simple polynomial fits of the forms

m2
sz(g, L) = a(g) + b(g)L�2 + c(g)L�3 + . . . , (20)

p
m2

sz(g, L) = a0(g) + b0(g)L�2 + c0(g)L�3 + . . . . (21)

Here the leading L-dependence in the extrapolation of
a non-vanishing order parameter, at fixed g inside the
ordered phase, is known [46] to be L2�d due to the di-
mensionality (d) dependent power-law decay of the trans-
verse correlation function, and d = dc = 4 here. Since a
polynomial of finite order is used to approximate a be-
havior which in principle contains an infinite number of
corrections, the extrapolated value of ms obtained with
the forms (20) and (21) will not be exactly the same, but
for reliable fits they should agree within statistical errors.
No logarithmic corrections are expected in this case,

i.e., they should fundamentally not be present in the
asymptotic large-L corrections to the non-zero-valued
sublattice magnetization. This is in contrast to the case
of the shift of critical point in Sec. III, where we con-
cluded that the e↵ects of logarithms are not detectable
in practice though they should in principle exist. Non-
trivial corrections may still play some role in the L de-
pendence of hm2

sz(g, L)i for g close to the critical point,
when the order parameter is small, but only in the form
of cross-over behaviors from near-critical at small sys-
tem sizes to asymptotic ordered-state scaling at large L.
No analytic functional form is available for the crossover
in general, and great care has to be taken to reach the
asymptotic region where Eqs. (20) and (21) are valid.
Upon approaching the critical point, increasingly larger
systems are needed, and at some point reliable extrapola-
tions are not possible because of the limits on the system
sizes set by the available computer resources.
When employing fits to the forms (20) and (21) one has

to decide on the order P of the polynomial and the range
of system sizes to include. For su�ciently large system
only the leading ⇠ L�2 correction should be needed, but
in practice it is often necessary to include higher-order
terms as well. The size of the error bars on the QMC data
points of course also play a large role here, as deviations
from the leading-order form are easier to observe with
smaller error bars.
We have systematically studied fits of order P = 3�6,

including di↵erent ranges of system sizes. Characterizing
the quality of the fits using the standard reduced �2,
for a “good” fit we require that the optimal value must
fall within three standard deviations of its mean, i.e., we
demand that

�2

dof
� 1 =

�2

nL � np
� 1  3

s
2

nL � np
, (22)

where nL is the number of data points (system sizes)
and np the number fit parameters, np = P + 1. For a
given P and largest system size L, we use all available
system sizes smaller than this size, down to a smallest
size Lmin for which the above condition is still satisfied.
We then study the behavior as a function of L for dif-
ferent P , and compare the extrapolations based on (20)
and (21), in the former case taking the square-root of the
extrapolated value. To estimate the error bars on the ex-
trapolated ms(g) we perform additional polynomial fits

When is a fit good? Using the criterion:

Use data for up to size L, exclude small sizes until criterion satisfied

The procedure becomes increasingly sensitive to the range of points
as L increases, and some effects of order P as well (we use P=4). 

9

0.00

0.03

0.06

0.09

0.12

0.15

p
m

2 s

g = 4.826

g = 4.800

g = 4.750

g = 4.710

(a)

P = 3
P = 4

P = 5

20 25 30 35 40
0.00

0.03

0.06

0.09

0.12

0.15

m

s

g = 4.826

g = 4.800

g = 4.750

g = 4.710

(b)

P = 3
P = 4

P = 5

0.015

0.020

0.025

0.030

0.035

0.040

p
m

2 s

(c)

g = 4.834

g = 4.833

g = 4.832

P = 3

P = 4

P = 5

P = 6

20 25 30 35 40 45 50
L

0.015

0.020

0.025

0.030

m

s

(d)

g = 4.834

g = 4.833

g = 4.832

P = 3

P = 4

P = 5

P = 6

FIG. 5. (Color online) Extrapolated values of the submattice
magnetization as a function of the largest system size included
in the fits for values g close to the QC point gc ⇡ 4.837.
Results for di↵erent orders P of the fitting polynomial are
compared. Panels (a,b) include values of g for which the ex-
trapolations are stable already for relatively small L, while
the g values in (c,d) are very close to gc and, therefore, the
extrapolations require large sizes to stabilize. The smallest
system size included was determined using the �2 criterion
(22). Panels (a,c) and (b,d) show results of extrapolations of
hm2

sz(g, L)i and hm2
sz(g, L)i1/2, respectively, with the square-

root taken in the former case after the extrapolation.

with Gaussian noise added to the finite-size data (with
standard deviation equal to the corresponding QMC er-
ror bars). The standard deviation of the distribution of
extrapolated ms(g) values defines the statistical error.

Figure 5 show results for several values of g close to the
QCP, with cases where the fits are relatively easy (further
from gc) or more challenging (closer to gc) grouped into
panels (a,b) and (c,d), respectively. The upper panel in
each group corresponds to the square-root being taken af-
ter the extrapolation using Eq. (20), while the lower panel
corresponds to fitting the square-root for each system size
according to Eq. (21). In panels (a,b), the extrapolated
values are observed to be very stable with respect to the
range of system sizes and the order of the polynomial,
while in (c,d) the cross-over behaviors expected close to
gc are clearly manifested, leading to significant variations
as the maximum system size is increased. One can also
note significant di↵erences between the two fitting proce-
dures (taking the square root before or after the extrap-
olation), until the largest system sizes where the extrap-
olations stabilize. In all cases the two types of fits give
consistent results for the largest systems, which we take
as a sign that the extrapolations are reliable. Closer to
gc than the g-values shown in Figs. 5(c,d), we have not
been able to achieve good convergence based on system
sizes up to L = 48. Overall, in cases where the extrapo-
lations are challenging, our results show that it is better
to use the fitting form (21), taking the square-root for
each individual system. All results to be presented next
were obtained in this way with polynomial order P = 4.

B. Results in the thermodynamic limit

With all of the above considerations, we are able to
obtain reliable and high-precision extrapolations of the
staggered magnetization in the thermodynamic limit for
values of g as close to the QCP as |g � gc| ' 0.003. In
Fig. 6 we show all of our data for ms(|g � gc|) on log-
arithmic axes. If these data satisfied mean-field scaling
alone, with no discernible logarithmic corrections, one
would expect a curve of the form

ms(g) = a|g � gc|1/2, (23)

but this form (the green line in the figure) is manifestly
unable to describe the data.

For the zero-temperature order parameter, perturba-
tive renormalization-group considerations applied to the
O(N) �4 field theory at the upper critical dimension pre-
dict the form

ms(g) = a|g � gc|� | ln(|g � gc|/c)|�̂ , (24)

where � = 1/2 is the mean-field exponent and the expo-
nent of the multiplicative logarithmic correction is given
by �̂ = 3/(N +8) [30]. A fit to this form, using �̂ = 3/11
for N = 3 (blue curve in Fig. 6), yields excellent agree-
ment with the data all the way to our smallest values of
|g� gc|; the fitting parameters are a = 0.267± 0.004 and
c = 4.7 ± 0.2. For further analysis, we will fix the value
of the parameter under the logarithm to c = gc, as the
above fitted value is close to it and the precise value is
unimportant when L ! 1.
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FIG. 5. (Color online) Extrapolated values of the submattice
magnetization as a function of the largest system size included
in the fits for values g close to the QC point gc ⇡ 4.837.
Results for di↵erent orders P of the fitting polynomial are
compared. Panels (a,b) include values of g for which the ex-
trapolations are stable already for relatively small L, while
the g values in (c,d) are very close to gc and, therefore, the
extrapolations require large sizes to stabilize. The smallest
system size included was determined using the �2 criterion
(22). Panels (a,c) and (b,d) show results of extrapolations of
hm2

sz(g, L)i and hm2
sz(g, L)i1/2, respectively, with the square-

root taken in the former case after the extrapolation.

with Gaussian noise added to the finite-size data (with
standard deviation equal to the corresponding QMC er-
ror bars). The standard deviation of the distribution of
extrapolated ms(g) values defines the statistical error.

Figure 5 show results for several values of g close to the
QCP, with cases where the fits are relatively easy (further
from gc) or more challenging (closer to gc) grouped into
panels (a,b) and (c,d), respectively. The upper panel in
each group corresponds to the square-root being taken af-
ter the extrapolation using Eq. (20), while the lower panel
corresponds to fitting the square-root for each system size
according to Eq. (21). In panels (a,b), the extrapolated
values are observed to be very stable with respect to the
range of system sizes and the order of the polynomial,
while in (c,d) the cross-over behaviors expected close to
gc are clearly manifested, leading to significant variations
as the maximum system size is increased. One can also
note significant di↵erences between the two fitting proce-
dures (taking the square root before or after the extrap-
olation), until the largest system sizes where the extrap-
olations stabilize. In all cases the two types of fits give
consistent results for the largest systems, which we take
as a sign that the extrapolations are reliable. Closer to
gc than the g-values shown in Figs. 5(c,d), we have not
been able to achieve good convergence based on system
sizes up to L = 48. Overall, in cases where the extrapo-
lations are challenging, our results show that it is better
to use the fitting form (21), taking the square-root for
each individual system. All results to be presented next
were obtained in this way with polynomial order P = 4.

B. Results in the thermodynamic limit

With all of the above considerations, we are able to
obtain reliable and high-precision extrapolations of the
staggered magnetization in the thermodynamic limit for
values of g as close to the QCP as |g � gc| ' 0.003. In
Fig. 6 we show all of our data for ms(|g � gc|) on log-
arithmic axes. If these data satisfied mean-field scaling
alone, with no discernible logarithmic corrections, one
would expect a curve of the form

ms(g) = a|g � gc|1/2, (23)

but this form (the green line in the figure) is manifestly
unable to describe the data.

For the zero-temperature order parameter, perturba-
tive renormalization-group considerations applied to the
O(N) �4 field theory at the upper critical dimension pre-
dict the form

ms(g) = a|g � gc|� | ln(|g � gc|/c)|�̂ , (24)

where � = 1/2 is the mean-field exponent and the expo-
nent of the multiplicative logarithmic correction is given
by �̂ = 3/(N +8) [30]. A fit to this form, using �̂ = 3/11
for N = 3 (blue curve in Fig. 6), yields excellent agree-
ment with the data all the way to our smallest values of
|g� gc|; the fitting parameters are a = 0.267± 0.004 and
c = 4.7 ± 0.2. For further analysis, we will fix the value
of the parameter under the logarithm to c = gc, as the
above fitted value is close to it and the precise value is
unimportant when L ! 1.
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FIG. 5. (Color online) Extrapolated values of the submattice
magnetization as a function of the largest system size included
in the fits for values g close to the QC point gc ⇡ 4.837.
Results for di↵erent orders P of the fitting polynomial are
compared. Panels (a,b) include values of g for which the ex-
trapolations are stable already for relatively small L, while
the g values in (c,d) are very close to gc and, therefore, the
extrapolations require large sizes to stabilize. The smallest
system size included was determined using the �2 criterion
(22). Panels (a,c) and (b,d) show results of extrapolations of
hm2

sz(g, L)i and hm2
sz(g, L)i1/2, respectively, with the square-

root taken in the former case after the extrapolation.

with Gaussian noise added to the finite-size data (with
standard deviation equal to the corresponding QMC er-
ror bars). The standard deviation of the distribution of
extrapolated ms(g) values defines the statistical error.

Figure 5 show results for several values of g close to the
QCP, with cases where the fits are relatively easy (further
from gc) or more challenging (closer to gc) grouped into
panels (a,b) and (c,d), respectively. The upper panel in
each group corresponds to the square-root being taken af-
ter the extrapolation using Eq. (20), while the lower panel
corresponds to fitting the square-root for each system size
according to Eq. (21). In panels (a,b), the extrapolated
values are observed to be very stable with respect to the
range of system sizes and the order of the polynomial,
while in (c,d) the cross-over behaviors expected close to
gc are clearly manifested, leading to significant variations
as the maximum system size is increased. One can also
note significant di↵erences between the two fitting proce-
dures (taking the square root before or after the extrap-
olation), until the largest system sizes where the extrap-
olations stabilize. In all cases the two types of fits give
consistent results for the largest systems, which we take
as a sign that the extrapolations are reliable. Closer to
gc than the g-values shown in Figs. 5(c,d), we have not
been able to achieve good convergence based on system
sizes up to L = 48. Overall, in cases where the extrapo-
lations are challenging, our results show that it is better
to use the fitting form (21), taking the square-root for
each individual system. All results to be presented next
were obtained in this way with polynomial order P = 4.

B. Results in the thermodynamic limit

With all of the above considerations, we are able to
obtain reliable and high-precision extrapolations of the
staggered magnetization in the thermodynamic limit for
values of g as close to the QCP as |g � gc| ' 0.003. In
Fig. 6 we show all of our data for ms(|g � gc|) on log-
arithmic axes. If these data satisfied mean-field scaling
alone, with no discernible logarithmic corrections, one
would expect a curve of the form

ms(g) = a|g � gc|1/2, (23)

but this form (the green line in the figure) is manifestly
unable to describe the data.

For the zero-temperature order parameter, perturba-
tive renormalization-group considerations applied to the
O(N) �4 field theory at the upper critical dimension pre-
dict the form

ms(g) = a|g � gc|� | ln(|g � gc|/c)|�̂ , (24)

where � = 1/2 is the mean-field exponent and the expo-
nent of the multiplicative logarithmic correction is given
by �̂ = 3/(N +8) [30]. A fit to this form, using �̂ = 3/11
for N = 3 (blue curve in Fig. 6), yields excellent agree-
ment with the data all the way to our smallest values of
|g� gc|; the fitting parameters are a = 0.267± 0.004 and
c = 4.7 ± 0.2. For further analysis, we will fix the value
of the parameter under the logarithm to c = gc, as the
above fitted value is close to it and the precise value is
unimportant when L ! 1.

gc ⇡ 4.837
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FIG. 6. (Color online) Staggered magnetization at T = 0
vs the distance from the critical point, using the value gc =
4.8374 determined in Sec. III. Error bars on the calculated
data points are smaller than or roughly of the same size as the
symbols. The closest point to gc is g = 4.834. Lines show both
the best fit by a pure square-root function [Eq. (23), green]
and including the logarithmic correction factor predicted in
Ref. [30] [Eq. (24), blue]. The fitting parameters of the loga-
rithmic correction curve are a = 0.267(4) and c = 4.67±0.19.
The yellow shading represents the approximate extent of the
quantum critical regime and is determined by including all
data points described adequately (within a deviation of ap-
proximately 4%) by the functional form of the logarithmic
correction curve. The inset shows ms(g) and the QC regime
on linear axes.

To test the predicted exponent �̂ = 3/11 in Eq. (24)
we next treat it as a free parameter and carry out fits
with di↵erent number of data points, always including
the points closest to gc and studying the behavior as
points further away from gc are added one by one. Fig. 7
shows the reduced �2 value and the exponent as functions
of the number of data points. Except for the cases where
the two points furthest away from gc are included, the fits
at first sight all look reasonable, with �2/dof always less
than 2. However, using the properties of the �2 distribu-
tion, the fits should be considered statistically satisfac-
tory only if a criterion analogous to Eq. (22) is satisfied.
The largest number of data points for which �2/dof�1 is
less than three times its standard deviation (3�) can be
considered a boarder line between good and poor fits. At
this point we have �̂ = 0.246± 0.009, about 3 error bars
o↵ the predicted value 3/11 ⇡ 0.273. Excluding more
points, the exponent evolves slowly and remains statisti-
cally well compatible with the predicted value. Since the
the error bars also increase, less weight should be put
on the results including less data. Taking the properly
error-weighted average over all the points below the cut-
o↵ line, we obtain �̂ = 0.248 ± 0.013, which is about 2
error bars away from the predicted value 3/11. We take
this as a satisfactory confirmation of the predicted value.

Thus, we have found clear logarithmic corrections to
scaling over a significant region around the QCP; indeed,
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FIG. 7. (Color online) Statistical analysis of the exponent on
the logarithm in Eq. (24). The reduced �2 value of the fit (a)
and the optimal value of the exponent (b) are graphed as a
function of the number of data points (g-values) used, starting
from the points closest to gc in Fig. 6. The horizontal dashed
lines corresponds to the largest number of points for which a
3� criterion for �2/dof is satisfied [similar to Eq. (22)]. In (b),
the error bars were computed by repeating the fits multiple
times with Gaussian noise added to the ms data points. The
vertical line indicts the expected value of �̂ = 3/11.

most of the points we have computed are well described
by Eq. (24). Including the logarithm leads to a consider-
ably better description of the data as far inside the Néel
phase as |g � gc|/gc ⇡ 0.2, where the order parameter
is already at 60% of its maximum possible value 1/2 (in
the case of no quantum fluctuations at all). The improve-
ment is even more clear in the inset of Fig. 6, showing
the results on linear axes.
Under the assumption that data points at large |g�gc|

no longer fall on the fitted curve because they lie outside
the region controlled by the QCP, we can determine the
size of the critical region based on a threshold maximum
deviation of the data from the curve (though the thresh-
old value is of course to some degree arbitrary). The
|g � gc|/gc  0.2 region indicated by shading in Fig. 7
reflects a threshold value of ⇡ 4%, which is reasonable
with consideration of typical experimental uncertainties
in comparions where these results may be useful. We will
comment on the case of TlCuCl3 in Sec. VII.

The log corrections to the mean-field behavior can be seen
- expected form (RG calculations: Zinn-Justin, Kenna,...)
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FIG. 5. (Color online) Extrapolated values of the submattice
magnetization as a function of the largest system size included
in the fits for values g close to the QC point gc ⇡ 4.837.
Results for di↵erent orders P of the fitting polynomial are
compared. Panels (a,b) include values of g for which the ex-
trapolations are stable already for relatively small L, while
the g values in (c,d) are very close to gc and, therefore, the
extrapolations require large sizes to stabilize. The smallest
system size included was determined using the �2 criterion
(22). Panels (a,c) and (b,d) show results of extrapolations of
hm2

sz(g, L)i and hm2
sz(g, L)i1/2, respectively, with the square-

root taken in the former case after the extrapolation.

with Gaussian noise added to the finite-size data (with
standard deviation equal to the corresponding QMC er-
ror bars). The standard deviation of the distribution of
extrapolated ms(g) values defines the statistical error.

Figure 5 show results for several values of g close to the
QCP, with cases where the fits are relatively easy (further
from gc) or more challenging (closer to gc) grouped into
panels (a,b) and (c,d), respectively. The upper panel in
each group corresponds to the square-root being taken af-
ter the extrapolation using Eq. (20), while the lower panel
corresponds to fitting the square-root for each system size
according to Eq. (21). In panels (a,b), the extrapolated
values are observed to be very stable with respect to the
range of system sizes and the order of the polynomial,
while in (c,d) the cross-over behaviors expected close to
gc are clearly manifested, leading to significant variations
as the maximum system size is increased. One can also
note significant di↵erences between the two fitting proce-
dures (taking the square root before or after the extrap-
olation), until the largest system sizes where the extrap-
olations stabilize. In all cases the two types of fits give
consistent results for the largest systems, which we take
as a sign that the extrapolations are reliable. Closer to
gc than the g-values shown in Figs. 5(c,d), we have not
been able to achieve good convergence based on system
sizes up to L = 48. Overall, in cases where the extrapo-
lations are challenging, our results show that it is better
to use the fitting form (21), taking the square-root for
each individual system. All results to be presented next
were obtained in this way with polynomial order P = 4.

B. Results in the thermodynamic limit

With all of the above considerations, we are able to
obtain reliable and high-precision extrapolations of the
staggered magnetization in the thermodynamic limit for
values of g as close to the QCP as |g � gc| ' 0.003. In
Fig. 6 we show all of our data for ms(|g � gc|) on log-
arithmic axes. If these data satisfied mean-field scaling
alone, with no discernible logarithmic corrections, one
would expect a curve of the form

ms(g) = a|g � gc|1/2, (23)

but this form (the green line in the figure) is manifestly
unable to describe the data.

For the zero-temperature order parameter, perturba-
tive renormalization-group considerations applied to the
O(N) �4 field theory at the upper critical dimension pre-
dict the form

ms(g) = a|g � gc|� | ln(|g � gc|/c)|�̂ , (24)

where � = 1/2 is the mean-field exponent and the expo-
nent of the multiplicative logarithmic correction is given
by �̂ = 3/(N +8) [30]. A fit to this form, using �̂ = 3/11
for N = 3 (blue curve in Fig. 6), yields excellent agree-
ment with the data all the way to our smallest values of
|g� gc|; the fitting parameters are a = 0.267± 0.004 and
c = 4.7 ± 0.2. For further analysis, we will fix the value
of the parameter under the logarithm to c = gc, as the
above fitted value is close to it and the precise value is
unimportant when L ! 1.

� = 1/2, �̂ = 3/11
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Example: susceptibility of the 2D Ising model: � = (hm2i � h|m|i2)/T

-2 -1 0 1 2
tL1/ν

0

0.01

0.02

0.03

0.04

0.05

χL
-γ
/ν

2.0 2.5 3.0 3.5
T/J

100

101

102

χ

 L = 128
 L = 16, 32, 64
 L = 8

FIGURE 14. Monte Carlo results for the susceptibility (55) of the Ising model on several different L×L
lattices. (a) shows the temperature dependence, with the vertical line indicating Tc. Note the vertical log
scale. In (b) the data has been scaled using the exact values of the Ising exponents, γ = 7/4 and ν = 1,
and the exact value of Tc in t = (T −Tc)/Tc.

which, using ξ ∼ |t|−1/ν , we can also write as

Q(t,L) = Lσg(tL1/ν). (65)

This scaling law should hold both above (t > 0) and below (t < 0) the critical point.
Exactly at Tc, we recover the size-scaling Q(0,L) ∼ Lσ . To relate σ to the standard
critical exponents, we can use the fact that, for fixed t close to 0, as the system grows the
behavior for any t $= 0 eventually has to be given by Eq. (59);Q(t,L→∞)∼ |t|−κ (where
κ is negative for a singular non-divergent quantity, e.g., the for the order parameter we
have κ =−β ). To obtain this form, the scaling function g(x) in (65) must asymptotically
behave as g(x)∼ x−κ for x→ ∞. In order for the size-dependence in (65) to cancel out,
we therefore conclude that σ = κ/ν , i.e.,

Q(t,L) = Lκ/νg(tL1/ν). (66)

To extract the scaling function g(x) using numerical data, one can define

yL = Q(t,L)L−κ/ν , xL = tL1/ν , (67)

and plot yL versus xL for different system sizes. If the scaling hypothesis is correct,
data for different (large) system sizes should fall onto the same curve, which then is
the scaling function (this is referred to as curves collapsing onto each other); g(x) =
yL→∞(x). Fig. 14 illustrates this using Monte Carlo data for the magnetic susceptibility
of the 2D Ising model. The peak location in panel (a) clearly moves toward the known
Tc with increasing L. After scaling the data according to the above procedures, as shown
in panel (b), the curves indeed collapse almost onto each other close to t = 0, but further
away from the critical point deviations are seen for the smaller systems. These are due to
corrections to scaling, which in principle can be described with subleading exponents.
We can apply the scaling form (66) to the correlation length itself, for which κ = ν and

the L-scaling is independent of model-specific exponents. In cases where the universality
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Critical points: Finite-size scaling

� = T � Tc or � = g � gc, ⇠(�) / ��⌫
The correlation length diverges at the critical point

A(�) / � ! A(�, L) / L�/⌫f(�L1/⌫)

A singular quantity A exhibits finite-size scaling according to

Commonly used in “data collapse” of simulation data

When Tc and/or exponents not known, use them as parameters
- to obtain “best” data collapse
Not very reliable, need more systematic approach
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Crossing-point analysis [S. Hui, W. Guo, AWS, unpublished manuscript]

Aim: Completely systematic and unbiased method to extract
the location of a critical point and the critical exponents
Starting point: Scaling function known from RG

Supplementary Material

Here we provide more technical details of the crossing-point analysis underlying our finite-size
scaling studies. In Sec. 1 we discuss the formal aspects and in Sec. 2 demonstrate the use of the
method on the 2D Ising model, where the rigorously known critical temperature and exponents
allow for stringent tests. In Sec. 3, as an alternative to the general two-length scaling form
(2) and its unconventional limiting behavior, we present direct derivations of the critical size
dependence of the spin stiffness and the susceptibility, generalizing the approach of Fisher et

al. (29) in the presence of two length scales. In Sec. 4 we provide some details of the QMC
method used in the studies of the J-Q model.

1 Formal crossing-point analysis
Consider the standard case of a single divergent length scale (correlation length) ⇠ / |�|�⌫ as a
function of the distance � = g � gc to a critical point (classical, driven by thermal fluctuations
at temperature T > 0 or a quantum phase transition at T = 0). For some other singular quantity
A with the behavior A / |�| in the thermodynamic limit (valid for g < gc, g > gc, or both,
depending on the quantity), the finite size scaling is governed by the form

A(�, L) = L�/⌫f(�L1/⌫ ,�
1

L�!1 ,�
2

L�!2 , · · ·), (7)

where 0 < !i < !i+1

and the variables �i are irrelevant fields which in principle can be tuned
by introducing some other interactions in the Hamiltonian. Keeping only the most important
irrelevant field, using the notation ! ⌘ !

1

for convenience, and suppressing the dependence of
the unknown value of the scaling field �

1

, we have Eq. (1) in the main text. The scaling function
is non-singular and we can Taylor expand it in the neighborhood of the critical point;

A(�, L) = L�/⌫(a+ b�L1/⌫ + cL�! + . . .). (8)

For two system sizes L
1

= L and L
2

= rL, the two curves A(�, L
1

) and A(�, L
2

) take the same
value (cross each other) at the point

�⇤ =
a

b

1� r�/⌫

r(1�)/⌫ � 1
L�1/⌫ +

c

b

1� r�/⌫�!

r(1�)/⌫ � 1
L�1/⌫�!. (9)

Thus, in general the finite-size value g⇤(L) of the critical point defined using such curve-
crossing points shifts with the system size as g⇤(L) � gc ⌘ �⇤ / L�1/⌫ . However, if the
quantity A is size-independent at the critical point,  = 0, the shift is faster;

g(L)� gc ⌘ �⇤ / dL�1/⌫�!, (10)

14

κ = critical exponent corresponding to A: A ~ δκ

ν = correlation-length exponent; ξ ~ δ-ν

δ = distance to the critical point (relevant field)
λi = irrelevant fields, ωi+1 ≥ ωi > 0
We only keep the leading irrelevant variable, ω1=ω (and leave out λ)

arising from non-commuting interactions controlled by q at T = 0. According to standard

finite-size scaling (28) a singular quantity A in the neighborhood of � = 0 takes the form

A(q, L) = L�/⌫f(�L1/⌫ , L�!), � = q � qc, (1)

where the exponents , ⌫,! are tied to the universality class,  also depends on A, and the

scaling function f approaches a constant when � ! 0. We assume � = 1/T / Lz (or,

alternatively, T = 0) so that scaling arguments depending on � have been eliminated.

The form (1) fails for some important properties of the J-Q model (17, 18, 21) and other

DQC candidate systems (23–25). A prominent example is the spin stiffness, which for an

infinite system in the Néel phase should scale as ⇢s / �z⌫ with z = 1 (2, 3, 29). To eliminate

the size dependence for large L in the form (1) we must have  = z⌫ and the scaling function

f(x, L�!) / xz⌫ for large x = �L1/⌫ (fixed � and L ! 1). Thus, ⇢s(� = 0, L) / L�1 and

L⇢s should be constant for L ! 1. However, L⇢s(L) at criticality instead appears to diverge

slowly (16, 17, 20). At first sight this might suggest a different dynamic exponent, z < 1, but

other quantities, such as the magnetic susceptibility �, are inconsistent with such a value, instead

behaving as if z > 1 (30). Anomalous scaling corrections have been suggested as a way out of

this dilemma (17,18,27). Claims of a weak first-order transition have also persisted (20,25,26),

though the absence of any of the commonly used first-order signals favor the continuous DQC

scenario, e.g., the Binder cumulant does not exhibit any negative peak (17, 23).

We now discuss the reason for the scaling anomalies. In a system with two divergent funda-

mental length scales, Eq (1) should be replaced by

A(q, L) = L�/⌫̃f(�L1/⌫ , �L1/⌫0 , L�!), (2)

where, depending on the quantity A, ⌫̃ = ⌫ or ⌫̃ = ⌫ 0, but, unlike what has been assumed

in the past, we show that ⌫̃ is not necessarily the exponent which governs the behavior in the

thermodynamic limit. Proceeding as above to reproduce the correct thermodynamic limit for

4

The scaling function f can be Taylor expanded: 
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is non-singular and we can Taylor expand it in the neighborhood of the critical point;

A(�, L) = L�/⌫(a+ b�L1/⌫ + cL�! + . . .). (8)

For two system sizes L
1

= L and L
2

= rL, the two curves A(�, L
1

) and A(�, L
2

) take the same
value (cross each other) at the point

�⇤ =
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b

1� r�/⌫

r(1�)/⌫ � 1
L�1/⌫ +

c

b

1� r�/⌫�!

r(1�)/⌫ � 1
L�1/⌫�!. (9)

Thus, in general the finite-size value g⇤(L) of the critical point defined using such curve-
crossing points shifts with the system size as g⇤(L) � gc ⌘ �⇤ / L�1/⌫ . However, if the
quantity A is size-independent at the critical point,  = 0, the shift is faster;

g(L)� gc ⌘ �⇤ / dL�1/⌫�!, (10)

14

Crossing-point analysis: Consider two system sizes 
L1 = L, L2 = rL, r=constant (e.g., r=2)
Study points δ*(L) such that A(δ*,L1)=A(δ*,L2)
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14

where the constant d depends on the chosen aspect ratio r and the generally unknown coeffi-
cients of the Taylor expansion (8). The value of the quantity A at the crossing point is obtained
by inserting �⇤ into Eq. (8), which for both the general case  6= 0 and the special case  = 0

can be written as
A⇤(L) = A(�⇤, L) = L�/⌫(ã+ b̃L�! + . . .). (11)

Thus, in principle a crossing point analysis can be used to obtain the leading critical exponents
 and ⌫, as well as the subleading exponent !. However, it should be noted that the higher-
order terms Eq. (8) can play a significant role for system sizes attainable in practice, and often
! extracted this way should be considered as an effective exponent which changes with the
range of system sizes considered. To extract the critical point, a dimensionless quantity ( = 0)
should be chosen as the convergence then is the the most rapid, given by Eq. (10).

The above derivations and results were established a long time ago (28) and have been used
extensively in studies of classical and quantum critical points. There are many other ways of
analyzing crossing points as well. Here we will present a convenient way of estimating the
exponent ⌫ systematically and more directly than its difficult extraction based on the correction
terms in the shift analysis above.

Consider a dimensionless quantity Q, such as the Binder ratio (or the corresponding cumu-
lant). We then have, including terms also of higher order in Eq. (8),

Q(�, L) = a
0

+ a
1

�L1/⌫ + a
2

�2L2/⌫ + b
1

L�! + c
1

�L1/⌫�! + . . . (12)

and from the derivative s(�) with respect to � or g = gc + � we have

s(�) =
dQ(�, L)

d�
=

dQ(�, L)

dg
= a

1

L1/⌫ + c
1

L1/⌫�! + a
2

�L2/⌫ + . . . . (13)

We will now assume that s(�) is positive in the region of interest, and if not we redefine it with
a minus sign. At � = 0 we then have

ln[s(0)] = a+
1

⌫
ln(L) + bL�! + . . . , (14)

with some constants a and b. Thus, for large L, ln[s(0)] at the critical point depends linearly
on ln(L) and the slope is the exponent 1/⌫. This is a well known way of extracting ⌫ from the
Binder ratio in the neighborhood of the critical point. Here we will consider an alternative way,
which does not require a prior determination of the critical point.

We observe that instead of evaluating the derivative (13) exactly at the critical point, we can
use the crossing point of the quantity Q for two system sizes (L

1

, L
2

) = (L, rL). Inserting the
crossing value (10) of � into (13) we obtain

s(�⇤, Ln) = a
1

L1/⌫
n + c

1

L1/⌫�!
n + a

2

dL1/⌫�!
n + . . . (n = 1, 2). (15)
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Large-L crossing point from Taylor expansion:
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(2) and its unconventional limiting behavior, we present direct derivations of the critical size
dependence of the spin stiffness and the susceptibility, generalizing the approach of Fisher et

al. (29) in the presence of two length scales. In Sec. 4 we provide some details of the QMC
method used in the studies of the J-Q model.

1 Formal crossing-point analysis
Consider the standard case of a single divergent length scale (correlation length) ⇠ / |�|�⌫ as a
function of the distance � = g � gc to a critical point (classical, driven by thermal fluctuations
at temperature T > 0 or a quantum phase transition at T = 0). For some other singular quantity
A with the behavior A / |�| in the thermodynamic limit (valid for g < gc, g > gc, or both,
depending on the quantity), the finite size scaling is governed by the form

A(�, L) = L�/⌫f(�L1/⌫ ,�
1

L�!1 ,�
2

L�!2 , · · ·), (7)

where 0 < !i < !i+1

and the variables �i are irrelevant fields which in principle can be tuned
by introducing some other interactions in the Hamiltonian. Keeping only the most important
irrelevant field, using the notation ! ⌘ !

1

for convenience, and suppressing the dependence of
the unknown value of the scaling field �

1

, we have Eq. (1) in the main text. The scaling function
is non-singular and we can Taylor expand it in the neighborhood of the critical point;

A(�, L) = L�/⌫(a+ b�L1/⌫ + cL�! + . . .). (8)

For two system sizes L
1

= L and L
2

= rL, the two curves A(�, L
1

) and A(�, L
2

) take the same
value (cross each other) at the point

�⇤ =
a

b

1� r�/⌫

r(1�)/⌫ � 1
L�1/⌫ +

c

b

1� r�/⌫�!

r(1�)/⌫ � 1
L�1/⌫�!. (9)

Thus, in general the finite-size value g⇤(L) of the critical point defined using such curve-
crossing points shifts with the system size as g⇤(L) � gc ⌘ �⇤ / L�1/⌫ . However, if the
quantity A is size-independent at the critical point,  = 0, the shift is faster;

g(L)� gc ⌘ �⇤ / dL�1/⌫�!, (10)
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κ=0 (dimensionless quantity A) is a special case
- faster convergence to critical point:

If the exponent κ/ν is known, Lκ/νA can be used and is dimensionless
- some quantities are explicitly dimensionless (Binder ratio,...)

With a set of points g*(L), one can use the known power-law
form to extrapolate to gc, and ã, with 1/ν and ω as fitting parameters
- works well for gc, exponents often “effective”, slowly changing with L

One can derive a better expression for extrapolating ν directly
from the crossing points
- using dimensionless quantity Q hereafter (κ=0)
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where the constant d depends on the chosen aspect ratio r and the generally unknown coeffi-
cients of the Taylor expansion (8). The value of the quantity A at the crossing point is obtained
by inserting �⇤ into Eq. (8), which for both the general case  6= 0 and the special case  = 0

can be written as
A⇤(L) = A(�⇤, L) = L�/⌫(ã+ b̃L�! + . . .). (11)

Thus, in principle a crossing point analysis can be used to obtain the leading critical exponents
 and ⌫, as well as the subleading exponent !. However, it should be noted that the higher-
order terms Eq. (8) can play a significant role for system sizes attainable in practice, and often
! extracted this way should be considered as an effective exponent which changes with the
range of system sizes considered. To extract the critical point, a dimensionless quantity ( = 0)
should be chosen as the convergence then is the the most rapid, given by Eq. (10).

The above derivations and results were established a long time ago (28) and have been used
extensively in studies of classical and quantum critical points. There are many other ways of
analyzing crossing points as well. Here we will present a convenient way of estimating the
exponent ⌫ systematically and more directly than its difficult extraction based on the correction
terms in the shift analysis above.

Consider a dimensionless quantity Q, such as the Binder ratio (or the corresponding cumu-
lant). We then have, including terms also of higher order in Eq. (8),

Q(�, L) = a
0

+ a
1

�L1/⌫ + a
2

�2L2/⌫ + b
1

L�! + c
1

�L1/⌫�! + . . . (12)

and from the derivative s(�) with respect to � or g = gc + � we have

s(�) =
dQ(�, L)

d�
=

dQ(�, L)

dg
= a

1

L1/⌫ + c
1

L1/⌫�! + a
2

�L2/⌫ + . . . . (13)

We will now assume that s(�) is positive in the region of interest, and if not we redefine it with
a minus sign. At � = 0 we then have

ln[s(0)] = a+
1

⌫
ln(L) + bL�! + . . . , (14)

with some constants a and b. Thus, for large L, ln[s(0)] at the critical point depends linearly
on ln(L) and the slope is the exponent 1/⌫. This is a well known way of extracting ⌫ from the
Binder ratio in the neighborhood of the critical point. Here we will consider an alternative way,
which does not require a prior determination of the critical point.

We observe that instead of evaluating the derivative (13) exactly at the critical point, we can
use the crossing point of the quantity Q for two system sizes (L

1

, L
2

) = (L, rL). Inserting the
crossing value (10) of � into (13) we obtain

s(�⇤, Ln) = a
1

L1/⌫
n + c

1

L1/⌫�!
n + a

2

dL1/⌫�!
n + . . . (n = 1, 2). (15)
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Having access to two different slopes at the crossing point, we can take the difference of the
logarithm of these two slopes;

ln[s(�⇤, rL)]� ln[s(�⇤, L)] =
1

⌫
ln(r) + aL�! + . . . (16)

with some constant a. We can therefore define an exponent estimate ⌫⇤(L) corresponding to the
crossing point

1

⌫⇤(L)
=

ln[s(�⇤, rL)]� ln[s(�⇤, L)]

ln(r)
, (17)

and this estimate approaches the correct exponent at the rate L�! for large L;

1

⌫⇤(L)
=

1

⌫
+ bL�! + . . . (18)

with some constant b and various higher-order terms left out. With data for several system-size
pairs (L, rL), 1/⌫ can be obtained by data fitting, either using the leading form with only the
L�! correction for sizes large enough that the higher-order terms can be neglected, or including
higher-order terms explicitly.

2 Tests on the 2D Ising model
In order to demonstrate the reliability of the method of obtaining the critical point and exponents
from crossing points, we here present results based on the Binder cumulant U of the 2D Ising
model;

U =
1

2

 

3� hm4i
hm2i2

!

, (19)

where m is the magnetization

m =
1

N

NX

i=1

�i, �i 2 {�1,+1}. (20)

Monte Carlo simulations were carried out on lattices of size L ⇥ L with periodic boundary
conditions, using a mix of Wolff and Swendsen-Wang (SW) cluster updates, with each sweep
of Wolff updates (where on average ⇡ N spins are flipped) followed by an SW update where the
system is decomposed into clusters and each is flipped with probability 1/2. The SW clusters
are also used to measure hm2i and hm4i with improved estimators (after each SW update). We
carried out simulations of sizes L = 6, 7, . . . , 20, 22, . . . , 36, 40, . . . , 64, 72, . . . , 128, at 20� 30

temperatures in the neighborhood of the relevant crossing points of the Binder cumulant for
system-size pairs (L, 2L), i.e., using aspect ratio r = 2 in the expressions of Sec. 2. Up to
5⇥ 109 measurements were collected for the smaller sizes and 108 for the largest sizes.
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Taylor expansion of the scaling function:
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crossing value (10) of � into (13) we obtain
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Define the slope (derivative)
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The log-slope at the critical point

This is a well-known way to extract the exponent ν
- find the critical point first
- plot log-slope versus ln(L), try to extract its slope 1/ν for large L
- scaling corrections make it non-trivial
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New proposal: Use the two slopes at the crossing point

Much easier to fit and extrapolate for 1/ν and don’t need gc first !
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2D Ising model; MC results

Having access to two different slopes at the crossing point, we can take the difference of the
logarithm of these two slopes;

ln[s(�⇤, rL)]� ln[s(�⇤, L)] =
1

⌫
ln(r) + aL�! + . . . (16)

with some constant a. We can therefore define an exponent estimate ⌫⇤(L) corresponding to the
crossing point

1

⌫⇤(L)
=

ln[s(�⇤, rL)]� ln[s(�⇤, L)]

ln(r)
, (17)

and this estimate approaches the correct exponent at the rate L�! for large L;

1

⌫⇤(L)
=

1

⌫
+ bL�! + . . . (18)

with some constant b and various higher-order terms left out. With data for several system-size
pairs (L, rL), 1/⌫ can be obtained by data fitting, either using the leading form with only the
L�! correction for sizes large enough that the higher-order terms can be neglected, or including
higher-order terms explicitly.

2 Tests on the 2D Ising model
In order to demonstrate the reliability of the method of obtaining the critical point and exponents
from crossing points, we here present results based on the Binder cumulant U of the 2D Ising
model;

U =
1

2

 

3� hm4i
hm2i2

!

, (19)

where m is the magnetization

m =
1

N

NX

i=1

�i, �i 2 {�1,+1}. (20)

Monte Carlo simulations were carried out on lattices of size L ⇥ L with periodic boundary
conditions, using a mix of Wolff and Swendsen-Wang (SW) cluster updates, with each sweep
of Wolff updates (where on average ⇡ N spins are flipped) followed by an SW update where the
system is decomposed into clusters and each is flipped with probability 1/2. The SW clusters
are also used to measure hm2i and hm4i with improved estimators (after each SW update). We
carried out simulations of sizes L = 6, 7, . . . , 20, 22, . . . , 36, 40, . . . , 64, 72, . . . , 128, at 20� 30

temperatures in the neighborhood of the relevant crossing points of the Binder cumulant for
system-size pairs (L, 2L), i.e., using aspect ratio r = 2 in the expressions of Sec. 2. Up to
5⇥ 109 measurements were collected for the smaller sizes and 108 for the largest sizes.
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Good quantity Q to use: Binder cumulant:

We need a very fine grid of points close to Tc (+interpolate)
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Figure 3: Binder cumulant for the 2D Ising model with L = 16, 32, 64 in the neighborhood of
the points at which the curves cross each other. The vertical and horizontal dashed lines indicate
the critical temperature Tc and the value of the cumulant at Tc, respectively. The solid curves
are cubic polynomial fits to the data sets. Error bars are much smaller than the plot symbols.

Fig. 3 shows examples of data for three different system sizes, where cubic polynomials
have been fitted to the data. The crossing points are extracted numerically to machine precision
using bisection. In order to analyze Tc and Uc in the thermodynamic limit, it suffices to consider
a small number of points very close to each crossing point to be analyzed. To obtain ⌫ from the
slopes according to Eq. (17), where the derivative in Eq. (13) is taken of the fitted polynomials,
it is better to have a more extended range of points. However, for a very large range a high order
of the polynomial has to be used in order to obtain a good fit, and it is then better in practice
to adapt the window size so that a relatively low order polynomial can be used. In the tests
reported here, cubic polynomials were used and all fits were statistically sound.

In order to compute error bars of the crossing points T ⇤(L) and the corresponding values
U⇤(L), a bootstrap method is used, i.e., with a large number of random samples of the binned
MC data, with each sample computed using B(L, T ) randomly chosen bins for each system
size and temperature, where B(L, T ) is the total number of data bins available for (L, T ). The
standard deviations of the values computed for these bootstrap samples correspond to the error
bars of the crossing points and values. Note that in the evaluation of the cumulant (19), for
the full data set or a bootstrap sample, the individual expectation values hm2

i i and hm4

i i are
computed first based on all the bins, after which the ratio is evaluated. If one instead uses ratios
computed for each bin separately, a statistically significant systematical error can be introduced
due to the nonlinear contributions to the statistical error propagated from the denominator.
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We fit crossing points for a series of system pairs to the expected forms, Eqs. (10), (11) with
 = 0, and (18), and compare with exact and previous numerical results for the 2D Ising model.
Onsager’s rigorous analytical solution gives Tc = 2 ln�1(

p
2 + 1) ⇡ 2.269185314 and ⌫ = 1.

The value of U at Tc is not known exactly, but Blöte obtained Uc ⇡ 0.916035 by extrapolating
exact numerical finite-size transfer-matrix data to infinite size (35). For the Binder cumulant
the dominant subleading correction has the exponent ! = 7/8 (35). These results should all
be obtained within statistical errors from the crossing point analysis of the Monte Carlo data
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- should use covariance matrix in goodness of fit

21



We fit crossing points for a series of system pairs to the expected forms, Eqs. (10), (11) with
 = 0, and (18), and compare with exact and previous numerical results for the 2D Ising model.
Onsager’s rigorous analytical solution gives Tc = 2 ln�1(

p
2 + 1) ⇡ 2.269185314 and ⌫ = 1.

The value of U at Tc is not known exactly, but Blöte obtained Uc ⇡ 0.916035 by extrapolating
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Figure 4: (a) Crossing temperature of the Binder cumulant for system-size pairs (L, 2L) versus
the inverse of the smaller size, along with a fit to the form (10) to the data points with L � 12.
(b) The value of the cumulant at the crossing points, along with a fit to the form (11) for L � 14.
In both (a) and (b), error bars are much too small to be visible. The insets shows the data minus
the fitted functions including the error bars.

Clearly this criterion is sensitive to the quality of the data—if the elements of the covariance ma-
trix are very small, even fits including only relatively large system sizes can detect the presence
of higher-order corrections and not pass our test, while with noisy data also small system sizes
can be included. If a fit satisfies the �2 criterion it can still not be completely guaranteed that no
effects of the higher-order corrections are present in the final result, but in general one would
expect any remaining systematical errors to be small relative to the statistical error. In principle
one can estimate the magnitude of the systematical error using the parameters obtained from the
fit and some knowledge or estimate of the nature of the higher-order corrections. We will not
attempt to do that here because in general such knowledge will be very limited. To minimize
any remaining systematical errors one can continue to exclude more system sizes even after
the soundness criterion (23) is satisfied, at the price of increasing the statistical errors of the
parameters extracted from the fits.
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2D Ising data, L up to 128 Fit to leading form with
correction ~L-ω

Higher-order corrections
visible for small sizes and
good data
Exclude small sizes
until good fit:

Fit with Lmin=12 gave
Tc=2.2691855(5)
- correct value is
Tc=2.2691853...
Some effects of higher-
order correction seen in
data (wiggles)
- did not affect Tc
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Figure 5: Estimate of the inverse of the correlation-length exponent ⌫ of the 2D Ising model
based on the slope expression (17) applied to the Binder cumulant. The curve is a fit to the form
(10) including all points (L � 6).

along with a fit including all the system sizes (L � 6). Remarkably, the fit is statistically perfect,
with h�2/N

dof

i < 1, already at this small minimum size and the inverse exponent extrapolates
to 1/⌫ = 1.0001(7), in excellent agreement with the exact result 1. The slope data are much
more noisy than the underlying U values and the error bars grow very rapidly with L for the
largest sizes. The fit is therefore dominated by the smaller sizes. Naturally, the large error bars
mask the effects of higher-order corrections, as discussed above. It is nevertheless remarkable
that the extracted exponent 1/⌫ does not show any effects of the neglected corrections at all,
even though, again, the leading correction exponent, which comes out to ! = 1.57(7), is not
very close to the correct value 1.75 and its error bar is large. Again, the flexibility of the leading
finite-size term allows it to mimic the effects of the correction terms without significant effects
in the extrapolation of the fit.

These results demonstrate the unbiased nature of the crossing-point analysis when it is car-
ried out properly. We advocate this systematic way to determine the critical temperature (or
critical coupling of a quantum phase transition) and study the critical exponents, instead of of-
ten used [also in DQC studies (14,19,21)] data-collapse techniques where many choices have to
be made of the range of data included, use of corrections, etc. Although trends when increasing
the system size can also be studied with data collapse [as done in ref. (19))], the solid grounding
of the present scheme directly to the finite-size scaling form (7) makes it the preferred method.
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Correlation-length exponent:
- data are much noisier (expected, slope...)

Extrapolations stable and give exponent 1/ν=1.0001(7)
Other exponents can also be extracted 
- by analyzing other quantities at the crossing points
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Warning: finite-size extrapolations of order parameters
are not reliable close to critical points!
Cross-over behaviors make extrapolations impossible when the
order parameter (or a gap) is less than some Lmax dependent value
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FIG. 5. (Color online) Size dependence of the squared order
parameters of the Q3 model on cylindrical 2L × L lattices (using
the central L × L square for computing the expectation values). The
smooth curves are second-order polynomials fitted to the 〈D2〉 data
for several of the largest system sizes.

nondegenerate. Therefore the unsquared order parameter 〈Dx〉
is nonzero and should, in the thermodynamic limit, take a
value agreeing with the squared order parameters extracted
above; 〈Dx〉 → 〈D2〉1/2. The expectation value of the nearest-
neighbor spin correlator (11) indeed oscillates considerably as
a function of the location along the x direction, as shown in
the inset of Fig. 6 for the 32 × 16 cylinder. The dimer order is
clearly the strongest at the edges but remains large also in the
interior of the system.

A local VBS order parameter for a system with bonds
ordered along the x axis can be defined as

Dx(x) = 〈Bx(x,y)〉 − 1
2 〈Bx(x − 1,y) + Bx(x + 1,y)〉,

(18)
which is independent of y on the semiperiodic cylindrical
lattices (and can be averaged over y in the QMC calculations).
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FIG. 6. (Color online) Local columnar x order parameter (18)
of the Q3 model computed at the center of a 2L × L cylinder.
The smooth curve is of the exponential form (17) and extrapolates
to 0.264. The inset shows the location dependent bond correlation
function 〈Bx(x)〉 for a 32 × 16 system.

This quantity at the central column is shown as a function
of the inverse system size in the main plot of Fig. 6. Here, an
asymptotic exponentially fast convergence can be seen clearly,
which is illustrated with a fit to the form (17). This fit is of good
statistical quality and extrapolates to 0.264, in good agreement
with the values for 〈D2〉1/2 obtained above. The magnitude of
the order parameter of the Q3 model is, thus, 70% of the largest
possible value (3/8) for a columnar VBS.

C. Reduced order in the Q2 and J- Q2 models

In the pure Q2 model, the VBS order is considerably weaker
than in the Q3 model. The first study of this model gave the
order parameter D ≈ 0.070, or about 20% of the maximal
value, based on extrapolations of L × L results for L ! 32.1

While this order may still be regarded as quite strong, problems
with extrapolating it correctly based on small to moderate
lattice sizes already start to become apparent.

Figure 7 shows results for periodic L × L systems with
4 ! L ! 72. A fifth-order polynomial can be fitted very well
to all these data and extrapolates to 0.0063, about 10% lower
than the previous result. However, if only L " 20 data are used,
a second-order polynomial is sufficient and the extrapolated
value is significantly lower: 〈D2

x〉 = 0.0058. This illustrates
the fact that polynomial fits based on small systems are not
very reliable, because of the eventual exponential convergence
(which is not yet fully apparent for the system sizes accessible).
The resulting relative uncertainties are much larger than
in the strongly ordered Q3 model. The extrapolated value
depends significantly on what system sizes are included in
the fit and the order of the polynomial used. For the system
sizes studied here, a pure exponential form does not yet
work.

An important aspect of the finite-size scaling behavior in
the Q2 model is that the data for small to moderate lattices do
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FIG. 7. (Color online) Size dependence of the squared VBS order
parameter of the pure Q2 model on periodic L × L lattices. The
solid black curve in the main graph shows a fit of the L ! 12 data
to a second-order polynomial (which extrapolates to an unphysical
negative value when L → ∞). The solid red curve shows a fifth-order
polynomial fit to all the data, while the dashed black curve shows a
quadratic fit to only the L " 20 data. The inset shows the behavior
for the largest systems on a more detailed scale.
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FIG. 12. (Color online) The staggered part, Eq. (19), of the long-
distance correlation function (at rmax =

√
2L) and the total dimer

order parameter for the J -Q2 model at J/Q2 = 0.03 and 0.10 on
periodic L × L lattices.

available, it would not be possible to unambiguously confirm
the presence of long-range VBS order, even though the order
parameter here is still above 10% of the maximum value.

Note that the long-distance correlation function decays
exponentially as a function of 1/L in a non-VBS state, i.e.,
much faster than the 1/L2 behavior of the total squared order
parameter. It is therefore also much easier to confirm the
absence of long-range order by studying the long-distance
correlations.

D. Quantum-critical scaling

Ultimately, the difficulties in extrapolating the VBS order
parameter to infinite size based on small systems will in
many cases be related to critical scaling in the proximity of
a quantum-critical point (or “pseudo-critical” scaling in cases
where the transition out of the VBS state is weakly first order).
A small system exhibits quantum criticality also slightly away
from the critical point. Hence data for a series of lattices may
appear to extrapolate to a disordered state, even though the
infinitely large 2D system is on the VBS side of a quantum
phase transition. According to conventional finite-size scaling
theory, the window around the critical point within which
a system of linear size L exhibits scaling is proportional to
L−1/ν , where ν is the exponent governing the divergence of
the correlation length. Depending on the prefactor, this window
may be sizable for practically reachable lattice sizes. As will be
shown next, this is one reason why fits to small-lattice data can
give misleading results, e.g., in the case of Q2-model results
in Fig. 7.

In addition to illustrating the near-critical VBS, the scaling
of the Néel order parameter will also be briefly discussed here.
According to past studies, both the J -Q2 and J -Q3 models
are strong candidates1,40 for the deconfined quantum-criticality
scenario,37 according to which both order parameters should
be critical exactly at the same point. Results for the J -Q2
model will be discussed here.

While all numerical results so far are consistent with a single
Néel-VBS transition point, it has proved remarkably difficult to
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FIG. 13. (Color online) Size dependence of the VBS (top) and
Néel (bottom) order parameters of the J -Q2 model at four different
coupling ratios. The point J/Q2 = 0.0447 should be very close to the
quantum-critical value according to the scaling analysis of the spin
stiffness carried out in Ref. 41. The straight lines fitted through the
J/Q2 = 0.0447 data (for system sizes L ! 32) have slope −1.27 in
both cases.

determine the location (J/Q2)c of this transition precisely. The
most recent QMC studies point to a continuous transition with
unusually large scaling corrections in the quantities normally
used to extract the critical point, e.g., the spin stiffness and
Binder cumulants.41–43 These corrections have made it difficult
to reliably extrapolate the critical coupling ratio (J/Q2)c to in-
finite size. By using a logarithmic scaling correction to the spin
stiffness (which was not predicted in the original field-theory
description of deconfined quantum-critical points but may
appear with a modified action),96 (J/Q2)c = 0.0447 ± 0.0002
was obtained in Ref. 41. Using a conventional correction
∝L−ω, with small ω and a large prefactor (which potentially
could be a consequence of the dangerously irrelevant operator
responsible for the Z4 symmetric VBS), gives a similar result.

In Fig. 13, the two order parameters are graphed versus the
system size on log-log scales for coupling ratios close to the
critical value. The Néel order parameter 〈M2〉 (the squared
sublattice magnetization) is the size-normalized (π,π ) Fourier
transform of the spin correlation function (9). Both order
parameters indeed exhibit critical scaling at (J/Q2) = 0.0447.
For other couplings the curves fan out in the way typical for
critical points.

Interestingly, at J/Q2 = 0.0447 both order parameters
scale as L−(1+η) with η ≈ 0.27 (with a purely statistical
error bar of about 0.01) when L " 32 systems are used in
the fits. For the sublattice magnetization, this exponent is
slightly smaller than in previous works,39,40 while the VBS
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Locate phase transitions first
- scaling behavior in L
- use Binder-cumulant crossings etc
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