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Lecture outline

- 2D Heisenberg antiferromagnets, order and criticality
- 3D dimerized models and TICuCls

- Crossing-point methods for critical points
- formal analysis of scaling function
- tests on 2D Ising model

- Pitfalls in order-parameter extrapolations




Classical and quantum phase transitions

Classical (thermal) phase transition

- Fluctuations regulated by temperature T>0
Quantum (ground state, T=0) phase transition

- Fluctuations regulated by parameter g in Hamiltonian
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In both cases phase transitions can be
- first-order (discontinuous): finite correlation length € as g—gc org—gc
- continuous: correlation length diverges, §~|g-gc|™ or §~|T-T¢|V

There are many similarities between classical and quantum transitions
- and also important differences

We will discuss continuous phase transitions




Finite-size scaling and extrapolations

Monte Carlo simulations are done on finite lattices
- typically periodic boundary conditions

We have to analyze the size dependence of computed
quantities and extract the behavior in the thermodynamic limit
- using input from theoretical expectations as much as possible

Example: 2D Ising model
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Long-range order in 2D S=1/2 Heisenberg antiferromagnet
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T=0 Néel-paramagnetic quantum phase transition
Example: Dimerized S=1/2 Heisenberg models

e every spin belongs to a dimer (strongly-coupled pair)

e many possibilities, e.g., bilayer, dimerized single layer

strong interactions

g=J5/J1 | mem Weak interactions
2

Slnglet formation on strong bonds = Neel disordered transition
Ground state (T—O) phases

A = spin gap
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= 3D classical Heisenberg (O3) universality class
- QMC confirmed




SSE simulations of the loss of order P N W S—

Single-layer columnar coupled dimers - oo o
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T low enough to give the ground state §=lt1 ,

- T = a/lL, a=2-4 (a may have to increase with size) T_Tjj J,?_?

005

A linear behavior on 1/L is expected throughout the ordered phase
- becomes more difficult to see as the critical point is approached

Power-law form <ms2> ~ 1/L'™, n=0.03, expected at gc
- we will discuss extraction of critical points later

Experimental realization: TICuCls (a 3D coupled-dimer system)




nature
physics ARTICLES TICuCl;

PUBLISHED ONLINE: 6 APRIL 2014 | DOI: 10.1038/NPHYS2902

Quantum and classical criticality in a dimerized 3D Network of dimers

quantum antiferromagnet - couplings can be
changed by pressure

P. Merchant!, B. Normand?, K. W. Kramer3, M. Boehm?, D. F. McMorrow' and Ch. Rilegg">®*
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Universality of the Neel temperature in 3D dimerized systems?
[S. Jin, AWS, PRB2012]

Determine the Neel ordering temperature Tn and the T=0 ordered
moment ms for 3 different dimerization patterns
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Couplings vs pressure not known experimentally
- plot Tn vs ms to avoid this issue and study universality

- but how to normalize Tn?
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T* normalization is in principle accessible experimentally
- some experimental susc. results available

- neutron data analyzed with this normalization =~ Merchantetal (2014) o
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Universality is not a feature of quantum-criticality

- extends far from the quantum critical point

- linear behavior is expected from semiclassical theory
(decoupling of quantum and thermal fluctuations)

- deviations show coupling of quantum and thermal fluctuations

Same features observed in models and experiment
- experimental slope about 25% lower if g-factor 2 assumed
(what exactly is the g-factor?)
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Logarithmic corrections [YQ Qin, B. Normand, AWS, ZY Meng, arXiv:1506:0607]

The quantum-critical (T=0) point corresponds to d=3+1=4
- the upper critical dimension of the O(N) transition

Mean-field behavior with log corrections expected
- can the logs be detected (numerically and experimentally)?

SSE Simulations close to the critical point (double cube)
- T = 0 (T=1/2L) results for N=L3 spins with L up to 40 (128000 spins)
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determined first
(curve-crossing method)

Extrapolations of ms close
to gc point are challenging:
- use polynomials without
linear term (expected)
- check dependence
on order of polynomial
and L-range used
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When is a fit good? Using the criterion:

2 2 2
X - _X 1 <3
doft nr — Ny nr — Ny

Use data for up to size L, exclude small sizes until criterion satisfied
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The procedure is very stable sufficiently far away from gc




When is a fit good? Using the criterion:

2 2
X - _X 1 <3 :
doft nr — Ny nr — Ny
Use data for up to size L, exclude small sizes until criterion satisfied
g. ~ 4.837
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The procedure becomes increasingly sensitive to the range of points
as L increases, and some effects of order P as well (we use P=4).
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The log corrections to the mean-field behavior can be seen
- expected form (RG calculations: Zinn-Justin, Kenna,...)

®ln(lg — gl/0))?  B=1/2, B=3/11

mS(g) — CL‘g — Yc

| — fitted with Eq. (24)
| — square-root fit
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Critical points: Finite-size scaling
The correlation length diverges at the critical point
o=T—-T. or d=g—¢ge, &E(0)xd "
A singular quantity A exhibits finite-size scaling according to
A(S) o 6" — A(6, L) oc L™/ f(§LY/")
Commonly used in “data collapse” of simulation data
Example: susceptibility of the 2D Ising model: X = (<m2> — <\m\>2)/ T
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When Tc and/or exponents not known, use them as parameters
- to obtain “best” data collapse

Not very reliable, need more systematic approach
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Crossing-point analysis [S. Hui, W. Guo, AWS, unpublished manuscript]

Aim: Completely systematic and unbiased method to extract
the location of a critical point and the critical exponents

Starting point: Scaling function known from RG
A6, L) = L™V (LMY M\ L™9, Ay L7%2, - .)

K = critical exponent corresponding to A: A ~ oX
v = correlation-length exponent; € ~ &6V

0 = distance to the critical point (relevant field)
Ai = irrelevant fields, wiv1 = wi >0

We only keep the leading irrelevant variable, wi=w (and leave out A)
Alg, L) = L™™" f(6L'", L™%)

The scaling function f can be Taylor expanded:
A6, L) = L™""(a +bS LYY 4 cL™ + ...)

Crossing-point analysis: Consider two system sizes
Li =L, Lo =rL, r=constant (e.qg., r=2)

Study points 6*(L) such that A(6*,L1)=A(6*,L2)

17



Large-L crossing point from Taylor expansion:

—K/V

a 1—r 1, cl=r
- pr=R)/v —1 br-r)/v _ ]
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K=0 (dimensionless quantity A) is a special case
- faster convergence to critical point:

g(L) — g. = 6" x dL™V"

If the exponent k/v is known, LXVA can be used and is dimensionless
- some quantities are explicitly dimensionless (Binder ratio,...)

A*(L) = A(6*, L) = L™""(a+bL ™ + ...

With a set of points g*(L), one can use the known power-law
form to extrapolate to g¢, and a, with 1/v and w as fitting parameters
- works well for gc¢, exponents often “effective”, slowly changing with L

One can derive a better expression for extrapolating v directly
from the crossing points
- using dimensionless quantity Q hereafter (k=0)

18



Taylor expansion of the scaling function:

Q((S, L) — Qg + &15L1/V -+ a252L2/’/ -+ blL_w -+ C15L1/V_w + ...

Define the slope (derivative)
dC)(o, L dC)(o, L
8(5) _ Q( ) ) — Q( ) )
do dg
The log-slope at the critical point

In|s(0)] = a+ %ln(L) + 0L+ ...

This is a well-known way to extract the exponent v
- find the critical point first

- plot log-slope versus In(L), try to extract its slope 1/v for large L
- scaling corrections make it non-trivial

New proposal: Use the two slopes at the crossing point
s(6%,Ly) = a1 LYY + LY + apdLY" ™ + ... (n=1,2)

In[s(6*, rL)| — In[s(6*, L)] = %ln(r) N

Much easier to fit and extrapolate for 1/v and don’t need g first !

— CL1L1/V + ClLl/V_w + a25L2/” -+
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We need a very fine grid of points close to T; (+interpolate)
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Note that crossing points are correlated

- use ~20-30 points

- use polynomials
for interpolation

- bootstrap sampling
to compute stat. errors
of quantities at the
crossing points

- same system size can appear in two different (L1,L2) pairs
- should use covariance matrix in goodness of fit
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good data
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Fit with Lmin=12 gave
T.=2.2691855(5)

- correct value is
Tc=2.2691853...

Some effects of higher-
order correction seen In
data (wiggles)

- did not affect T¢
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Correlation-length exponent:
- data are much noisier (expected, slope...)
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Extrapolations stable and give exponent 1/v=1.0001(7)

Other exponents can also be extracted
- by analyzing other quantities at the crossing points




Warning: finite-size extrapolations of order parameters
are not reliable close to critical points!

Cross-over behaviors make extrapolations impossible when the
order parameter (or a gap) is less than some Lmnax dependent value

Example: VBS order parameter
of the J-Q model at J=0
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Locate phase transitions first
- scaling behavior in L
- use Binder-cumulant crossings etc "’ 10 100
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