
The spin stiffness at criticality

ρs ∼ L−(d+z−2)

For a quantum-critical point with dynamic exponent z:

d=2, z=1 → plot Lρs vs g for different L
• curves should cross (size independence) at gc

• x- and y-stiffness different in this model

Finite-size scaling in agreement with z=1, gc≈1.9094
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Valence-bond basis and resonating valence-bond states
As an alternative to single-spin ↑ and ↓ states, we can use singlets and triplet pairs

static dimers
(complete basis)

arbitrary singlets
(overcomplete in
singlet subspace)

one triplet in the “singlet 
soup” (overcomplete
in triplet subspace)

In the valence-bond basis (b,c) one normally includes pairs connecting
two groups of spins - sublattices A and B (bipartite system, no frustration)

(a, b) = (↑a↓b − ↓a↑b)/
√

2 a ∈ A, b ∈ B

arrows indicate the
order of the spins in 
the singlet definition

Superpositions, “resonating valence-bond” (RVB) states

|Ψs〉 =
∑

α

fα|(aα
1 , bα

1 ) · · · (aα
N/2, b

α
N/2)〉 =

∑

α

fα|Vα〉

Coefficients fα>0 for bipartite (unfrustrated) Heisenberg systems
• corresponds to Marshallʼs sign rule: sign=(-1)N↑(A), N↑(a) = # of spin-↑ on sublattice A
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Calculating with valence-bond states
All valence-bond basis states are non-orthogonal
• the overlaps are obtained using transposition graphs (loops)

〈Vβ | 〈Vβ |Vα〉 |Vα〉

Many matrix elements can also be expressed using the loops, e.g.,

〈Vβ |Si · Sj |Vα〉
〈Vβ |Vα〉 =

{
0, for λi #= λj
3
4φij , for λi = λj

λi is the loop index (each loop has a label), staggered phase factor

φij =
{
−1, for i, j on different sublattices
+1, for i, j on the same sublattice

More complicated cases derived in: K.S.D. Beach and  A.W.S., Nucl. Phys. B 750, 142 (2006)

Each loop has two compatible spin states → 〈Vβ |Vα〉 = 2Nloop−N/2

This replaces the standard overlap for an orthogonal basis; 〈β|α〉 = δαβ
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Solution of the frustrated chain at the Majumdar-Ghosh point

H =
N∑

i=1

[
J1Si · Si+1 + J2Si · Si+2

]

We will show that these are eigenstates when J2/J1=1/2

Act with one “segment” of the terms 
of H on a VB state (J1=1, J2=g)  :

Eigenstate for g=1/2; one can also show that itʼs the lowest eigenstate (more difficult)

H = −
N∑

i=1

(Ci,i+1 + gCi,i+2) + N
1 + g

4
,

Write H in terms of singlet projectors

Cij = −(Si · Sj − 1
4 )

|ΨA〉 = |(1, 2)(3, 4)(5, 6) · · · 〉
|ΨB〉 = |(N, 1)(2, 3)(4, 5) · · · 〉

Useful valence-bond results 
(easy to prove, just write as ↑ and ↓ spins)
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2D Heisenberg results
• h(r) = 1/r3

• good ground state properties
• error in E < 0.1%,  error in ms < 1%

Amplitude-product states
Good variational ground state for bipartite models can be constructed

|Ψs〉 =
∑

α

fα|(aα
1 , bα

1 ) · · · (aα
N/2, b

α
N/2)〉 =

∑

α

fα|Vα〉

Variational QMC method
Given h(r), one can study the state using 
Monte Carlo sampling of bonds
• elementary two-bond moves

• Metroplois accept/reject
• loop updates when spins are included

• more efficient

fα =
∏

r

h(r)nα(r),

Let the wave-function coefficients be products of “amplitudes” (real positive numbers)

r is the bond length (n(r) = number of length r bonds)
The amplitudes h(r) are adjustable parameters
• use some optimization method to minimize E=<H>

Liang, Doucot, Anderson (PRL, 1990) 
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(-H)n projects out the ground state from an arbitrary state

Action of bond operators

H =
∑

〈i,j〉

!Si · !Sj = −
∑

〈i,j〉

Hij , Hij = (1
4 − !Si · !Sj)

S=1/2 Heisenberg model

Project with string of bond operators     

Hab|...(a, b)...(c, d)...〉 = |...(a, b)...(c, d)...〉

Hbc|...(a, b)...(c, d)...〉 =
1
2

|...(c, b)...(a, d)...〉

∑

{Hij}

n∏

p=1

Hi(p)j(p)|Ψ〉 → r|0〉 (r irrelevant)

Simple reconfiguration of bonds (or no change; diagonal)
• no minus signs for A→B bond ‘direction’ convetion 
• sign problem does appear for frustrated systems

A BAB

(a,b)

(a,d)

(c,d)(c,b)

(i, j) = (| ↑i↓j〉 − | ↓i↑j〉)/
√

2

Projector Monte Carlo in the valence-bond basis
Liang, 1991; AWS, Phys. Rev. Lett 95, 207203 (2005)

(−H)n|Ψ〉 = (−H)n
∑

i

ci|i〉 → c0(−E0)n|0〉
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Expectation values: 〈A〉 = 〈0|A|0〉
Strings of singlet projectors

Pk =
n∏

p=1

Hik(p)jk(p), k = 1, . . . , Nn
b (Nb = number of interaction bonds)

We have to project bra and ket states
∑

k

Pk|Vr〉 =
∑

k

Wkr|Vr(k)〉 → (−E0)nc0|0〉

∑

g

〈Vl|P ∗
g =

∑

g

〈Vl(g)|Wgl → 〈0|c0(−E0)n

|Vr〉〈Vl| A
Monte Carlo sampling 
of operator strings

6-spin chain example:

〈A〉 =
∑

g,k〈Vl|P ∗
g APk|Vr〉∑

g,k〈Vl|P ∗
g Pk|Vr〉

=
∑

g,k WglWkr〈Vl(g)|A|Vr(k)〉
∑

g,k WglWkr〈Vl(g)|Vr(k)〉
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Loop updates in the valence-bond basis
AWS and H. G. Evertz, ArXiv:0807.0682

(ai, bi) = (↑i↓j − ↓i↑j)/
√

2

Put the spins back in a way compatible with the valence bonds

and sample in a combined space of spins and bonds

Loop updates similar to those in finite-T methods
(world-line and stochastic series expansion methods)
• good valence-bond trial wave functions can be used
• larger systems accessible
• sample spins, but measure using the valence bonds

|Ψ〉〈Ψ|

A

More efficient ground state QMC algorithm → larger lattices 
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J-Q model: T=0 results obtained with valence-bond QMC
J. Lou, A.W. Sandvik, N. Kawashima, PRB (2009)

Studies of J-Q2 model and J-Q3 model on L×L lattices with L up to 64 

D2 = 〈D2
x + D2

y〉, Dx =
1
N

N∑

i=1

(−1)xiSi · Si+x̂, Dy =
1
N

N∑

i=1

(−1)yiSi · Si+ŷ

!M =
1
N

∑

i

(−1)xi+yi !SiM2 = 〈 !M · !M〉

Exponents ηs, ηd, and ν from the squared order parameters 

Two different models: J-Q2 and J-Q3

Cij = 1
4 − Si · Sj

H2 = −Q2

∑

〈ijkl〉

CklCij

H3 = −Q3

∑

〈ijklmn〉

CmnCklCij

H1 = −J
∑

〈ij〉

Cij

bond-singlet projector
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Using coupling ratio

q =
Qp

Qp + J
, p = 2, 3

• AF order for q→0
• VBS order for q→1

Finite-size scaling

J −Q2

J −Q3

J-Q2 model; qc=0.961(1)

ηs = 0.35(2)
ηd = 0.20(2)
ν = 0.67(1)

J-Q3 model; qc=0.600(3)

ηs = 0.33(2)
ηd = 0.20(2)
ν = 0.69(2)

Exponents universal (within error bars)
• still higher accuracy desired (in progress)
• there may be log-corrections (see arXiv:1001.4296)
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Joint probability distribution 
P(Dx,Dy) of x and y columnar
VBS order parameters                     

|0〉 =

∑

k

ck|Vk〉

QMC sampled state in the
valence-bond basis

Dx =
〈Vk| 1

N

∑N
i=1(−1)xiSi · Si+x̂|Vp〉

〈Vk|Vp〉

Dy =
〈Vk| 1

N

∑N
i=1(−1)yiSi · Si+ŷ|Vp〉

〈Vk|Vp〉

Columnar or plaquette VBS?

4 peaks expected in VBS phase
• Z4-symmetry unbroken in finite system

critical

Dx Dx

Dy Dy

columnar VBS plaquette VBS
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VBS fluctuations in the theory of deconfined quantum-critical points
➣ plaquette and columnar VBS “degenerate” at criticality
➣ Z4 “lattice perturbation” irrelevant at critical point
    - and in the VBS phase for L<Λ∼ξa, a>1 ❨spinon confinement length❩
➣ emergent U(1) symmetry
➣ ring-shaped distribution expected for L<Λ

Dx Dx

Dy Dy

L=32
J=0

AWS, Phys. Rev. Lett (2007)

No sign of cross-over to Z4 symmetric
order parameter seen in the J-Q2 model
• length Λ > 32
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Order parameter histograms P(Dx,Dy), J-Q3 model

This model has a more robust VBS phase
• can the symmetry cross-over be detected?

D4 =
∫

rdr

∫
dφP (r,φ) cos(4φ)

VBS symmetry cross-over
• Z4-sensitive order parameter

Λ ∼ ξa ∼ q−aν

Finite-size scaling gives U(1)
(deconfinement) length-scale

q = 0.635
(qc ≈ 0.60)

L = 32

q = 0.85

L = 32

L1/aν(q − qc)/qc

α ≈ 1.20± 0.05

J. Lou, A.W. Sandvik, N. Kawashima, PRB (2009)
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