Monte Caro simulations

Monte Carlo methods - based on random numbers
e Stanislav Ulam’s terminology
- his uncle frequented the Casino in Monte Carlo
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Random (pseudo random) number generator on the computer
¢ | ess glamorous than roulette tables or cards, but faster...
¢ >10°% random numbers per second

Monte Carlo simulations in statistical physics

e normally refers to importance sampling of configurations (e.g., spins)

e generating configurations with probability equal to the Boltzmann probability

e MC simulations show clearly how phase transitions can happen when N— o
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Monte Carlo simulation of the Ising model

The Metropolis algorithm
[Metropolis, Rusenbluth, Rosenbluth, Teller, and Teller, Phys. Rev. 1953]

Generate a series of configurations (Markov chain); C1— Co— C3— Cs—...

e Cn+1 Obtained by modifying (updating) Cn

¢ changes satisfy the detailed-balance principle ‘
Pchange(A — B) W<B)

_ _ —E(A)/T
Prnange (B — A)  W(A) W(d) =e

Starting from any configuration, such a stochastic process
leads to configurations distributed according to W
¢ the process has to be ergodic

- any configuration reachable in principle ® — 0
¢ it takes some time to reach equilibrium
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Metropolis algorithm for the Ising model. For each update perform:
e select a spin i at random; consider flipping it i = -0
e compute the ratio R=W(0o+,...-0i,...,0N)/W(071,...0i,...,ON)
- for this we need only the spins neighboring i
¢ generate random number O<r<1; accept flip if r<R (go back to old config else)

Fenange(4 = B) = Fuclet (B|4) Paceept (B]4) These probabilities
Pielect = 1/N,  Paccept = min|W(B)/W (A), 1] satisfy detailed balance
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Symmetry breaking (magnetic phase transition) for h=0

A magnetized state, <m>=0, breaks a symmetry (E invariant under all o; = -0i)
e strictly, mathematically we must have <m>=0

e symmetry breaking (phase transition) can take place when N—o

e how can we understand the symmetry breaking for N large but finite?

Time series of simulation data; magnetization vs simulation “time” for T<Tc
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There is a characteristic “reversal” time between m>0 and m<0 configurations
¢ reversal time diverges for N— o

e the symmetry can be broken on practical time scales for finite (large) N
¢ also mechanism of phase transitions in real magnets (and other systems)
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Another way to look at it: magnetization distribution
e probability distrubution (histogram) of m during the simulation
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* single-peak distribution for T>Tc
¢ double-peak distribution for T<T¢ Tl ttnee

¢ peaks become sharper for increasing N
¢ no probability to fluctuate between m<0 and m>0 peaks for N—oo
- have to go through low-probability m=0 configurations

Why this peak structure? balance between

¢ large number of m=0 configurations with high energy
e small number of |m|=1 configuration with low energy
¢ entropy dominates at hight T, internal energy at low T

F=FE-S5T
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Binder ratios and cumulants !

L=16 1 50f L=64

Consider the dimensionless ratio ol | - R |
4 L5} = 230}
R — <m > = 1ol k Q”z.o_

° 7 (m?2)2 0s ol '

We can compute Rz exactly for N—e s os T M mes

e for T<Tc: P(M)—0(m-m*)+0(m+m*) e for T>Tc: P(m)—exp[-m?/a(N)]
m*=|peak m-value| a(N)~N-"
R2—1 R2—3 (properties of Gaussian integrals)

The Binder cumulant is defined as (n-component order parameter; n=1 for Ising)

3 /n+1 n 1, T <T.
lb_‘(s §&>%{O,T>E

2D Ising model; MC results
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Computing expectation values and their statistical errors

Definition: Monte Carlo sweep = N spin-flip attempts
¢ a natural unit of simulation “time”
e “measure” observables after every (or every n) sweep

Boltzmann probability accounted for at sampling stage —
N

- 1
Q= N, Z_Zl ();, Ng = number of samples

is the estimate for the true expectation value;
Q — <Q>7 (NS — OO)

Statistical errors (error bars): (Q) = Q) + o
¢ the measurements are not statistically independent
¢ independent only after a number of sweeps >> autocorrelation time

Divide the simulation into B “bins”, M sweeps in each bin; Ns=BM

e bin averages: ();,, b=1,...,B
B

1 B 1 -
QIE;Qb’ 022:3(3_1)2(@5_@)2

b=1

If M is sufficiently large (>> autocorrelation time) the average and error are
statistically sounds (corresonding to independent Gaussian-distributed data)
e probability of true value being “inside the error bars” =~2/3
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Autocorrelation functions
¢ characterization of how measurements become statistically independent

QUi+ 1)Q(i)) — (Q)? (e 0, ¢ - 00)
@) —(Q)2 |

the autocorrelation time O grows as T— T (diverges for N—oo, T2 Ty)

Aq(t) =

T/J =2.269 =Tc
: : .

I

T/J=3.0>Tc
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This problem can be largely overcome by using cluster algorithms
¢ for standard Ising, XY, Heisenberg,...

e but not in all cases, e.g., in the presence of external fields, frustrated systems,...
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