Potential problem:
The normalization constants Nm can become very large (think of Eq™)

Solution:
generate the normalized basis directly
e start with I$o> arbitrary, normalized, and then

1

P1) = ﬁ(HW(ﬁ — ao|po)).
1

_ 1 o - o ‘7m+1>

‘¢m+1> — Nm_|_1 (H’¢m> @m‘¢m> Nm|¢m—1>> — Nm_|_1
The definition of Nm is different, and no bm:

Am = <¢m’H’¢m>
Nm = <7m‘7m>_1/2

Generate lym> first, normalize to get Nm.+
The H-matrix is

<¢m—1 H ¢m> = Np,
(@m+1[H|¢m) = Npia
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Lanczos basis generation in practice

Here: generate the orthogonal basis {¢pm} directly
M
Gm) =D dm(a)la), m=0,...,A
a=1

in a given symmetry block of size M

The coefficients ¢pm(a) are stored as A+1 vectors of size M
* may store only the vectors ¢m-1 and ¢m to generate Ppm+1

* but basis has to be re-generated when computing expectation values
e stabilization by “re-orthogonalization” (later) requires storage of all ¢m

The main computational effort is in acting with the hamiltonian; Hipm>
* implement as a subroutine hoperation(¢,y), where ly>=HIp>
« state normalization implemented as normalize(¢,n)

* ¢ = vector to normalize, n = <¢plp> before normalization
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Pseudocode; Lanczos basis generation

Initial random state

do:=1,M

¢0(i) = random|[0 — 1
enddo
call normalize(¢g, no)

Generate the rest of the states

second state

call hoperation(¢g, ¢1)
ao = (Po|d1); 1 = ¢o — aolP1)

call normalize(¢;,n1)

dom=1,A -1

Am = <¢m |¢m—|—1>

enddo

call hoperation(¢,,, dm11)

Qbm—i—l — Qbm—i—l — am¢m — nmqu—l
call normalize(¢ 41, Mm41)

Note: the H-matrix can be constructed and diagonalized after each step

» follow evolution of energy versus A

* stop based on some convergence criterion on Eo (or higher energy)
 expectation values converge slower than energies
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The subroutine hoperation(cp Y) implements

H|¢) = chb (blH[a)lb)  [¢) =) ¢(a)la)

in a given symmetry block (M = block size)

We do not want to store H as an MxM matrix (too big). Two options:
e carry out the operations on the fly; only the vectors are stored

e store Hin a compact form; only non-0 elements (sparse matrix)
Storing H speeds up the Lanczos iterations

e but may require a lot of memory

Compact storage of H: For each a=1,M
* e, is the number of non-0 elements (b|H|a) _
* labels i=sa+1,s2+€e5 Will refer to these matrix elements; s, — Z e
* H(i) contains the values of the matrix elements (b|H|a) =
* B(i) contains the corresponding “target” state index b
* The hamiltonian is symmetric
store only elements with b < a (divide diagonal elements by 2)
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Pseudocode; hamiltonian operation with compact storage

subroutine hoperation(¢, v)

vy=0;2=0
doa=1,M
doj=1,e,
1=1+1

Y(B(2)) = v(B(2)) + H(i)p(a)
v(a) = v(a) + H(4)p(B(7))

enddo
enddo
M M
H|¢) = |y) = > > d(a)(b|H|a)|b)
a=1 b=1

Further storage compactification possible

» small number of different elements

* use mapping (b|H|a) — integer

* many operations on la> give same Ib>
 add up all contributions before storing
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Operator expectation values

Diagonalizing the tri-diagonal matrix = eigenstates in the Lanczos basis
e eigenvectors v, energies Ep
» only some number of low-energy states (<< A) are correct eigenstates of H

To compute expectation values we normally go back to the original basis
A

Yn(a) = Z Un(Mm)pm(a), a=1,...,M

m=0

To compute (), |O|vy, ) first construct
M
Olipn) = ltby) = Zwa)Oa

Z Z (@) [0) (6|0 ) <blOla> done exactly as when
N " constructing of the H matrix

a=1 b=1

= D Y (b)b) an (b|O]a)
b=1

Then evaluate the scalar product

(n|Olthn) = (n|90y)) an
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Convergence properties of the Lanczos method

2t 1 4f |1 Example; 24-site chain
4- _—Z:? : mz=0,k=0,p=1,2=1
| mo =2 3L 1 block size M=28416
IR _ ]
< 6F . [
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A
Ground state converges first, then successively excited states

Loss of orthogonality: accumulation of numerical error = basis becomes non-orthogonal
* higher states collapse down onto lower ones
* can be cured with re-orthogonalization

5l ] N Example; 16-site chain

_ (a) : m;=0,k=0,p=1,z=1
4 1 -4f block size M=212

' : * (a) non-orthogonality

i 1 F « (b) re-orthogonalized
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0 20 40 60 80 0 20 40 60 80

A A
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Re-orthogonalization procedure

For each state generated, remove all components of prior states, i=1,...,m
 easy if we work with the normalized basis and all states are stored

’¢m> o Q|¢z> o .
‘¢m> 1 o q2 9 C] — <¢z’¢m>

Pseudocode: modify state generation

dom=1,A -1
call hoperation(¢.,,, ¢mt1)
Am = <¢m|¢m—|—1>§ Qbm—l—l = Qbm—l—l — am¢m — nmgbm—l
call normalize(¢,, 411, Nm41)
doi:=1,m
g = (Pm+1]|0i); dm+1 = (dmt1 — q9:)/(1 — ¢%)
enddo
enddo

Note: the Lanczos method can only generate a single state of a multiplet
* some random linear combination of degenerate states

Example: 2 degenerate states i, j:

HAMWU) = 3 B lm) + B (cilii) + cjli5))
me,J
The mixing of the duplet is determined by ci, ¢; of the initial state

Thursday, April 15, 2010

41




