ICTP School in Computational Condensed Matter Physics: From Atomistic Simulations to Universal Model Hamiltonians September 2015

Lecture 3

Systematic finite-size scaling methods for analyzing critical points (and ordered phases)

Anders W Sandvik, Boston University

Simons Foundation: Advancing Research in Basic Science and Mathematic

Lecture outline

- 2D Heisenberg antiferromagnets, order and criticality
- 3D dimerized models and TICuCl₃
- Crossing-point methods for critical points
 - formal analysis of scaling function
 - tests on 2D Ising model
- Pitfalls in order-parameter extrapolations

Classical and quantum phase transitions

Classical (thermal) phase transition

- Fluctuations regulated by temperature T>0

Quantum (ground state, T=0) phase transition

- Fluctuations regulated by parameter g in Hamiltonian

In both cases phase transitions can be

- <u>first-order (discontinuous)</u>: finite correlation length ξ as $g \rightarrow g_c$ or $g \rightarrow g_c$
- continuous: correlation length diverges, $\xi \sim |g-g_c|^{-\nu}$ or $\xi \sim |T-T_c|^{-\nu}$

There are many similarities between classical and quantum transitions - and also important differences

We will discuss continuous phase transitions

Finite-size scaling and extrapolations

Monte Carlo simulations are done on finite lattices - typically periodic boundary conditions

We have to analyze the size dependence of computed quantities and extract the behavior in the thermodynamic limit - using input from theoretical expectations as much as possible

Example: 2D Ising model

$$H = -J\sum_{\langle i,j\rangle}\sigma_i\sigma_j, \quad m = \frac{1}{N}\sum_{i=1}^N\sigma_i, \quad \sigma_i \in \{-1,+1\}$$

Squared magnetization (order parameter) for L×L Ising lattices

Long-range order in 2D S=1/2 Heisenberg antiferromagnet

$$\mathbf{H} = \mathbf{J} \sum_{\langle \mathbf{i}, \mathbf{j} \rangle} \mathbf{S}_{\mathbf{i}} \cdot \mathbf{S}_{\mathbf{j}}$$

Sublattice magnetization

 $\vec{m}_s = \frac{1}{N} \sum_{i=1}^{N} \phi_i \vec{S}_i, \quad \phi_i = (-1)^{x_i + y_i} \quad (\text{2D square lattice})$

Long-range order: $< m_s^2 > > 0$ for $N \rightarrow \infty$

Quantum Monte Carlo

- finite-size calculations
- no approximations
- extrapolation to infinite size

<u>Reger & Young 1988</u>

 $m_s = 0.30(2)$

 $\approx 60 \%$ of classical value

AWS & HG Evertz 2010 $m_s = 0.30743(1)$

L×L lattices up to 256×256, T=0 0.00002 0.13 0.00000 C-fit с(П2, Ц2), M² (112, Ц2), M² (112, Ц2), M² -0.000020.02 0.040.00.10 C(L/2,L/2)0.03 0.05 0.01 0.02 0.04 0.06 0

T=0 Néel-paramagnetic quantum phase transition

Example: Dimerized S=1/2 Heisenberg models

- every spin belongs to a dimer (strongly-coupled pair)
- many possibilities, e.g., bilayer, dimerized single layer

Singlet formation on strong bonds → Néel - disordered transition Ground state (T=0) phases

 \Rightarrow 3D classical Heisenberg (O3) universality class

- QMC confirmed

SSE simulations of the loss of order

Single-layer columnar coupled dimers

T low enough to give the ground state

- T = a/L, a=2-4 (a may have to increase with size)

A linear behavior on 1/L is expected throughout the ordered phase - becomes more difficult to see as the critical point is approached

 $g = J_2 / J_1$

Power-law form $< m_s^2 > \sim 1/L^{1-\eta}$, $\eta \approx 0.03$, expected at g_c - we will discuss extraction of critical points later

Experimental realization: TICuCl₃ (a 3D coupled-dimer system)

TICuCl₃

Quantum and classical criticality in a dimerized quantum antiferromagnet

nature

physics

P. Merchant¹, B. Normand², K. W. Krämer³, M. Boehm⁴, D. F. McMorrow¹ and Ch. Rüegg^{1,5,6*}

3D Network of dimers- couplings can be changed by pressure

ARTICIES

6 APRIL 2014 | DOI: 10.1038

Universality of the Neel temperature in 3D dimerized systems?

Determine the Neel ordering temperature T_N and the T=0 ordered moment m_s for 3 different dimerization patterns

Couplings vs pressure not known experimentally

- plot T_N vs m_s to avoid this issue and study universality
- but how to normalize $T_{N?}$

Three normalizations

- (a) weaker copling J₁
- (b) sum J_s of couplings per spin
- (c) peak T* of magnetic susceptibility

T* normalization is in principle accessible experimentally

- neutron data analyzed with this normalization

Merchant et al (2014)

Universality is not a feature of quantum-criticality

- extends far from the quantum critical point
- linear behavior is expected from semiclassical theory (decoupling of quantum and thermal fluctuations)
- deviations show coupling of quantum and thermal fluctuations

Same features observed in models and experiment

 experimental slope about 25% lower if g-factor 2 assumed (what exactly is the g-factor?)

Logarithmic corrections [YQ Qin, B. Normand, AWS, ZY Meng, arXiv:1506:0607]

The quantum-critical (T=0) point corresponds to d=3+1=4- the upper critical dimension of the O(N) transition

Mean-field behavior with log corrections expected

- can the logs be detected (numerically and experimentally)?

SSE Simulations close to the critical point (double cube)

- T \rightarrow 0 (T=1/2L) results for N=L³ spins with L up to 40 (128000 spins)

The log corrections to the mean-field behavior can be seen - expected form (RG calculations: Zinn-Justin, Kenna,...)

$$m_s(g) = a|g - g_c|^{\beta} |\ln(|g - g_c|/c)|^{\beta}$$
 $\beta = 1/2, \ \hat{\beta} = 3/11$

0152

Critical points: Finite-size scaling

The correlation length diverges at the critical point

$$\delta = T - T_c$$
 or $\delta = g - g_c$, $\xi(\delta) \propto \delta^{-\nu}$

A singular quantity A exhibits finite-size scaling according to

 $A(\delta) \propto \delta^{\kappa} \to A(\delta, L) \propto L^{-\kappa/\nu} f(\delta L^{1/\nu})$

Commonly used in "data collapse" of simulation data

Example: susceptibility of the 2D Ising model: $\chi = (\langle m^2 \rangle - \langle |m| \rangle^2)/T$

When Tc and/or exponents not known, use them as parameters - to obtain "best" data collapse

Not very reliable, need more systematic approach

<u>Crossing-point analysis</u> [S. Hui, W. Guo, AWS, unpublished manuscript]

Aim: Completely systematic and unbiased method to extract the location of a critical point and the critical exponents

Starting point: Scaling function known from RG

$$A(\delta, L) = L^{-\kappa/\nu} f(\delta L^{1/\nu}, \lambda_1 L^{-\omega_1}, \lambda_2 L^{-\omega_2}, \cdots)$$

K = critical exponent corresponding to A: A ~ δ^{κ}

- \mathbf{v} = correlation-length exponent; $\boldsymbol{\xi} \sim \delta^{-\nu}$
- δ = distance to the critical point (relevant field)
- λ_i = irrelevant fields, $\omega_{i+1} \ge \omega_i > 0$

We only keep the leading irrelevant variable, $\omega_1 = \omega$ (and leave out λ)

$$A(q,L) = L^{-\kappa/\nu} f(\delta L^{1/\nu}, L^{-\omega})$$

The scaling function f can be Taylor expanded:

$$A(\delta, L) = L^{-\kappa/\nu} (a + b\delta L^{1/\nu} + cL^{-\omega} + \ldots)$$

Crossing-point analysis: Consider two system sizes $L_1 = L$, $L_2 = rL$, r=constant (e.g., r=2)

Study points $\delta^*(L)$ such that $A(\delta^*, L_1) = A(\delta^*, L_2)$

Large-L crossing point from Taylor expansion:

$$\delta^* = \frac{a}{b} \frac{1 - r^{-\kappa/\nu}}{r^{(1-\kappa)/\nu} - 1} L^{-1/\nu} + \frac{c}{b} \frac{1 - r^{-\kappa/\nu - \omega}}{r^{(1-\kappa)/\nu} - 1} L^{-1/\nu - \omega}$$

κ=0 (dimensionless quantity A) is a special case
faster convergence to critical point:

$$g(L) - g_c \equiv \delta^* \propto dL^{-1/\nu - \omega}$$

If the exponent κ/ν is known, $L^{\kappa/\nu}A$ can be used and is dimensionless - some quantities are explicitly dimensionless (Binder ratio,...)

$$A^*(L) = A(\delta^*, L) = L^{-\kappa/\nu}(\tilde{a} + \tilde{b}L^{-\omega} + \ldots)$$

With a set of points $g^*(L)$, one can use the known power-law form to extrapolate to g_c , and \tilde{a} , with 1/v and ω as fitting parameters - works well for g_c , exponents often "effective", slowly changing with L

One can derive a better expression for extrapolating v directly from the crossing points

- using dimensionless quantity Q hereafter (κ=0)

Taylor expansion of the scaling function:

$$Q(\delta, L) = a_0 + a_1 \delta L^{1/\nu} + a_2 \delta^2 L^{2/\nu} + b_1 L^{-\omega} + c_1 \delta L^{1/\nu-\omega} + \dots$$

Define the **slope** (derivative)

$$s(\delta) = \frac{dQ(\delta, L)}{d\delta} = \frac{dQ(\delta, L)}{dg} = a_1 L^{1/\nu} + c_1 L^{1/\nu - \omega} + a_2 \delta L^{2/\nu} + a_2 \delta L^{2/\nu} + c_1 L^{1/\nu - \omega} + a_2 \delta L^{2/\nu} + c_1 L^{1/\nu - \omega} + a_2 \delta L^{2/\nu} + c_1 L^{1/\nu - \omega} + a_2 \delta L^{2/\nu} + c_1 L^{1/\nu - \omega} + a_2 \delta L^{2/\nu} + c_1 L^{1/\nu - \omega} + a_2 \delta L^{2/\nu} + c_1 L^{1/\nu - \omega} + a_2 \delta L^{2/\nu} + c_1 L^{1/\nu - \omega} + c_1 L^{1/\nu - \omega} + c_1 L^{1/\nu - \omega} + c_2 \delta L^{2/\nu} + c_1 L^{1/\nu - \omega} + c_1 L^{$$

The **log-slope** at the critical point

$$\ln[s(0)] = a + \frac{1}{\nu}\ln(L) + bL^{-\omega} + \dots$$

This is a well-known way to extract the exponent v

- find the critical point first
- plot log-slope versus ln(L), try to extract its slope 1/v for large L
- scaling corrections make it non-trivial

New proposal: Use the two slopes at the crossing point

$$s(\delta^*, L_n) = a_1 L_n^{1/\nu} + c_1 L_n^{1/\nu - \omega} + a_2 dL_n^{1/\nu - \omega} + \dots \quad (n = 1, 2)$$
$$\ln[s(\delta^*, rL)] - \ln[s(\delta^*, L)] = \frac{1}{\nu} \ln(r) + aL^{-\omega} + \dots$$

Much easier to fit and extrapolate for 1/v and don't need gc first !

We need a very fine grid of points close to T_c (+interpolate)

- use polynomials for interpolation
- bootstrap sampling to compute stat. errors of quantities at the crossing points

Note that crossing points are correlated

- same system size can appear in two different (L1,L2) pairs
- should use covariance matrix in goodness of fit

$$\chi^2 = \sum_{i=1}^{M} \sum_{i=1}^{M} (\langle U_i \rangle - U_i^{\text{fit}}) [C^{-1}]_{ij}^2 (\langle U_j \rangle - U_j^{\text{fit}})$$
$$C_{ij} = \left\langle (U_i - \langle U_i \rangle) (U_j - \langle U_j \rangle) \right\rangle$$

Fit to leading form with correction $\sim L^{-\omega}$

Higher-order corrections visible for small sizes and good data

Exclude small sizes until good fit:

Fit with $L_{min}=12$ gave T_c=2.2691855(5) - correct value is T_c=2.2691853...

Some effects of higherorder correction seen in data (wiggles)

- did not affect $T_{\rm c}$

Correlation-length exponent:

- data are much noisier (expected, slope...)

Extrapolations stable and give exponent 1/v=1.0001(7)

Other exponents can also be extracted

- by analyzing other quantities at the crossing points

<u>Warning:</u> finite-size extrapolations of order parameters are not reliable close to critical points!

Cross-over behaviors make extrapolations impossible when the order parameter (or a gap) is less than some L_{max} dependent value

