
Monte Caro simulations
Monte Carlo methods - based on random numbers
• Stanislav Ulam’s terminology

- his uncle frequented the Casino in Monte Carlo

Random (pseudo random) number generator on the computer
• Less glamorous than roulette tables or cards, but faster...
• >109 random numbers per second

Monte Carlo simulations in statistical physics
• normally refers to importance sampling of configurations (e.g., spins)
• generating configurations with probability equal to the Boltzmann probability
• MC simulations show clearly how phase transitions can happen when N→∞
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Monte Carlo simulation of the Ising model
The Metropolis algorithm 
[Metropolis, Rusenbluth, Rosenbluth, Teller, and Teller, Phys. Rev. 1953]

Generate a series of configurations (Markov chain); C1→ C2→ C3→ C4→...
• Cn+1 obtained by modifying (updating) Cn

Starting from any configuration, such a stochastic process
leads to configurations distributed according to W
• the process has to be ergodic

- any configuration reachable in principle
• it takes some time to reach equilibrium

•→ •
Metropolis algorithm for the Ising model. For each update perform:
• select a spin i at random; consider flipping it σi → -σi

• compute the ratio R=W(σ1,...-σi,...,σN)/W(σ1,...σi,...,σN)
- for this we need only the spins neighboring i

• generate random number 0<r≤1; accept flip if r<R (go back to old config else)

Pchange(A→ B)
Pchange(B → A)

=
W (B)
W (A) W (A) = e−E(A)/T

• changes satisfy the detailed-balance principle 

Pchange(A→ B) = Pselect(B|A)Paccept(B|A)

Pselect = 1/N, Paccept = min[W (B)/W (A), 1]
These probabilities
satisfy detailed balance
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Symmetry breaking (magnetic phase transition) for h=0

A magnetized state, <m>≠0, breaks a symmetry (E invariant under all σi → -σi) 
• strictly, mathematically we must have <m>=0
• symmetry breaking (phase transition) can take place when N→∞
• how can we understand the symmetry breaking for N large but finite?

There is a characteristic “reversal” time between m>0 and m<0 configurations 
• reversal time diverges for N→∞
• the symmetry can be broken on practical time scales for finite (large) N
• also mechanism of phase transitions in real magnets (and other systems)

Time series of simulation data; magnetization vs simulation “time” for T<Tc

M
N

= m =
1
N

N∑

i=1

σi
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Another way to look at it: magnetization distribution 
• probability distrubution (histogram) of m during the simulation

m =
1
N

N∑

i=1

σi

• single-peak distribution for T>Tc

• double-peak distribution for T<Tc

• peaks become sharper for increasing N
• no probability to fluctuate between m<0 and m>0 peaks for N→∞

- have to go through low-probability m≈0 configurations

Why this peak structure? balance between
• large number of m≈0 configurations with high energy
• small number of |m|≈1 configuration with low energy
• entropy dominates at hight T, internal energy at low  T

F = E − ST

33Friday, April 9, 2010



Binder ratios and cumulants
Consider the dimensionless ratio

We can compute R2 exactly for N→∞

R2 =
〈m4〉
〈m2〉2

• for T<Tc: P(m)→δ(m-m*)+δ(m+m*)
                  m*=|peak m-value|
   R2→1

• for T>Tc: P(m)→exp[-m2/a(N)]
                  a(N)∼N-1

   R2→3  (properties of Gaussian integrals)

The Binder cumulant is defined as (n-component order parameter; n=1 for Ising)

U2 =
3
2

(
n + 1

3
− n

3
R2

)
→

{
1, T < Tc

0, T > Tc

Curves for different
L normally cross each 
other close to Tc

Extrapolate crossing
for sizes L and 2L
to infinite size
• converges faster than 
   single-size Tc defs.

2D Ising model; MC results
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Computing expectation values and their statistical errors
Definition: Monte Carlo sweep = N spin-flip attempts
• a natural unit of simulation “time”
• “measure” observables after every (or every n) sweep

Boltzmann probability accounted for at sampling stage →

Q̄ =
1

Ns

Ns∑

i=1

Qi, Ns = number of samples

is the estimate for the true expectation value; 

Q̄ → 〈Q〉, (Ns →∞)

Divide the simulation into B “bins”, M sweeps in each bin; Ns=BM
• bin averages: Q̄b, b = 1, . . . , B

Q̄ =
1
B

B∑

b=1

Q̄b, σ2
Q =

1
B(B − 1)

B∑

b=1

(Q̄b − Q̄)2

If M is sufficiently large (>> autocorrelation time) the average and error are
statistically sounds (corresonding to independent Gaussian-distributed data)
• probability of true value being “inside the error bars” ≈2/3

Statistical errors (error bars):
• the measurements are not statistically independent
• independent only after a number of sweeps >> autocorrelation time

〈Q〉 = Q̄± σQ
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Autocorrelation functions
• characterization of how measurements become statistically independent

AQ(t) =
〈Q(i + t)Q(i)〉 − 〈Q〉2

〈Q2〉 − 〈Q〉2 , (→ e−t/Θ, t →∞)

T/J=3.0 > Tc! T/J = 2.269 = Tc!

the autocorrelation time Θ grows as T→Tc (diverges for N→∞, T→Tc)

This problem can be largely overcome by using cluster algorithms 
• for standard Ising, XY, Heisenberg,...
• but not in all cases, e.g., in the presence of external fields, frustrated systems,...
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