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Ground State Projector QMC in the
valence-bond basis

Anders. Sandvik, Boston University

Outline:

¢ The valence-bond basis

e Projector QMC with valence bonds
e Amplitude-product states

¢ J-Q chain: 1D valence-bond solid
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Common bases for quantum spin systems
Lattice of S=1/2 spins, e.g., Heisenberg antiferromagnet

H = JZS S _JZ 5757 + (S8, +575)/2]

The most common baS|s is that of ‘up’ and ‘down’ spins
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One can also use eigenstates of two or more spins
e dimer singlet-triplet basis
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The hamiltonian is more complicated in this basis
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The valence bond basis for S=1/2 spins

Valence-bonds between sublattice A, B sites (i,7) = (| 1:1;) — | 1:1;))/v2

Basis states; singlet products
N/2

Vo) = [ Grerdrs), 7=1,...(N/2)!

b=1

The valence bond basis is overcomplete and non-orthogonal

* expansion of arbitrary singlet state is not unique

W) = Z [l Vi) (all f- positive for non-frustrated system)

All valence bond states overlap with each other

A
B

Vi|Vy) = oNo—=N/2° N_ = number of loops in overlap graph

Spin correlations from loop structure

4
O (i) in different loops)

<‘/l‘§7, ' gj’Vﬁ - { §(_1)5Ui—33j+y7;—yj (i,j in same loop)

]

(Vi|V::)
L

More complicated matrix elements
(e.g., dimer correlations) are also
related to the loop structure

K.S.D. Beach and A.W.S.,
Nucl. Phys. B 750, 142 (20006)
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Projector Monte Carlo in the valence-bond basis
Liang, 1991; Sorella et al. (1998); AWS, Phys. Rev. Lett 95, 207203 (2005)

(-H)" projects out the ground state from an arbitrary state

(—H)"|¥) = (—H)" ZCz’W — co(—Fp)"[0)

S=1/2 Heisenberg model
H=) Si-Sj=-) Hy, Hj=(3-25"5))
(2,7) (2,7)

Project with string of bond operators

Z H Hip)ip)|¥) — 7]0) (r = irrelevant) SRR o
{Hq;}p=1 7 &) \
Action of bond operators m (c,b) ‘{(c%
Hapl...(a,b)...(c,d)...) = |...(a,b)...(c,d)...) 2 g 8 i

1

H|..(a,b)...(¢,d)...) = S ]...(c,)...(a, d)...) (i,4) = (| Taly) — | LaTy))/ V2

Simple reconfiguration of bonds (or no change; diagonal)
® N0 minus signs for A—B bond ‘direction’ convetion
® sign problem does appear for frustrated systems
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Sampling the wave function
Simplified notation for operator strings

.U
Z HHZ(p)J(p)—ZPk, k=1,...N, ( ( (k( (

6-site chain

{Hij}p=1 ( (
Simplest trial wave function: a basis state |V/.) ( (
PilVy) = Wi Vi (k) ’( (I (
The weight W of a path is given by the number of € b )
k

off-diagonal operations (‘bond flips’) niip

1Y e Hoplo (@)oo d)o) = | (a,b)...(c, d)..)
W]{r,« — | = N = Ndia T NAip 1
2 Hicl...(a,0)...(¢,d)...) = 5|...(c,b)...(a, d)...)

Note: all paths contribute - no ‘dead’ (VW=0) paths
Sampling: Trivial way: Replace m (m = 2-4) operators at random

) new old
Paccept — <§

Neip —Melip
The state has to be re-propagated with the full operator string
e More efficient updating scheme exists (later....)
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Calculating the energy

Using a state which has equal overlap with all VB basis states
* e.g., the Neel state |V) (N|V,) = (V/2)~N/?

(N|H|0) S (N|HPV,) [
[ —
H acts on the projected state | ( (
* ns = number of bond flips | ( (
* nd = number of diagonal operations | ‘ ( ( I (
Ey = —(na+nys/2) H )
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General expectation values: (A) = (0|A|0)
Strings of singlet projectors

P = H Hi, (p)intp), k=1,...,N; (Ny = number of interaction bonds)
p=1
We have to project bra and ket states

D PlVi) = Wi [Vi(k)) — (=Eo)"co|0)
k k

> (VilPr =Y (Vi(g) W — (0]co(—Eo)"

g g

6-spin chain example:
I 2 gk Vil Py APy |Vr)
) | ( (10 w- > <lel1|»P;4 P]:Tv‘;
. > g Wat Wi (Vi(9) ]V (K))
) I | ( ( ( B Z;kmflglmikré/lg(g)’vr(k»
YIYIZ T UCICI

1% —> ¢
Wi Py B Py

(
Monte Carlo sampling
Vr) of operator strings
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Sampling an amplitude-product state

A better trial state leads to faster n convergence

* bond-amplitude product state [Liang, Doucot,Anderson, 1990]
N/2

. —
‘\IJO> — ; bljl h(aj’l“ba y?‘b)‘vk> Yk,b
Update state by reconfiguring two bonds : ®-

If reconfiguration accepted ) I ( ‘ ( (
* calculate change in projection weight - ) ) ) ' (

* used for final accept/reject prob. ) ) ) ( ( (
S. Liang [PRB 42, 6555 (1990)] ) ) 7 ( ( ( | (
* used parametrized state amplitudes A

* determined parameters variationally Wil p; g A S Py V)
* improved state by projection Z Z
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Variational wave function (2D Heisenberg)

All amplitudes h(x,y) can be optimized
[J. Lou and A.W.S., PRB 2007, AWS and H.-G. Evertz, PRB 2010]

® variational energy error 50% smaller than previously best (<0.1%)

® spin correlations deviate by less than 1% from exact values

e amplitudes decay as ~1/r3
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More efficient ground state QMC algorithm — larger lattices

Loop updates In the valence-bond basis
AWS and H. G. Evertz, PRB 2010

Put the spins back in a way compatible with the valence bonds
(@i bi) = (Tal; — LaT;)/V2

and sample in a combined space of spins and bonds

) T
) (tlee (-

DI

R

(V] —— < *
H H

Loop updates similar to those Iin finite-T methods
(world-line and stochastic series expansion methods)
e good valence-bond trial wave functions can be used
e larger systems accessible

e sample spins, but measure using valence bonds (as before)
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 1V3)

(graphs by Ying Tang)

(VslVa)

power m should be large enough to
obtain ground state
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use bit operation to “flip”’ operators
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Convergence 32 x 32 Heisenberg
Trial state expanded in H-eigenstates o1+ %, -

Vo) = ch\’@ 0.12_
Projected state after m-th power ) .
Ym) = H™ o) = Y ey |n)

n 0.08

Expectation value

cr B\ 0.667 —ap 2 i
(A}, = (0| A|0) + 2(1]A|0) = ( 1> +... | Hl;:g
Co E() oo p=4

-0.668 [~

> e—e optimized (1)
m A N e—e optimized (2)
(A)m = (0[A]0) + ¢ xexp | —
N leg| 0.669¢
60 — EO/M7 A — E]- D EO -0.670 . I . L . L L l
_ 0 1 2 3 4
Conclusion: m/N

e Mm/N >> eo/AA

e in valence-bond basis A is the singlet-singlet gap

e trial state also can have fixed momentum k=0 (e.g., ampl. product state)
- only k=0 excited states (gap)

Tuesday, January 31, 12 13



Frustrated systems

Consider the full valence-bond basis, including
 normal bonds, connecting A,B spins (sublattices)

e frustrated bonds, connecting A,A or B,B
For a non-frustrated system
e projection eliminates frustarted bonds

(rustrated bonds Nnorm ll bonds

For a frustrated system
e frustrated bonds remain and cause a sign problem
o frustrated bonds can be eliminated using over-completeness

a b e d o a b ¢ d a b C d

In a simulation, one of the branches can be randomly chosen
 but there Is a sign problem
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VBS states from multi-spin interactions
Sandvik, Phys. Rev. Lett. 98, 227202 (2007)

The Heisenberg interaction is equivalent to a singlet-projector
1 — —

C;j=31-38,-85,

4
t
e we can construct models with products of singlet projectors

¢ no frustration in the conventional sense (QMC can be used)
e correlated singlet projection reduces antiferromagnetic order/correlations

J 0>

P i ok mcludln.g all
translations

J O3 _- H is_ translationally

— ' ' invariant

i J i J kI mn

H=-J) Ci—Qs ) CiyCy
(27) (¢jkl)

The J-Q chains have the same critical-VBS transition
as the Ji.J2 Heisenberg chain!
- Heisenberg SSE and projector codes can be easily adapted to Q-terms
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S=1/2 Heisenberg chain with frustrated interactions (J1-J2 chain)

Different types of ground states, depending on the ratio g=J2/J1 (both >0)

* Antiferromagnetic “quasi order” (critical state) for g<0.2411...
- exact solution - Bethe Ansatz - for J2=0
- bosonization (continuum field theory) approach gives further insights
- spin-spin correlations decay as 1/r

- In2(r /7o)

C(r) = {Si - Sitr) ~ (=1)

T
- gapless spin excitations (“spinons”, not spin waves!)

* VBS order for g>0.2411... the ground state is doubly-degenerate state
- gap to spin excitations; exponentially decaying spin correlations

O(r) = (S; - Sir) ~ (~1)e /8
- singlet-product state is exact for g=1/2 (Majumdar-Gosh point)

—alllle—elllle—elllle—ellle—ellle—e critical VBS
—0 —->

R A e - 0 0.241... J
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VBS state in J-Q chains v. Tang and AWS, Phys. Rev. Lett. 107, 157201 (2011)

(more in tutorial) S. Sanyal, A. Banerjee, and K. Damle, arXiv:1107.1493

J Q> —eallle—elllle—allle—ellle—@llle—
—~ @S - - - G aEEEs -

[ Jj i j kI .

critical VBS
—O0 >

J O3 0 (Q/J)e Q/J
—— S - - D GRS GRS -

i j i J kI mn

“dimer” operator: B, = §z- : §¢+1
In a symmetry-broken VBS: (B;) = a + §(—1)"

In a finite system in which the symmetry is not broken: <Bi>=0
- detect VBS with dimer correlation function
| N
D(r) = Z;<BiBi—|—r>
1=
This is a 4-spin correlation function

e can be evaluated using the transition graphs (1- and 2-loop contributions)
e expression in the afternoon tutorial
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http://arxiv.org/find/cond-mat/1/au:+Sanyal_S/0/1/0/all/0/1
http://arxiv.org/find/cond-mat/1/au:+Sanyal_S/0/1/0/all/0/1
http://arxiv.org/find/cond-mat/1/au:+Banerjee_A/0/1/0/all/0/1
http://arxiv.org/find/cond-mat/1/au:+Banerjee_A/0/1/0/all/0/1
http://arxiv.org/find/cond-mat/1/au:+Damle_K/0/1/0/all/0/1
http://arxiv.org/find/cond-mat/1/au:+Damle_K/0/1/0/all/0/1
http://arxiv.org/abs/1107.1493
http://arxiv.org/abs/1107.1493

Animation of the projected states
- transition graph

J =0

Animations by Ying Tang
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7/Q = 0.5
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J/Q = (J/Q)c = 6




Estimator for the singlet-triplet gap

The original VB basis spans the singlet space

e with one triplet bond, one can obtain the lowest triplet state
> P

(i,5) = (I Taly) — | LiT;))/ V2
i, 5] = (| Taly) + | Lil;))/ V2

Under propagation, the triplet flips like a singlet

* but a diagonal operation on a triplet kills it
1
Hpc|...]a,b]...(c,d)...) = §|...(c, b)...|a,d]...)

Hgpl...la,b]...(c,d)...) =0

The initial triplet can be placed anywhere
* N/2 different triplet propagations

* Those that survive contribute to E|

* Partial error cancellations in the gap

A=FE, — E

(1

The ability to generate singlet and triplet states
in the same run is a unique feature of VB projector Monte Carlo
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Singlet-triplet matrix elements

It is also possible to project one singlet and one triplet
e matrix elements between the lowest singlet and triplet states
* e.g., magnon weight in dynamic structure factor (7'(¢)|5;|5(0))

) CIE1CC
) CIV ]
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