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Tutorials
Programs and instructions available at

http://physics.bu.edu/~sandvik/trieste12/

Quantum Monte Carlo Methods at Work for Novel Phases of Matter
Trieste, Italy, Jan 23 - Feb 3, 2012

Instructor: Ying Tang, Boston University

Day 1
SSE code for 1D and 2D S=1/2 Heisenberg model
• become familiar with programs and how to use them
• do some runs and test finite-size scaling behavior
• make a small addition to the program and test it

Day 2
Ground state projector Monte Carlo code for
1D and 2D S=1/2 Heisenberg model and 1D J-Q chain
• become familiar with programs and how to use them
• check convergence and compare with SSE (Heisenberg)
• Investigate valence-bond-solid in J-Q chain
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Introduction: Why study quantum spin systems?
Solid-state physics
• localized electronic spins in Mott insulators (e.g., high-Tc cuprates)
• large variety of lattices, interactions, physical properties
• search for “exotic” quantum states in such systems (e.g., spin liquid)
Ultracold atoms (in optical lattices)
• some spin hamiltonians can be engineered (ongoing efforts)
• some bosonic systems very similar to spins (e.g., “hard-core” bosons)
Quantum information theory / quantum computing
• possible physical realizations of quantum computers using interacting spins
• many concepts developed using spins (e.g., entanglement)

Generic quantum many-body physics
• testing grounds for collective quantum behavior, quantum phase transitions
• identify “Ising models” of quantum many-body physics

Particle physics / field theory / quantum gravity
• some quantum-spin phenomena have parallels in high-energy physics

• e.g., spinon confinement-deconfinement transition
• spin foams, string nets: models to describe “emergence” of space-time and 

elementary particles
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U>>t : use degenerate perturbation theory (e.g., Schiff)

Mott insulators; origins of the Heisenberg antiferromagnet
Hubbard model (half-filling; one electron per site)

Exchange mechanism


Treat Ht as a perturbation to the ground states of HU
• U=∞, one particle on every site; 2N degenerate spin states
• degeneracy lifted in order t2/U  - 1 doubly-occupied site, d=1
• leads to the Heisenberg model
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Outline
• Path integrals in quantum statistical mechanics
• The series-expansion representation
• Stochastic Series Expansion (SSE) algorithm for the Heisenberg model
• The valence-bond basis for S=1/2 systems
• Ground-state projector algorithm with valence bonds

Anders W. Sandvik, Boston University

Stochastic Series Expansion Algorithms
for Quantum Spin Systems

Reference: AIP Conf. Proc. 1297, 135 (2010); arXiv:1101.3281
Detailed lecture notes on quantum spin models and methods

Quantum Monte Carlo Methods at Work for Novel Phases of Matter
Trieste, Italy, Jan 23 - Feb 3, 2012
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Path integrals in quantum statistical mechanics

⇤A⌅ =
1
Z

Tr{Ae��H}

We want to compute a thermal expectation value

where β=1/T (and possibly T→0). How to deal with the exponential operator?

Z =
�

�0

�

�1

· · ·
�

�L�1

⇥�0|e��� H |�L�1⇤ · · · ⇥�2|e��� H |�1⇤⇥�1|e��� H |�0⇤

Choose a basis and insert complete sets of states;

Z = Tr{e��H} = Tr

�
L⇤

l=1

e��� H

⇥
“Time slicing” of the partition function

�� = �/L

Z ⇤
�

{�}

⌅�0|1��⇥H|�L�1⇧ · · · ⌅�2|1��⇥H|�1⇧⌅�1|1��⇥H|�0⇧

Use approximation for imaginary time evolution operator. Simplest way

Leads to error           . Limit                 can be taken �� � 0� ��
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Example: hard-core bosons

H = K = �
�

�i,j⇥

Kij = �
�

�i,j⇥

(a†jai + a†iaj) ni = a†iai � {0, 1}

Equivalent to S=1/2 XY model 
H = �2

�

⇥i,j⇤

(Sx
i Sx

j + Sy
i Sy

j ) = �
�

⇥i,j⇤

(S+
i S�

j + S�
i S+

j ), Sz = ±1
2
⇤ ni = 0, 1

world line moves for 
Monte Carlo sampling

“World line” representation of

Z =
�

{�}

W ({�}), W ({�}) = �nK
⇥ nK = number of “jumps”

Z ⇤
�

{�}

⌅�0|1��⇥H|�L�1⇧ · · · ⌅�2|1��⇥H|�1⇧⌅�1|1��⇥H|�0⇧
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⇥A⇤ =
1
Z

�

{�}

⇥�0|e��� |�L�1⇤ · · · ⇥�2|e��� H |�1⇤⇥�1|e��� HA|�0⇤

Expectation values

⇧A⌃ =

�
{�} A({�})W ({�})
�

{�} W ({�}) �⇥ ⇧A⌃ = ⇧A({�})⌃W

We want to write this in a form suitable for MC importance sampling

W ({�}) = weight
A({�}) = estimatorFor any quantity diagonal in the 

occupation numbers (spin z):

A({�}) = A(�n) or A({�}) =
1
L

L�1�

l=0

A(�l)

There should be of the order βN “jumps” (regardless of approximation used)

Kinetic energy (here full energy). Use

Ke��� K � K
1
0
1

Kij({�}) =
⇧�1|Kij |�0⌃

⇧�1|1 ���K|�0⌃
⇥ {0,

1
��

}

Average over all slices → count number of kinetic jumps

⇤K⌅ ⇥ N � ⇤nK⌅ ⇥ �N⇥Kij⇤ =
⇥nij⇤

�
, ⇥K⇤ = �⇥nK⇤

�
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Including interactions
For any diagonal interaction V (Trotter, or split-operator, approximation)

e��� H = e��� Ke��� V + O(�2
� ) ⇥ ⌅�l+1|e��� H |�l⇧ � e��� Vl⌅�l+1|e��� K |�l⇧

Product over all times slices →

W ({�}) = �nK
� exp

�
���

L�1⇤

l=0

Vl

⇥

local updates (problem when Δτ→0?)
•consider probability of inserting/removing 

events within a time window

The continuous time limit
Limit Δτ→0: number of kinetic jumps remains finite, store events only

Special methods (loop
and worm updates)
developed for efficient
sampling of the paths
in the continuum

⇐ Evertz, Lana, Marcu (1993), Prokofev et al (1996)
     Beard & Wiese (1996)

Pacc = min
⇤
�2

�exp
�
�Vnew

Vold

⇥
, 1

⌅
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e��H =
⇥�

n=0

(��)n

n!
Hn

Similar to the path integral;                          and weight factor outside   1���H ⇥ H

Z =
⇥�

n=0

(�⇥)n

n!

�

{�}n

⇤�0|H|�n�1⌅ · · · ⇤�2|H|�1⌅⇤�1|H|�0⌅

Series expansion representation

Start from the Taylor expansion

For hard-core bosons the (allowed) path weight is W ({�}n) = ⇥n/n!

C = ⇥n2⇤ � ⇥n⇤2 � ⇥n⇤

From this follows: narrow n-distribution with ⇥n⇤ � N�, ⇥n �
�

N�

(approximation-free
method from the outset)

For any model, the energy is

one more “slice” to sum over here

relabel terms to “get rid of” extra slice

E =
1
Z

⇥�

n=0

(�⇥)n

n!

�

{�}n+1

⇤�0|H|�n⌅ · · · ⇤�2|H|�1⌅⇤�1|H|�0⌅

= � 1
Z

⇥�

n=1

(�⇥)n

n!
n

⇥

�

{�}n

⇤�0|H|�n�1⌅ · · · ⇤�2|H|�1⌅⇤�1|H|�0⌅ =
⇤n⌅
⇥

this is the operator we “measure”

�
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Fixed-length scheme
• n fluctuating → varying size of the configurations
• the expansion can be truncated at some nmax=L (exponentially small error)
• cutt-off at n=L, fill in operator string with unit operators H0=I

Here n is the number of Hi, i>0  instances in the sequence of L operators

Z =
�

{�}L

�

{Hi}

(�⇥)n(L � n)!
L!

⇤�0|Hi(L)|�L�1⌅ · · · ⇤�2|Hi(2)|�1⌅⇤�1|Hi(1)|�0⌅

�
L

n

⇥�1

=
n!(L� n)!

L!

- conisider all possible locations in the sequence
- overcounting of actual (original) strings, correct by combinatorial factor:

=�
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Stochastic Series expansion (SSE): S=1/2 Heisenberg model
Write H as a bond sum for arbitrary lattice

H = J
Nb�

b=1

Si(b) · Sj(b),

H1,b = 1
4 � Sz

i(b)S
z
j(b),

H2,b = 1
2 (S+

i(b)S
�
j(b) + S�i(b)S

+
j(b)).

Diagonal (1) and off-diagonal (2) bond operators

H = �J
Nb�

b=1

(H1,b �H2,b) +
JNb

4

⇤�i(b)⇥j(b) |H1,b| �i(b)⇥j(b)⌅ = 1
2 ⇤⇥i(b)�j(b) |H2,b| �i(b)⇥j(b)⌅ = 1

2

⇤⇥i(b)�j(b) |H1,b| ⇥i(b)�j(b)⌅ = 1
2 ⇤�i(b)⇥j(b) |H2,b| ⇥i(b)�j(b)⌅ = 1

2

Four non-zero matrix elements

2D square lattice
bond and site labels

Z =
⌅

�

⇥⌅

n=0

(�1)n2
⇥n

n!

⌅

Sn

⇥
�

�����

n�1⇧

p=0

Ha(p),b(p)

����� �

⇤Partition function

Sn = [a(0), b(0)], [a(1), b(1)], . . . , [a(n� 1), b(n� 1)]Index sequence:

n2 = number of a(i)=2
(off-diagonal operators)
in the sequence
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Propagated states: |�(p)⇥ �
p�1�

i=0

Ha(i),b(i) |�⇥

For fixed-length scheme

W (�, SL) =
�

⇥

2

⇥n (L� n)!
L!

In a program:

s(p) = operator-index string
• s(p) = 2*b(p) + a(p)-1
• diagonal; s(p) = even
• off-diagonal; s(p) = off

σ(i) = spin state, i=1,...,N
• only one has to be stored

W>0 (n2 even) for bipartite lattice 
Frustration leads to sign problem

SSE effectively provides a discrete representation of the time continuum 
• computational advantage; only integer operations in sampling

Z =
⌅

�

⌅

SL

(�1)n2
⇥n(L� n)!

L!

⇥
�

�����

L�1⇧

p=0

Ha(p),b(p)

����� �

⇤
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Linked vertex storage

0 1

2 3

0 1

2 3

0 1

2 3

0 1

2 3

The “legs” of a  vertex represents 
the spin states before (below) and 
after (above) an operator has acted

X( ) = vertex list
• operator at p→X(v)
   v=4p+l, l=0,1,2,3
• links to next and
   previous leg

Spin states between operations are redundant; represented by links
• network of linked vertices will be used for loop updates of vertices/operators
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Monte Carlo sampling scheme

Change the configuration; (�, SL)� (��, S�
L)

Attempt at p=0,...,L-1. Need to know |α(p)>
• generate by flipping spins when off-diagonal operator

Diagonal update: [0, 0]p � [1, b]p

W (�, SL) =
�

⇥

2

⇥n (L� n)!
L!

Paccept([0, 0]⇥ [1, b]) = min
�

�Nb

2(L� n)
, 1

⇥

Paccept([1, b]⇥ [0, 0]) = min
�
2(L� n + 1)

�Nb
, 1

⇥

Acceptance probabilities

W (a = 0)
W (a = 1)

=
L� n + 1

�/2
W (a = 1)
W (a = 0)

=
�/2

L� n

n is the current power
• n → n+1 (a=0 → a=1)
• n → n-1  (a=1 → a=0)

Pselect(a = 0� a = 1) = 1/Nb, (b ⇥ {1, . . . , Nb})
Pselect(a = 1� a = 0) = 1

Paccept = min
�
W (��, SL)
W (�, SL)

Pselect(��, S�
L � �, SL)

Pselect(�, SL � ��, S�
L)

, 1
⇥
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do p = 0 to L � 1
if (s(p) = 0) then

b = random[1, . . . , Nb]
if �(i(b)) = �(j(b)) cycle

if (random[0 � 1] < P
insert

(n)) then s(p) = 2b; n = n + 1 endif

elseif (mod[s(p), 2] = 0) then

if (random[0 � 1] < P
remove

(n)) then s(p) = 0; n = n � 1 endif

else

b = s(p)/2; �(i(b)) = ��(i(b)); �(j(b)) = ��(j(b))
endif

enddo

Pseudocode: Sweep of diagonal updates

• To insert operator, bond b generated at random among 1,...,Nb
   - can be done only if connected spins i(b),j(b) are anti-parallel
   - if so, do it with probability Pinsert(n)
• Existing diagonal operator can always be removed
   - do it with probability Premove(n)
• If off-diagonal operator, advance the state
   - extract bond b, flip spins at i(b),j(b)
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Off-diagonal updates

Operator-loop 
update
• Many spins  

and operators 
can be 
changed 
simultaneously

• can change 
winding 
numbers

Local update
Change the type
of two operators
• constraints
• inefficient
• cannot change 

winding 
numbers
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do v0 = 0 to 4L� 1 step 2
if (X(v0) < 0) cycle
v = v0
if (random[0� 1] < 1

2 ) then
traverse the loop; for all v in loop, set X(v) = �1

else
traverse the loop; for all v in loop, set X(v) = �2
flip the operators in the loop

endif
enddo

 constructing all loops, flip probability 1/2

 construct and flip a loop

v = v0
do

X(v) = �2
p = v/4; s(p) = flipbit(s(p), 0)
v� = flipbit(v, 0)
v = X(v�); X(v�) = �2
if (v = v0) exit

enddo

Pseudocode: Sweep of loop updates

• by flipping bit 0 of s(p), 
the operator changes 
from diagonal to off-
diagonal, or vise versa
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We also have to modify the stored spin state after the loop update
• we can use the information in Vfirst() and X() to determine spins to be flipped
• spins with no operators, Vfirst(i)=−1, flipped with probability 1/2

do i = 1 to N
v = Vfirst(i)
if (v = �1) then

if (random[0-1]< 1/2) �(i) = ��(i)
else

if (X(v) = �2) �(i) = ��(i)
endif

enddo

v=Vfirst(i) is the location of the first vertex leg on site i
• flip the spin if X(v)=−2
• (do not flip it if X(v)=−1)
• no operation on i if vfirst(i)=−1; then it is flipped with probability 1/2
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Vfirst(:) = �1; Vlast(:) = �1
do p = 0 to L� 1

if (s(p) = 0) cycle
v0 = 4p; b = s(p)/2; s1 = i(b); s2 = j(b)
v1 = Vlast(s1); v2 = Vlast(s2)
if (v1 ⇥= �1) then X(v1) = v0; X(v0) = v1 else Vfirst(s1) = v0 endif
if (v2 ⇥= �1) then X(v2) = v0; X(v0) = v2 else Vfirst(s2) = v0 + 1 endif
Vlast(s1) = v0 + 2; Vlast(s2) = v0 + 3

enddo

Constructing the linked vertex list

creating the last links across the “time” boundary
do i = 1 to N

f = Vfirst(i)
if (f ⇥= �1) then l = Vlast(i); X(f) = l; X(l) = f endif

enddo

Use arrays to keep track of the first and 
last (previous) vertex leg on a given spin
• Vfirst(i) = location v of first leg on site i
• Vlast(i) = location v of last (currently) leg
• these are used to create the links
• initialize all elements to −1

Traverse operator list s(p), p=0,...,L−1
• vertex legs v=4p,4p+1,4p+2,4p+3
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Determination of the cut-off L
• adjust during equilibration
• start with arbitrary (small) n

Keep track of number of operators n
• increase L if n is close to current L
• e.g., L=n+n/3

Example 
•16×16 system, β=16 ⇒
• evolution of L
• n distribution after 
equilibration

• truncation is no 
approximation
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Does it work?
Compare with exact results
• 4×4 exact diagonalization
• Bethe Ansatz; long chains

⇐ Energy for long 1D chains
• SSE results for 106 sweeps
• Bethe Ansatz ground state E/N
• SSE can achieve the ground
   state limit (T→0) 

Susceptibility of the 4×4 lattice ⇒
• SSE results from 1010 sweeps
• improved estimator gives smaller
   error bars at high T (where the
   number of loops is larger)
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