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Part 1: Introduction to quantum spin systems
• what they are, where they come from, why study them
• some simple analytical calculations (details in tutorials)
• related classical physics (phase transitions)

Part 2: Exact diagonalization studies (small systems) 
• use of symmetries 
• full diagonalization (all states), the Lanczos method (low-energy states)
• Physics of spin chains

Part 3: Quantum Monte Carlo methods and applications
• T>0: path integrals (background), stochastic series expansion (algorithms)
• studying ground states in the valence-bond basis
• quantum phase transitions in two-dimensional systems
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Classical spin models
Lattice models with “spin” degrees of freedom at the vertices

Classified by type of spin:

• Ising model: discrete spins, normally two-state σi = -1, +1
• XY model: planar vector spins (normally of length S=1)
• Heisenberg model: 3-dimensional vector spins (S=1)

Statistical mechanics
• spin configurations C
• energy E(C)
• some quantity Q(C)
• temperature T (kB=1)

〈Q〉 =
1
Z

∑

C

Q(C)e−E(C)/T

Z =
∑

C

e−E(C)/T

E =
∑

〈ij〉

Jijσiσj

E =
∑

〈ij〉

Jij
!Si · !Sj =

∑

〈ij〉

Jij cos(Θi −Θj)

E =
∑

〈ij〉

Jij
!Si · !Sj

(Ising)

(XY)

(Heisenberg)
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Quantum spins
Spin magnitude S; basis states |Sz1,Sz2,...,SzN>,   Szi = -S, ..., S-1, S

Commutation relations: 

[Sx
i , Sy

i ] = i!Sz
i (we set ! = 1)

[Sx
i , Sy

j ] = [Sx
i , Sz

j ] = . . . = [Sz
i , Sz

j ] = 0 (i != j)

Spin (individual) squared operator: S2
i |Sz

i 〉 = S(S + 1)|Sz
i 〉

S=1/2 spins; very simple rules

Sz
i | ↑i〉 = +1

2 | ↑i〉 S−i | ↑i〉 = | ↓i〉 S+
i | ↑i〉 = 0

Sz
i | ↓i〉 = − 1

2 | ↓i〉 S+
i | ↓i〉 = | ↑i〉 S−i | ↓i〉 = 0

|Sz
i = +1

2 〉 = | ↑i〉, |Sz
i = − 1

2 〉 = | ↓i〉

Ladder (raising and lowering) operators:

S+
i |Sz

i 〉 =
√

S(S + 1)− Sz
i (Sz

i + 1)|Sz
i + 1〉,

S−i |Sz
i 〉 =

√
S(S + 1)− Sz

i (Sz
i − 1)|Sz

i − 1〉,

S+
i = Sx

i + iSy
i , S−i = Sx

i − iSy
i
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Quantum spin models
Ising, XY, Heisenberg hamiltonians
• the spins always have three (x,y,z) components
• interactions may contain 1 (Ising), 2 (XY), or 3 (Heisenberg) components  

H =
∑

〈ij〉

Jij
!Si · !Sj =

∑

〈ij〉

Jij [Sz
i Sz

j + 1
2 (S+

i S−
j + S−

i S+
j )]

H =
∑

〈ij〉

Jij [Sx
i Sx

j + Sy
i Sy

j ] = 1
2

∑

〈ij〉

Jij [S+
i S−

j + S−
i S+

j ]

H =
∑

〈ij〉

JijS
z
i Sz

j = 1
4

∑

〈ij〉

Jijσiσj (Ising)

(XY)

(Heisenberg)

〈Q〉 =
1
Z

Tr
{

Qe−H/T
}

Quantum statistical mechanics

Z = Tr
{

e−H/T
}

=
M−1∑

n=0

e−En/T

Large size M of the Hilbert space; M=2N for S=1/2
- difficult problem to find the eigenstates and energies 
- we are also interested in the ground state (T→0)
    - for classical systems the ground state is often trivial
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Why study quantum spin systems?
Solid-state physics
• localized electronic spins in Mott insulators (e.g., high-Tc cuprates)
• large variety of lattices, interactions, physical properties
• search for “exotic” quantum states in such systems (e.g., spin liquid)

Ultracold atoms (in optical lattices)
• spin hamiltonians can (?) be engineered
• some bosonic systems very similar to spins (e.g., “hard-core” bosons)

Quantum information theory / quantum computing
• possible physical realizations of quantum computers using interacting spins
• many concepts developed using spins (e.g., entanglement)

Generic quantum many-body physics
• testing grounds for collective quantum behavior, quantum phase transitions
• identify “Ising models” of quantum many-body physics

Particle physics / field theory / quantum gravity
• some quantum-spin phenomena have parallels in high-energy physics

• e.g., spinon confinement-deconfinement transition
• spin foams (?)

➤ Learning about quantum spin physics and computations will be 
very useful for research in many subfields of theoretical physics 
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Lecture contents and goals

Quantum spin systems discussed from a computational perspective
• Thorough introduction before details of computational methods

- including some analytical calculations and related classical physics

Goals
• introduce essential spin models and physical phenomena 
• to cover enough computational details to write your own code
• overview of the field; from the basics to current research

Models
• S=1/2 Heisenberg model and its extensions, 1D, 2D lattices

Methods
• finite-lattice methods; exact diagonalization, quantum Monte Carlo
• primarily focusing on “unbiased” (numerically exact) methods
• some discussion of variational methods
• algorithms and implementations in detail

Physics
• illustrative results for key models and phenomena
• various types of ordered and disordered ground states
• quantum phase transitions
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H = J
∑

〈i,j〉

!Si · !Sj

Prototypical Mott insulator; high-Tc cuprates (antiferromagnets)

CuO2 planes, localized spins on Cu sites
- Lowest-order spin model: S=1/2 Heisenberg
- Super-exchange coupling, J≈1500K

Many other quasi-1D and quasi-2D cuprates
• chains, ladders, impurities and dilution, frustrated interactions, ...

• Cu (S = 1/2)
• Zn (S = 0)

Ladder systems
- even/odd effects

non-magnetic impurities/dilution
- dilution-driven phase transition
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Doping the cuprates (e.g., La→Sr) ⇒ holes in the copper-oxygen planes
• Hubbard model; “hopping” t, doubly-occupied site costs energy U 
• t-J model; U large, exclude doubly-occupied sites ⇒ spin interaction
• Do we have to keep the O sites? ⇒ 3-band Hubbard model
• Very difficult quantum many-body problems; no consensus yet

U

t

H = −t
∑

〈i,j〉

∑

σ=↑,↓
c+
i,σcj,σ + J

∑

〈i,j〉

!Si · !Sj

H = −t
∑

〈i,j〉

∑

σ=↑,↓
c+
i,σcj,σ + U

∑

i

ni,↑ni,↓Hubbard

t− J

5%

300K pseudogap
glassy

superconducting

antiferromagnetic
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Origin of antiferromagnetic interactions  
Insights from a simple system: the 2-site Hubbard model

2-particle subspace (half-filled band)
• 6 states in the Hilbert space:
• details of the solution in tutorial

| ↑↓〉, | ↓↑〉, | ↑↑〉, | ↓↓〉, |02〉, |20〉

|ψ0〉 =
1√

2 + 8t2/U2

[
| ↑↓〉 − | ↓↑〉+

2t

U

(
|20〉+ |02〉

)]
−→ 1√

2

(
| ↑↓〉 − | ↓↑〉

)

|ψ1−〉 = | ↓↓〉, |ψ1+〉 = | ↑↑〉, |ψ10〉
1√
2

(
| ↑↓〉+ | ↓↑〉

)

energies
double-occupation
in the ground stateU large, 2 lowest states

• total-spin singlet (S=0)
• small gap to S=1 states
• one-to-one with states  

of 2-site Heisenberg

∆ = J → 4t2

U

H12 = −t(c†2↑c1↑ + c†1↑c2↑ + c†2↓c1↓ + c†1↓c2↓) + U(n1↑n1↓ + n2↑n2↓)
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