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Exact diagonalization methods

Representation of states in the computer
• bit representation and operations for S=1/2 spins

Using basis states incorporating conservation laws (symmetries)
• magnetization conservation, momentum states, parity, spin inversion
• discussion without group theory 

- only basic quantum mechanics and common sense needed
Lanczos diagonalization (ground state, low excitations)

Summer School on Computational Statistical Physics 
August 4-11, 2010, NCCU, Taipei, Taiwan

1Saturday, August 7, 2010



Numerical diagonalization of the hamiltonian

H = J
N∑

i=1

Si · Si+1 = J
N∑

i=1

[Sx
i Sx

i+1 + Sy
i Sy

i+1 + Sz
i Sz

i+1],

= J
N∑

i=1

[Sz
i Sz

i+1 + 1
2 (S+

i S−i+1 + S−i S+
i+1)]

To find the ground state (maybe excitations, T>0 properties) 
of the Heisenberg S=1/2 chain

Simplest way computationally; enumerate the states
• construct the hamiltonian matrix using bit-representation of integers

|0〉 = | ↓, ↓, ↓, . . . , ↓〉 (= 0 . . . 000)
|1〉 = | ↑, ↓, ↓, . . . , ↓〉 (= 0 . . . 001)
|2〉 = | ↓, ↑, ↓, . . . , ↓〉 (= 0 . . . 010)
|3〉 = | ↑, ↑, ↓, . . . , ↓〉 (= 0 . . . 011)

bit representation perfect for S=1/2 systems
• use >1 bit/spin for S>1/2, or integer vector
• construct H by examining/flipping bits

Hij = 〈i|H|j〉
i, j = 0, . . . , 2N − 1
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spin-state manipulations with bit operations
Let a[i] refer to the i:th bit of an integer a

a
2i + 2j

ieor(a, 2i + 2j)

• In Fortran 90 the bit-level function ieor(a,2**i) can be used to flip bit i of a
• bits i and j can be flipped using ieor(a,2**i+2**j)

Translations and reflections of states

ishftc(a,-1,N)
• shifts N bits to the “left”

btest(a,b)
• checks (T or F) bit b of a

Other Fortran 90 functions

ibset(a,b), ibclr(a,b)
• sets to 1 or 1 bit b of a
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do a = 0, 2N − 1
do i = 0, N − 1

j = mod(i + 1, N)
if (a[i] = a[j]) then

H(a, a) = H(a, a) + 1
4

else
H(a, a) = H(a, a)− 1

4
b = flip(a, i, j); H(a, b) = 1

2
endif

enddo
enddo

The S=1/2 Heisenberg chain hamiltonian 
can be constructed according to:

j is the “right” nearest-neighbor of i
• periodic boundary conditions
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Diagonalizing the hamiltonian matrix 
• on the computer
• gives the eigenvalues and eigenvectors
If U is the matrix whose columns are the eigenvectors of H, then

〈n|A|n〉 = [UT∗AU ]nn

is the expectation value of some operator A in the n:th eigenstate

Problem: Matrix size M=2N becomes too large quickly 
• maximum number of spins in practice; N≈20
• M2 matrix elements to store, time to diagonalize ∝M3

Using conservation laws (symmetries) for block-diagonalization

H

We can choose the basis in such a way that the H becomes block-diagonal

• the blocks can be diagonalized individually 
• we can reach larger N (but not much larger, N≈40 is max)
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Number of states in the largest block (mz =0): N!/[(N/2)!]2

H
mz

k

Other symmetries (conserved quantum numbers)
• can be used to further split the blocks
• but more complicated

• basis states have to be constructed to obey symmetries
• e.g., momentum states (using translational invariance)

Simplest example; magnetization conservation

• blocks correspond to fixed values of mz

• no H matrix elements between states of different mz

• A block is constructed by only including states with a given mz

• corresponds to ordering the states in a particular way

mz =
N∑

i=1

Sz
i
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Pseudocode: using magnetization conservation
Constructing the basis in the block of n↑ spins ↑

do s = 0, 2N − 1
if (

P
i s[i] = n↑) then a = a + 1; sa = s endif

enddo
M = a

Store state-integers in ordered list sa, a=1,....,M Example; N=4, n↑=2
s1=3     (0011)
s2=5     (0101)
s3=6     (0110)
s4=9     (1001)
s5=10   (1010)
s6=12   (1100)

How to locate a state (given integer s) in the list?
• stored map s→a may be too big for s=0,...,2N-1
• instead, we search the list sa (here simplest way) 

Finding the location b 
of a state-integer s in the list 
• using bisection in the ordered list

subroutine findstate(s, b)
bmin = 1; bmax = M
do

b = bmin + (bmax − bmin)/2
if (s < sb) then

bmax = b− 1
elseif (s > sb) then

bmin = b + 1
else

exit
endif

enddo
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Pseudocode; hamiltonian construction
• recall: states labeled a=1,...,M
• corresponding state-integers (bit representation) stored as sa
• bit i, sa[i], corresponds to Szi

do a = 1, M
do i = 0, N − 1

j = mod(i + 1, N)
if (sa[i] = sa[j]) then

H(a, a) = H(a, a) + 1
4

else
H(a, a) = H(a, a)− 1

4
s = flip(sa, i, j)
call findstate(s, b)
H(a, b) = H(a, b) + 1

2
endif

enddo
enddo

loop over states
loop over sites

check bits of state-integers

state with bits i and j flipped
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Magnetization expectation value

mz =
N∑

i=1

Sz
i

To calculate <n|mz|n> (or any observable diagonal in the spin-z basis):

〈n|mz|n〉 =
∑

i,j

φiφj〈j|mz|i〉

=
∑

i

φ2
i 〈i|mz|i〉

=
∑

i

φ2
i mz(i)

when we have diagonalized H, we have its eigenvectors
• stored as the columns of the diagonalizing matrix U(i,n)=vec(i,n)
• vec(i,n) is the i:th component of eigenvector n

(M = 2N )|n〉eigen =
M∑

i=1

φi|i〉
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Momentum states (translationally invariant systems)
A periodic chain (ring), translationally invariant
• the eigenstates have a momentum (crystal momentum ) k

The operator T translates the state by one lattice spacing
• for a spin basis state

T |Sz
1 , Sz

2 , . . . , Sz
N 〉 = |Sz

N , Sz
1 , . . . , Sz

N−1〉
[T,H]=0 → momentum blocks of H
• can use eigenstates of T with given k as basis

k = m
2π

N
, m = 0, . . . , N − 1,T |n〉 = eik|n〉

A momentum state can be constructed from any representative state

|a(k)〉 =
1√
Na

N−1∑

r=0

e−ikrT r|a〉, |a〉 = |Sz
1 , . . . , Sz

N 〉

Construct ordered list of representatives
If |a> and |b> are representatives, then

T r|a〉 "= |b〉 r ∈ {1, . . . , N − 1}

4-site examples
(0011)→(0110),(1100),(1001)
(0101)→(1010)

Convention: the representative is the
one corresponding to the smallest integer
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1 + e−ikR + e−i2kR + . . . + e−ik(N−R)

• the total weight for this component is

• vanishes (state incompatible with k) unless kR=n2π
• the total weight of the representative is then N/R

kR = n2π → mR

N
= n→ m = n

N

R
→ mod(m,N/R) = 0

〈a(k)|a(k)〉 =
1

Na
×Ra ×

(
N

Ra

)2

= 1 → Na =
N2

Ra

Normalization of a state |a(k)> with periodicity Ra

|a(k)〉 =
1√
Na

N−1∑

r=0

e−ikrT r|a〉, |a〉 = |Sz
1 , . . . , Sz

N 〉

Basis construction: find all allowed representatives and their periodicities

(a1, a2, a3, ..., aM)
(R1, R2, R3, ..., RM)

The block size M is initially not known
• approximately 1/N of total size of fixed mz block
• depends on the periodicity constraint for given k

The sum can contain several copies of the same state
• if TR|a〉 = |a〉 for some R < N

k = m
2π

N
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Basis construction: find all allowed representatives and their periodicities

(a1, a2, a3, ..., aM)
(R1, R2, R3, ..., RM)

The block size M is initially not known
• approximately 1/N of total size of fixed mz block
• depends on the periodicity constraint for given k

 Uses a subroutine checkstate(s,R)
• R = periodicity if integer s is a new representative
•  R = −1 if
‣ the magnetization is not the one considered
‣ some translation of |s> gives an integer < s
‣ |s> is not compatible with the momentum

do s = 0, 2N − 1
call checkstate(s, R)
if R ≥ 0 then a = a + 1; sa = s; Ra = R endif

enddo
M = a

M = size of 
the H-block
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Define function cyclebits(t,N)
• cyclic permutations of first N bits of integer t
• F90 function ishiftc(t,−1,N)

Translations of the representative; cyclic permutation 

The representative has the lowest state-integer among all its translations

Pseudocode; checkstate() subroutine

subroutine checkstate(s, R)
R = −1
if (

P
i s[i] "= n↑) return

t = s
do i = 1, N

t = cyclebits(t, N)
if (t < s) then

return
elseif (t = s) then

if (mod(k, N/i) "= 0) return
R = i; return

endif
enddo

check momentum compatibility
•k is the integer corresponding 
to the momentum; k=0,...,N-1

•momentum = k2π/N

check the magnetization

check if translated state has
lower integer representation
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The Hamiltonian matrix. Write S = 1/2 chain hamiltonian as

Act with H on a momentum state

H|a(k)〉 =
1√
Na

N−1∑

r=0

e−ikrT rH|a〉 =
1√
Na

N∑

j=0

N−1∑

r=0

e−ikrT rHj |a〉,

H|a(k)〉 =
N∑

j=0

hj
ae−iklj

√
Nbj

Na
|bj(k)〉

〈a(k)|H0|a(k)〉 =
N∑

j=1

Sz
j Sz

j ,

〈bj(k)|Hj>0|a(k)〉 = e−iklj 1
2

√
Ra

Rbj

, |bj〉 ∝ T−lj Hj |a〉,

Shift summation index r and use definition of momentum state 

➙ matrix elements

H0 =
N∑

j=1

Sz
j Sz

j+1, Hj = 1
2 (S+

j S−j+1 + S+
j S−j+1), j = 1, . . . , N

H|a(k)〉 =
N∑

j=0

hj
a√
Na

N−1∑

r=0

e−ikrT (r−lj)|bj〉

Hj|a> is related to some representative:  Hj |a〉 = hj
aT−lj |bj〉
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Pseudocode; hamiltonian construction

subroutine representative(s, r, l)
r = s; t = s; l = 0
do i = 1, N − 1

t = cyclebits(t, N)
if (t < r) then r = t; l = i endif

enddo

Finding the representative r of a state-integer s
• lowest integer among all translations

|r〉 = T l|s〉

First, some elements needed; recall

Hj |a〉 = hj
aT−lj |bj〉

Finding the location of the
representative in the state list
• may not be there, if the new
  state is incompatible with k
• b=−1 for not found in list

subroutine findstate(s, b)
bmin = 1; bmax = M
do

b = bmin + (bmax − bmin)/2
if (s < sb) then

bmax = b− 1
elseif (s > sb) then

bmin = b + 1
else

exit
endif
if (bmin > bmax then

b = −1; exit
endif

enddo

|bj〉 ∝ T lj Hj |a〉
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Construct all the matrix elements

do a = 1, M
do i = 0, N − 1

j = mod(i + 1, N)
if (sa[i] = sa[j]) then

H(a, a) = H(a, a) + 1
4

else
H(a, a) = H(a, a)− 1

4
s = flip(sa, i, j)
call representative(s, r, l)
call findstate(r, b)
if (b ≥ 0) then

H(a, b) = H(a, b) + 1
2

p
Ra/Rbe

i2πkl/N

endif
endif

enddo
enddo
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This state has momentum k, but does it have parity p? Act with P

Reflection symmetry (parity) Define a reflection (parity) operator

Consider a hamiltonian for which [H,P]=0 and [H,T]=0; but note that [P,T]≠0

P |a(k, p)〉 =
1√
Na

N−1∑

r=0

e−ikrT−r(P + p)|a〉

= p
1√
Na

N−1∑

r=0

eikrT r(1 + pP )|a〉 = p|a(k, p)〉 if k = 0 or k = π

k=0,π momentum blocks are split into p=+1 and p=−1 sub-blocks
• [T,P]=0 in the k=0,π blocks
• physically clear because -k=k on the lattice for k=0,π
• we can exploit parity in a different way for other k →
• semi-momentum states

P |Sz
1 , Sz

2 , . . . , Sz
N 〉 = |Sz

N , . . . , Sz
2 , Sz

1 〉

Can we still exploit both P and T at the same time? Consider the state

|a(k, p)〉 =
1√
Na

N−1∑

r=0

e−ikrT r(1 + pP )|a〉, p = ±1
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Semi-momentum states
Mix momenta +k and −k for k≠0,π 

Cσ
k (r) =

{
cos(kr), σ = +1
sin(kr), σ = −1.

States with same k, different σ are orthogonal

|aσ(k)〉 =
1√
Na

N−1∑

r=0

Cσ
k (r)T r|a〉

k = m
2π

N
, m = 1, . . . , N/2− 1, σ = ±1

Semi-momentum states with parity

|aσ(k, p)〉 =
1√
Nσ

a

N−1∑

r=0

Cσ
k (r)(1 + pP )T r|a〉.

This state has definite parity with p=+1 or p=−1 for any k

• (k,−1) and (k,+1) blocks
• the basis is of the same size as the original k-blocks
• but these states are real, not complex ⇒ computational advantage
• For k≠0,π, the p=-1 and p=+1 states are degenerate
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Spin-inversion symmetry

Z|Sz
1 , Sz

2 , . . . , Sz
N 〉 = | − Sz

1 ,−Sz
2 , . . . ,−Sz

N 〉Spin inversion operator:

In the magnetization block mz=0 we can use eigenstates of Z

|aσ(k, p, z)〉 =
1√
Nσ

a

N−1∑

r=0

Cσ
k (r)(1 + pP )(1 + zZ)T r|a〉,

Z|aσ(k, p, z)〉 = z|aσ(k, p, z)〉, z = ±1

Example: block sizes
mz=0, k=0 (largest momentum block)

N (+1,+1) (+1,−1) (−1,+1) (−1,−1)
8 7 1 0 2

12 35 15 9 21
16 257 183 158 212
20 2518 2234 2136 2364
24 28968 27854 27482 28416
28 361270 356876 355458 359256
32 4707969 4690551 4685150 4700500

(p = ±1, z = ±1)

Total spin S conservation
• difficult to exploit
• complicated basis states
• calculate S using S2=S(S+1)

S2 =
N∑

i=1

N∑

j=1

Si · Sj

= 2
∑

i<j

Si · Sj +
3
4
N
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Example: Thermodynamics
some quantities can be computed using only the magnetization mz=0 sector
• spin-inversion symmetry can be used, smallest blocks
• spin-S state is (2S+1)-fold degenerate (no magnetix field) → weight factor
• possible spin dependence of expectation value → average over mz=−S,...,S

C =
d〈H〉
dt

=
1

T 2

(
〈H2〉 − 〈H〉2

)

χz =
d〈mz〉
dhz

=
1
T

(
〈m2

z〉 − 〈mz〉2
)

〈mz〉 = 0, 〈m2
z〉 =

〈m2
x + m2

y + m2
z〉

3
=

〈S2〉
3

=
S(S + 1)

3

Compared
with leading
high-T forms 
χ = (1/4)/T
C = (3/13)/T2
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The Lanczos method

In the Lanczos basis, H is tridiagonal, convenient to generate and use
• Normally M=50-200 basis states is enough; easy to diagonalize H

The Krylov space and “projecting out” the ground state
Start with an arbitrary state |ψ〉 
• it has an expansion in eigenstates of H; act with a high power Λ of H

HΛ|Ψ〉 =
∑

n

cnEΛ
n |n〉 = EΛ

0

(
c0|0〉 + c1

(
E1

E0

)Λ

|1〉 + . . .

)

If we need only the ground state and a small number of excitations
• can use “Krylov space” methods, which work for much larger matrices
• basis states with 107 states or more can be easily handled (30-40 spins)

For large Λ, if the state with largest |En| dominates the sum 
• one may have to subtract a constant, using H−C, to ensure ground state
• even better to use linear combination of states generated for different Λ

• diagonalize H in this basis

|ψa〉 =
Λ∑

m=0

ψa(m)Hm|Ψ〉, a = 0, . . . ,Λ
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|f1〉 = H|f0〉 − a0|f0〉

Constructing the Lanczos basis

First: construct orthogonal but not normalized basis {fm}. Define

The first state |f0>  is arbitrary, e.g., random. The next one is

Nm = 〈fm|fm〉, Hmm = 〈fm|H|fm〉

Demand orthogonality

〈f1|f0〉 = 〈f0|H|f0〉 − a0〈f0|f0〉 = H00 − a0N0 → a0 = H00/N0

All subsequent states are constructed according to

|fm+1〉 = H|fm〉 − am|fm〉 − bm−1|fm−1〉
am = Hmm/Nm, bm−1 = Nm/Nm−1

Easy to prove orthogonality of all these states (<fm+1|fm>=0 is enough)
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H|fm〉 = |fm+1〉 + am|fm〉 + bm−1|fm−1〉

〈fm−1|H|fm〉 = bm−1Nm−1 = Nm

〈fm|H|fm〉 = amNm

〈fm+1|H|fm〉 = Nm+1

 The hamiltonian in the Lanczos basis
Rewrite the state generation formula

Because of the orthogonality, the only non-0 matrix elements are

|φm〉 =
1√
Nm

|fm〉

But the f-states or not normalized. The normalized states are:

〈φm−1|H|φm〉 =
√

bm−1

〈φm|H|φm〉 = am

〈φm+1|H|φm〉 =
√

bm

In this basis the H-matrix is
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Alternative way
generate the normalized basis directly 
• start with |φ0> arbitrary, normalized, and then

am = 〈φm|H|φm〉
Nm = 〈γm|γm〉−1/2

The definition of Nm is different, and no bm:

Generate |γm> first, normalize to get Nm+1

〈φm−1|H|φm〉 = Nm

〈φm|H|φm〉 = am

〈φm+1|H|φm〉 = Nm+1

The H-matrix is

|φm+1〉 =
1

Nm+1

(
H|φm〉 − am|φm〉 −Nm|φm−1〉

)
=

|γm+1〉
Nm+1

|φ1〉 =
1

N1

(
H|φ0〉 − a0|φ0〉

)
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Operator expectation values
Diagonalizing the tri-diagonal matrix → eigenstates in the Lanczos basis
• eigenvectors vn, energies En
• only some number of low-energy states (<< Λ) are correct eigenstates of H 

ψn(a) =
Λ∑

m=0

vn(m)φm(a), a = 1, . . . ,M

To compute expectation values we go back to the original basis

Convergence properties of the Lanczos method
Example; 24-site chain
mz = 0, k = 0, p = 1, z= 1 
block size M=28416 

Ground state converges first, then successively excited states

〈S2〉 = S(S + 1)

Total spin S extracted
assuming that
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C(r) = 〈Si · Si+r〉(−1)r

Letʼs look at the (staggered) spin correlation function

Spin correlations in the Heisenberg chain

versus the distance r and at r=N/2 versus system size N
Theory (bosonization conformal field theory) predicts (for large r, N)

C(r) ∝ ln1/2(r/r0)
r

Plausible based on N up to 32
• other methods for larger N
Power-law correlations are 
a sign of a “critical” state; 
at the boundary between
• ordered (antiferromagnetic) 
• disordered (spin liquid) 
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