

Summer School on Computational Statistical Physics August 4-11, 2010, NCCU, Taipei, Taiwan

Quantum Monte Carlo methods

Anders W. Sandvik, Boston University

Path integrals in quantum statistical mechanics

- example: hard-core bosons (equivalent to S=1/2 spins)
- seriex-expansion formulation

SSE algorithm for the S=1/2 Heisenberg model

- some details needed to make a simple but very efficient program
- essentially lattice-independent (bipartite) formulation

Examples: properties of 1D chains, ladders, and 2D planes

- critical state of the Heisenberg chain and odd number of coupled chains
- gapped (quantum diordered) state of even number of coupled chains
- long-range order in 2D

Path integrals in quantum statistical mechanics

We want to compute a thermal expectation value

$$\langle A \rangle = \frac{1}{Z} \operatorname{Tr} \{ A \mathrm{e}^{-\beta H} \}$$

where $\beta = 1/T$ (and possibly T \rightarrow 0). How to deal with the exponential operator?

"Time slicing" of the partition function

$$Z = \operatorname{Tr}\{\mathrm{e}^{-\beta H}\} = \operatorname{Tr}\left\{\prod_{l=1}^{L} \mathrm{e}^{-\Delta_{\tau} H}\right\} \qquad \Delta_{\tau} = \beta/L$$

Choose a basis and insert complete sets of states;

$$Z = \sum_{\alpha_0} \sum_{\alpha_1} \cdots \sum_{\alpha_L = 1} \langle \alpha_0 | e^{-\Delta_\tau H} | \alpha_{L-1} \rangle \cdots \langle \alpha_2 | e^{-\Delta_\tau H} | \alpha_1 \rangle \langle \alpha_1 | e^{-\Delta_\tau H} | \alpha_0 \rangle$$

Use approximation for imaginary time evolution operator. Simplest way

$$Z \approx \sum_{\{\alpha\}} \langle \alpha_0 | 1 - \Delta_\tau H | \alpha_{L-1} \rangle \cdots \langle \alpha_2 | 1 - \Delta_\tau H | \alpha_1 \rangle \langle \alpha_1 | 1 - \Delta_\tau H | \alpha_0 \rangle$$

Leads to error $\propto \Delta_{\tau}$. Limit $\Delta_{\tau} \to 0$ can be taken

Example: hard-core bosons

$$H = K = -\sum_{\langle i,j \rangle} K_{ij} = -\sum_{\langle i,j \rangle} (a_j^{\dagger} a_i + a_i^{\dagger} a_j) \qquad n_i = a_i^{\dagger} a_i \in \{0,1\}$$

Equivalent to S=1/2 XY model

$$H = -2\sum_{\langle i,j \rangle} (S_i^x S_j^x + S_i^y S_j^y) = -\sum_{\langle i,j \rangle} (S_i^+ S_j^- + S_i^- S_j^+), \quad S^z = \pm \frac{1}{2} \sim n_i = 0, 1$$

"World line" representation of

Expectation values

$$\langle A \rangle = \frac{1}{Z} \sum_{\{\alpha\}} \langle \alpha_0 | \mathrm{e}^{-\Delta_\tau} | \alpha_{L-1} \rangle \cdots \langle \alpha_2 | \mathrm{e}^{-\Delta_\tau H} | \alpha_1 \rangle \langle \alpha_1 | \mathrm{e}^{-\Delta_\tau H} A | \alpha_0 \rangle$$

We want to write this in a form suitable for MC importance sampling

$$\langle A \rangle = \frac{\sum_{\{\alpha\}} A(\{\alpha\}) W(\{\alpha\})}{\sum_{\{\alpha\}} W(\{\alpha\})}$$

For any quantity diagonal in the occupation numbers (spin z):

$$\langle A \rangle = \langle A(\{\alpha\}) \rangle_W$$

$$V(\{\alpha\}) = ext{weight}$$

 $A(\{\alpha\}) = ext{estimator}$

$$A(\{\alpha\}) = A(\alpha_n) \text{ or } A(\{\alpha\}) = \frac{1}{L} \sum_{l=0}^{L-1} A(\alpha_l)$$

Kinetic energy (here full energy). Use

$$K e^{-\Delta_{\tau} K} \approx K \quad K_{ij}(\{\alpha\}) = \frac{\langle \alpha_1 | K_{ij} | \alpha_0 \rangle}{\langle \alpha_1 | 1 - \Delta_{\tau} K | \alpha_0 \rangle} \in \{0, \frac{1}{\Delta_{\tau}}\}$$

Average over all slices \rightarrow count number of kinetic jumps

$$\langle K_{ij} \rangle = \frac{\langle n_{ij} \rangle}{\beta}, \quad \langle K \rangle = -\frac{\langle n_K \rangle}{\beta} \qquad \langle K \rangle \propto N \to \langle n_K \rangle \propto \beta N$$

There should be of the order βN "jumps" (regardless of approximation used)

T 1

Including interactions

For any diagonal interaction V (Trotter, or split-operator, approximation)

 $e^{-\Delta_{\tau}H} = e^{-\Delta_{\tau}K}e^{-\Delta_{\tau}V} + \mathcal{O}(\Delta_{\tau}^2) \to \langle \alpha_{l+1} | e^{-\Delta_{\tau}H} | \alpha_l \rangle \approx e^{-\Delta_{\tau}V_l} \langle \alpha_{l+1} | e^{-\Delta_{\tau}K} | \alpha_l \rangle$

Product over all times slices \rightarrow

The continuous time limit

Limit $\Delta_{\tau} \rightarrow 0$: number of kinetic jumps remains finite, store events only

local updates (problem when $\Delta_{\tau} \rightarrow 0$?)

- consider probability of inserting/removing events within a time window
- ⇐ Evertz, Lana, Marcu (1993), Prokofev et al (1996) Beard & Wiese (1996)

Series expansion representation

Start from the Taylor expansion
$$e^{-\beta H} = \sum_{n=0}^{\infty} \frac{(-\beta)^n}{n!} H^n$$

$$Z = \sum_{n=0}^{\infty} \frac{(-\beta)^n}{n!} \sum_{\{\alpha\}_n} \langle \alpha_0 | H | \alpha_{n-1} \rangle \cdots \langle \alpha_2 | H | \alpha_1 \rangle \langle \alpha_1 | H | \alpha_0 \rangle$$

(approximation-free

method from the outset)

Similar to the path integral; $1 - \Delta \tau H \rightarrow H$ and weight factor outside

For hard-core bosons the (allowed) path weight is $W(\{\alpha\}_n) = \beta^n/n!$

For any model, the energy is

$$E = \frac{1}{Z} \sum_{n=0}^{\infty} \frac{(-\beta)^n}{n!} \sum_{\{\alpha\}_{n+1}} \langle \alpha_0 | H | \alpha_n \rangle \cdots \langle \alpha_2 | H | \alpha_1 \rangle \langle \alpha_1 | H | \alpha_0 \rangle$$

$$= -\frac{1}{Z} \sum_{n=1}^{\infty} \frac{(-\beta)^n}{n!} \frac{n}{\beta} \sum_{\{\alpha\}_n} \langle \alpha_0 | H | \alpha_{n-1} \rangle \cdots \langle \alpha_2 | H | \alpha_1 \rangle \langle \alpha_1 | H | \alpha_0 \rangle = \frac{\langle n \rangle}{\beta}$$
relabel terms to "get rid of" extra slice

$$C = \langle n^2 \rangle - \langle n \rangle^2 - \langle n \rangle$$

From this follows: narrow n-distribution with $\langle n \rangle \propto N\beta$, $\sigma_n \propto \sqrt{N\beta}$

Fixed-length scheme

- n fluctuating \rightarrow varying size of the configurations
- the expansion can be truncated at some n_{max}=L (exponentially small error)
- cutt-off at n=L, fill in operator string with unit operators $H_0=I$

$$n=10 \quad H_4 \quad H_7 \quad H_1 \quad H_6 \quad H_2 \quad H_1 \quad H_8 \quad H_3 \quad H_3 \quad H_5$$

 $\mathbf{M} = 14 \quad \mathbf{H}_4 \quad \mathbf{I} \quad \mathbf{H}_7 \quad \mathbf{I} \quad \mathbf{H}_1 \quad \mathbf{H}_6 \quad \mathbf{I} \quad \mathbf{H}_2 \quad \mathbf{H}_1 \quad \mathbf{H}_8 \quad \mathbf{H}_3 \quad \mathbf{H}_3 \quad \mathbf{I} \quad \mathbf{H}_5$

- conisider all possible locations in the sequence
- overcounting of actual (original) strings, correct by combinatorial factor:

$$\binom{L}{n}^{-1} = \frac{n!(L-n)!}{L!}$$

Here n is the number of H_i , i>0 instances in the sequence of L operators

$$Z = \sum_{\{\alpha\}_L} \sum_{\{H_i\}} \frac{(-\beta)^n (L-n)!}{L!} \langle \alpha_0 | H_{i(L)} | \alpha_{L-1} \rangle \cdots \langle \alpha_2 | H_{i(2)} | \alpha_1 \rangle \langle \alpha_1 | H_{i(1)} | \alpha_0 \rangle$$

Stochastic Series expansion (SSE): S=1/2 Heisenberg model

Write H as a bond sum for arbitrary lattice

$$H = J \sum_{b=1}^{N_b} \mathbf{S}_{i(b)} \cdot \mathbf{S}_{j(b)},$$

Diagonal (1) and off-diagonal (2) bond operators

$$H_{1,b} = \frac{1}{4} - S_{i(b)}^{z} S_{j(b)}^{z},$$

$$H_{2,b} = \frac{1}{2} (S_{i(b)}^{+} S_{j(b)}^{-} + S_{i(b)}^{-} S_{j(b)}^{+}).$$

$$H = -J \sum_{b=1}^{N_{b}} (H_{1,b} - H_{2,b}) + \frac{JN_{b}}{4}$$

2D square lattice bond and site labels

Four non-zero matrix elements

$$\langle \uparrow_{i(b)} \downarrow_{j(b)} | H_{1,b} | \uparrow_{i(b)} \downarrow_{j(b)} \rangle = \frac{1}{2} \qquad \langle \downarrow_{i(b)} \uparrow_{j(b)} | H_{2,b} | \uparrow_{i(b)} \downarrow_{j(b)} \rangle = \frac{1}{2} \\ \langle \downarrow_{i(b)} \uparrow_{j(b)} | H_{1,b} | \downarrow_{i(b)} \uparrow_{j(b)} \rangle = \frac{1}{2} \qquad \langle \uparrow_{i(b)} \downarrow_{j(b)} | H_{2,b} | \downarrow_{i(b)} \uparrow_{j(b)} \rangle = \frac{1}{2}$$

Partition function

$$Z = \sum_{\alpha} \sum_{n=0}^{\infty} (-1)^{n_2} \frac{\beta^n}{n!} \sum_{S_n} \left\langle \alpha \left| \prod_{p=0}^{n-1} H_{a(p),b(p)} \right| \alpha \right\rangle$$

n₂ = number of a(i)=2 (off-diagonal operators) in the sequence

Index sequence: $S_n = [a(0), b(0)], [a(1), b(1)], \dots, [a(n-1), b(n-1)]$

SSE effectively provides a discrete representation of the time continuum

computational advantage; only integer operations in sampling

Linked vertex storage

The "legs" of a vertex represents the spin states before (below) and after (above) an operator has acted

X() = vertex list • operator at p→X(v) v=4p+l, l=0,1,2,3

3

0

1

0 **•** | |

0

 links to next and previous leg

Spin states between operations are redundant; represented by links

network of linked vertices will be used for loop updates of vertices/operators

3

0

0

0 **•** | |

Monte Carlo sampling scheme

Change the configuration;
$$(\alpha, S_L) \to (\alpha', S'_L)$$

 $P_{\text{accept}} = \min \left[\frac{W(\alpha', S_L)}{W(\alpha, S_L)} \frac{P_{\text{select}}(\alpha', S'_L \to \alpha, S_L)}{P_{\text{select}}(\alpha, S_L \to \alpha', S'_L)}, 1 \right] \stackrel{\bullet}{\longrightarrow} \stackrel{\bullet}{\longrightarrow}$

Diagonal update: $[0,0]_p \leftrightarrow [1,b]_p$

$$\begin{array}{c|c} |\alpha(p+1)\rangle & \bullet & \circ & \bullet & \bullet & \bullet & \circ \\ |\alpha(p)\rangle & \bullet & \circ & \bullet & \bullet & \bullet & \bullet & \bullet \\ \end{array} \rightarrow \begin{array}{c} \bullet & \circ & \circ & \bullet & \bullet & \circ & \bullet & \bullet & \bullet \\ \bullet & \circ & \bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\ \bullet & \circ & \bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\ \end{array}$$

Attempt at p=0,...,L-1. Need to know $|\alpha(p)\rangle$ • generate by flipping spins when off-diagonal operator

$$P_{\text{select}}(a = 0 \to a = 1) = 1/N_b, \quad (b \in \{1, \dots, N_b\})$$

 $P_{\text{select}}(a = 1 \to a = 0) = 1$

$$\frac{W(a=1)}{W(a=0)} = \frac{\beta/2}{L-n} \qquad \frac{W(a=0)}{W(a=1)} = \frac{L-n+1}{\beta/2}$$

Acceptance probabilities

$$P_{\text{accept}}([0,0] \to [1,b]) = \min\left[\frac{\beta N_b}{2(L-n)}, 1\right]$$
$$P_{\text{accept}}([1,b] \to [0,0]) = \min\left[\frac{2(L-n+1)}{\beta N_b}, 1\right]$$

___ o o o o o 0 0 0 0 $\bullet \circ \bullet \circ \circ \bullet \circ$ $\bullet \circ \circ \bullet \circ \bullet \circ$ • • • • • • • • • •

0 0 0 0

0 $\bullet \circ \bullet \circ \bullet \circ \circ$

0000

• •

0 0 0

n is the current power

•
$$n \rightarrow n+1$$
 (a=0 \rightarrow a=1)
• $n \rightarrow n-1$ (a=1 \rightarrow a=0)

Monday, August 9, 2010

Diagonal update; pseudocode implementation

Local off-diagonal update

Switch the type (a=1 \leftrightarrow a=2) of two operators on the same spins

- constraints have to be satisfied
- inefficient, cannot change the winding number

Operator-loop update

Many spins and operators can be changed simultaneously

Constructing the linked vertex list

Traverse operator list s(p), p=0,...,L-1

vertex legs v=4p,4p+1,4p+2,4p+3

Use arrays to keep track of the first and last (previous) vertex leg on a given spin

- V_{first}(i) = location v of first leg on site i
- V_{last}(i) = location v of last (currently) leg
- these are used to create the links
- initialize all elements to -1

$$\begin{array}{l} V_{\rm first}(:) = -1; \ V_{\rm last}(:) = -1 \\ {\rm do} \ p = 0 \ {\rm to} \ L - 1 \\ {\rm if} \ (s(p) = 0) \ {\rm cycle} \\ v_0 = 4p; \ b = s(p)/2; \ s_1 = i(b); \ s_2 = j(b) \\ v_1 = V_{\rm last}(s_1); \ v_2 = V_{\rm last}(s_2) \\ {\rm if} \ (v_1 \neq -1) \ {\rm then} \ X(v_1) = v_0; \ X(v_0) = v_1 \ {\rm else} \ V_{\rm first}(s_1) = v_0 \ {\rm endif} \\ {\rm if} \ (v_2 \neq -1) \ {\rm then} \ X(v_2) = v_0; \ X(v_0) = v_2 \ {\rm else} \ V_{\rm first}(s_2) = v_0 + 1 \ {\rm endif} \\ V_{\rm last}(s_1) = v_0 + 2; \ V_{\rm last}(s_2) = v_0 + 3 \\ {\rm enddo} \end{array}$$

creating the last links across the "time" boundary

do i = 1 to N $f = V_{\text{first}}(i)$ if $(f \neq -1)$ then $l = V_{\text{last}}(i)$; X(f) = l; X(l) = f endif enddo We also have to modify the stored spin state after the loop update

- we can use the information in V_{first}() and X() to determine spins to be flipped
- spins with no operators, $V_{first}(i) = -1$, flipped with probability 1/2

do
$$i = 1$$
 to N
 $v = V_{\text{first}}(i)$
if $(v = -1)$ then
if $(\text{random}[0-1] < 1/2) \sigma(i) = -\sigma(i)$
else
if $(X(v) = -2) \sigma(i) = -\sigma(i)$
endif
enddo

v is the location of the first vertex leg on spin i

- flip it if X(v)=-2
- (do not flip it if X(v)=-1)
- no operation on i if v_{first}(i)=-1

Determination of the cut-off L

- adjust during equilibration
- start with arbitrary (small) n

Keep track of number of operators n

- increase L if n is close to current L
- e.g., *L=n+n/3*

Example; 16×16 system, β =16 \Rightarrow

- evolution of L
- n distribution after equilibration
- truncation is no approximation

Does it work? Compare with exact results

- 4×4 exact diagonalization
- Bethe Ansatz; long chains

Susceptibility of the 4×4 lattice $\Rightarrow \approx$

- SSE results from 10¹⁰ sweeps
- improved estimator gives smaller error bars at high T (where the number of loops is larger)

- Bethe Ansatz ground state E/N
- SSE can achieve the ground state limit (T→0)

Magnetic susceptibility

anomalous behavior as $T \rightarrow 0$

- low-T results seem to disagree with known T=0 value obtained using the Bethe Ansatz method
- Reason: logarithmic correction at low T>0

Eggert, Affleck, Takahashi, PRL 73, 332 (1994)

$$\chi(T) = \frac{1}{2\pi c} + \frac{1}{4\pi c \ln(T_0/T)}$$

- Low-T form expected based on low-energy field theory
- For the standard chain

 $c = \pi J/2, T_0 \approx 7.7$

• Other interactions \rightarrow same form, different parameters

Long chains needed for studying low-T behavior (T < finite-size gap)

Monday, August 9, 2010

Ladder systems

E. Dagotto and T. M. Rice, Science 271, 618 (1996)

Coupled Heisenberg chains; $L_x \times L_y$ spins, $L_y \rightarrow \infty$, L_x finite

- systems with even and odd Ly have qualitatively different properties
 - spin gap $\Delta > 0$ for L_y even, $\Delta \rightarrow 0$ when $L_x \rightarrow \infty$
 - critical state, similar to single chain, for odd Ly
 - the 2D limit is approached in different ways

Consider anisotropic couplings; J_x and J_y

- \bullet the correct physics for all Jy/Jx can be understood based on large Jy/Jx
- short-range valence bond states

Properties of Heisenberg ladders; large-scale SSE results

Magnetic susceptibility Low-T theoretical forms:

Odd L_y: from nonlinear -sigma model Eggert, Affleck, Takahashi, PRL 73, 332 (1994)

$$\chi(T) = \frac{1}{2\pi c} + \frac{1}{4\pi c \ln(T_0/T)}$$

Even L_y: from large J_y/J_x expansion Troyer, Tsunetsugu, Wurz, PRB 50, 13515 (1994)

$$\chi(T) = \frac{a}{\sqrt{T}} e^{-\Delta/T}$$

SSE results for large L_x (up to 4096, giving L_x $\rightarrow \infty$ limit for T shown);

Extracting the gap for evel-Ly systems

From the low-T susceptibility form:

T=0 spin correlations of ladders

Expected asymptotic behaviors

$$C(r) = A \frac{(-1)^r}{r} \ln\left(\frac{r}{r_0}\right)^{1/2} \quad \text{(odd Ly)} \quad C(r) = A e^{-r/\xi} \quad \text{(even Ly)}$$

We also expect short-distance behavior reflecting 2D order for large Ly

short-long distance cross-over behavior starts to become visible, but larger L_y needed to see signs of 2D order for r<Ly

• L×L lattices used to study 2D case

Correlation length for even-Ly

 $C(r) \propto e^{-r/\xi}, \quad \xi \propto \frac{1}{\Delta}$

We need system lengths $L_x >> \xi$ to compute ξ reliably. Use:

Correlation length versus J_y/J_x for $L_y=2$

the single chain is critical (1/r correlations) $\rightarrow \xi$ diverges as $J_y/J_x \rightarrow 0$

2D Heisenberg model; long-range order at T=0

Spin-wave theory shows large sublattice magnetization; m_s=0.3034

- including up to $1/S^2$ corrections gives $m_s=0.3070$
- large-scale QMC (SSE, valence-bond projector) gives $m_s=0.3074$

comparing results of

- m_s averaged over all sites (then squared)
- the spin correlation function C(L/2,L/2) at the longest distance

Linear size correction predicted from spin wave theory (and also more general symmetry arguments)

The spin stiffness (helicity modulus)

Corresponds to an Young's modulus of an elastic medium

- an important ground-state parameter of a spin system
- finite for an ordered state
- equivalent to the superfluid stiffness in boson language

Sensitivity of the ground-state energy (free energy at T>0) to "twisting" the spins along a boundary column

 $\rho_s^{\gamma} = \frac{1}{L} \frac{d^2 \langle H(\phi) \rangle}{d\phi^2}, \quad \phi = \text{"twist" at boundary in } \gamma \text{ direction}$

Twist imposed by changing the Heisenberg interaction at the boundary

$$\mathbf{S}_{i} \cdot \mathbf{S}_{j} \to \mathbf{S}_{i} \cdot R\mathbf{S}_{j}, \qquad R = \begin{pmatrix} \cos(\phi) & -\sin(\phi) & 0\\ \sin(\phi) & \cos(\phi) & 0\\ 0 & 0 & 1 \end{pmatrix}$$

One can show that the

stiffness is related to the winding number fluctuations

$$\rho_s^{\gamma} = \frac{3}{2} \frac{1}{\beta} \langle W_{\gamma}^2 \rangle, \qquad \gamma = x, y$$

In SSE we have to count spin flip "events"

$$W_{\gamma} = \frac{1}{L} \sum_{p=0}^{n-1} J_{\gamma}, \quad J_{\gamma} = \pm 1 \quad (\text{currents})$$

2D quantum-criticality (T=0 transition)

Examples: bilayer, dimerized single layer

Singlet formation on strong bonds \rightarrow Neel - disordered transition

2D quantum spins map onto (2+1)D classical spins (Haldane)

- Continuum field theory: nonlinear σ -model (Chakravarty, Halperin, Nelson)
- \Rightarrow 3D classical Heisenberg (O3) universality class expected

Dynamic Exponent z

• relates space and time directions

$$\xi_{\tau} \sim \xi_r^z, \quad \Delta \sim L^{-z}$$

- finite-size gap Δ scales as L^{-z}
- replace classical dimensionality d by d+z in scaling expressions

Analysis of the transition of dimerized (columnar) Heisenberg system

Two options of choosing the temperature in finite-lattice calculations

- get the ground state as $T \rightarrow 0$ limit
 - in practice T<<∆ (finite-size gap)
- use $1/T = \beta = aL^z$ to analyze the transition
 - if z is known (or to test proposal)
 - the results should not depend on aspect ratio a

Use the Binder ratio

$$R_2 = \frac{\langle m_{sz}^4 \rangle}{\langle m_{sz}^2 \rangle^2}$$

to locate the critical coupling ratio g_c

Significant drifts in the crossing points, large lattices needed

 $g_c \approx 1.91$

The spin stiffness at criticality

For a quantum-critical point with dynamic exponent z:

 $\rho_s \sim L^{-(d+z-2)}$

d=2, z=1 \rightarrow plot $L\rho_s$ vs g for different L

- \bullet curves should cross (size independence) at g_{c}
- x- and y-stiffness different in this model

Finite-size scaling in agreement with z=1, $g_c \approx 1.9094$

