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Exact diagonalization methods

Anders W. Sandvik, Boston University

Representation of states in the computer
¢ bit representation and operations for S=1/2 spins

Using basis states incorporating conservation laws (symmetries)
®* magnetization conservation, momentum states, parity, spin inversion
¢ discussion without group theory
- only basic quantum mechanics and common sense needed
Lanczos diagonalization (ground state, low excitations)
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Numerical diagonalization of the hamiltonian

To find the ground state (maybe excitations, T>0 properties)
of the Heisenberg S=1/2 chain

N
H=J) S;-Sit1= JE:S“1+1+S@$+y+SZ%H]

1=1

N
‘]Z[stz—i—l —|_ (S+Sz+1 _|_ S Sz—|—1)}
1=1
Simplest way computationally; enumerate the states
 construct the hamiltonian matrix using bit-representation of integers
O=|111...,1) (=0...000)
D =|11,0....,0) (=0...001)  Hi;=([H|j)
N =11,1,0,....1) (=0...010) i,7=0,...,2% —1
3N =111....1) (=0...011)
bit representation perfect for S=1/2 systems

* use >1 bit/spin for S>1/2, or integer vector
* construct H by examining/flipping bits
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spin-state manipulations with bit operations

Let a[i] refer to the i:th bit of an integer a

* In Fortran 90 the bit-level function ieor(a,2**i) can be used to flip bit i of a

* bits i and j can be flipped using ieor(a,2**i+2**))

j i
- a TJo[i]o[1]oJo]1]1
2t 193 Tolololt]1]o0l0]0
ieor(a,2" +27) Tolt1]lolol1]ol1]1

Other Fortran 90 functions

ishftc(a,-1,N)
* shifts N bits to the “left”

btest(a,b)
» checks (T or F) bitb of a

ibset(a,b), ibclr(a,b)
e setsto 1 or1bitbofa

Translations and reflections of states

T[‘

T'p

~1 N U R W = D -

27 [0]o]oJ1]1]0]1]1]
54 [0[OTI]1]0]1]1]0]
108 [O]1]1]0[1]1]0]0]
216 [1]1]o]1]1]o]o]0]
177 [1]Jo]1]1]o]o]o]1]
99 [0]1]1]0]0]0]1]1]
198 [1[1[0[0[0[1][1[0]
141 [1]0]Jo[0]1]1]0]1]

216 [1[1]0]1]1]0]0]0]
177 [L]O[1]1][0]0]0]1]
99 [0][1[1]0]0[0[1]1]
198 [1]1]o]o[o]1]1]0]
141 [1]oJoJo[1]1]o[1]
27 [o]oJo[1]1]0]1]1]
54 [OJOJI[1]O]1[1]0]
108 [O]1]1]0]1]1[0[0]
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The S=1/2 Heisenberg chain hamiltonian
can be constructed according to:

doa=0,2" —1
doi=0,N—1
j=mod(i + 1, N)
if (a[i] = a[j]) then

H(a,a) = H(a,a) + 7
else
H(a,a) = H(a,a) — 7
b = flip(a, i,5); H(a,b) = 3
endif
enddo

enddo

j is the “right” nearest-neighbor of i
* periodic boundary conditions
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Diagonalizing the hamiltonian matrix
e on the computer
* gives the eigenvalues and eigenvectors

If U is the matrix whose columns are the eigenvectors of H, then
T
(n|Aln)y = [U" AU |,n
is the expectation value of some operator A in the n:th eigenstate

Problem: Matrix size M=2N becomes too large quickly
e maximum number of spins in practice; N=20
e M? matrix elements to store, time to diagonalize M3

Using conservation laws (symmetries) for block-diagonalization
We can choose the basis in such a way that the H becomes block-diagonal

H |- — —

* the blocks can be diagonalized individually
* we can reach larger N (but not much larger, N=40 is max)

Saturday, August 7, 2010




Simplest example; magnetization conservation

N
m, = g S;
i=1

* blocks correspond to fixed values of m;

* no H matrix elements between states of different m;

* A block is constructed by only including states with a given m;
* corresponds to ordering the states in a particular way

Number of states in the largest block (mz=0): N!/[(N/2)!]2

H

Other symmetries (conserved quantum numbers)

e can be used to further split the blocks

* but more complicated
* basis states have to be constructed to obey symmetries
* e.g., momentum states (using translational invariance)
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Pseudocode: using magnetization conservation
Constructing the basis in the block of nt spins T

Store state-integers in ordered list s,, a=1,....,M Example; N=4, n1=2
dos=02Y _1 s1=3 (0011)
if (>, s[i] =nt) then a =a + 1; s, = s endif so=5 (0101)
enddo ss=6  (0110)

M = a

s4=9 (1001)
How to locate a state (given integer s) in the list? ss=10 (1010)
« stored map s—a may be too big for s=0,...,2N-1 se=12 (1100)

* instead, we search the list sa (here simplest way)

subroutine findstate(s, b)
bmin = 15 bmnax = M
do

if (s < sp) then

bmax = b —1
elseif (s > s;) then
bmin =b + 1

else
exit
endif

enddo

b= bmin + (bmax - bm1n)/2

Finding the location b
of a state-integer s in the list
* using bisection in the ordered list
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Pseudocode; hamiltonian construction

- recall: states labeled a=1,....M

- corresponding state-integers (bit representation) stored as sa
* bit i, s4[i], corresponds to S

doa=1 M loop over states
do:=0,N —1 loop over sites

j =mod(i + 1, N)

if (sq[t] = sa[j]) then check bits of state-integers
H(a,a) = H(a,a) + 7

else
H(a,a) = H(a,a) — %
s = flip(sa, %, 7) state with bits i and j flipped

call findstate(s, b)
H(a,b) = H(a,b) + 3
endif
enddo
enddo
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Magnetization expectation value

N
-3s:
1=1

when we have diagonalized H, we have its eigenvectors
- stored as the columns of the diagonalizing matrix U(i,n)=vec(i,n)
* vec(i,n) is the i:th component of eigenvector n

e1gen Z ¢z (M — 2N)

To calculate <nlm;In> (or any observable diagonal in the spin-z basis):

(njm;|n) = Z¢Z¢J jlm. i)

= Z¢ i|m. i)
— Z¢sz(Z)
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Momentum states (translationally invariant systems)

A periodic chain (ring), translationally invariant
e the eigenstates have a momentum (crystal momentum ) k

Tln) = e™*|n)  k=m>r, m=0...N-1

The operator T translates the state by one lattice spacing
» for a spin basis state

T|S7,55,...,58%) = |Sx,57,--.,SNv_1)

[T,H]=0 — momentum blocks of H
e can use eigenstates of T with given k as basis

A momentum state can be constructed from any representative state

N—1
1 —ikrmr z z
]a(l{;)>:\/—ﬁZe T a),  a) =15%,...,S%)
@ r=0

4-site examples
Construct ordered list of representatives | (0011)—(0110),(1100),(1001)

If la> and |b> are representatives, then (0101)—(1010)

T"|a)y # b) re€{1l,...,N —1}  Convention: the representative is the
one corresponding to the smallest integer
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—1IRT T z z 27T
Ze T ay,  la) =15F,...,5%)  k=m"
a r=0 N
The sum can contain several copies of the same state
«if T%|a) = |a) for some R < N

» the total weight for this component is
1 4+ e kR 4 o—i2kR | —ik(N=R)

 vanishes (state incompatible with k) unless kR=n2rt
* the total weight of the representative is then N/R

R N
kR—nQWH%—nHm—nEHmod(m N/R)=0

la(k))

Normalization of a state la(k)> with periodicity Ra

<a<k>\a<k>>:NiaxRax(Rﬁa) _1.N, g

Basis construction: find all allowed representatives and their periodicities

The block size M is initially not known
» approximately 1/N of total size of fixed m; block
» depends on the periodicity constraint for given k

(a1, a2, as, ..., am)
(R1, R2, R3, ..., Rm)
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Basis construction: find all allowed representatives and their periodicities

(a1, a2, as, ..., am)
(R1, R2, R3, ..., Rm)

The block size M is initially not known
» approximately 1/N of total size of fixed m; block
» depends on the periodicity constraint for given k

do s=0,2% —1

call checkstate(s, R)

if R>0thena=a+4+1; sq =s; R, = R endif
enddo
M = a

Uses a subroutine checkstate(s,R)

]

M = size of
the H-block

TI’

* R = periodicity if integer s is a new representative
e R=-1if

> the magnetization is not the one considered

> some translation of Is> gives an integer < s

> |s> is not compatible with the momentum

~N N B WY~ O

27 [ofofof1f1]O]1]1]

54 [oJoT1]1]oT1]1]0]

108 [of1]1]ol1]1]0f0]

216 [TT1]O]1]1]0]0T0]

177 [L{o]1]1foJofof1]

99 [oJ1T1]oJoJo]1]1]

198 [1T1]JoToJoT1T110]

141 [1]oJolo]1]1To]1]
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Define function cyclebits(t,N)

« F90 function ishiftc(t,—1,N)

Pseudocode; checkstate() subroutine

subroutine checkstate(s, R)

R = -1

if (>, s[t] # nq1) return
t=s

do:=1, N

t = cyclebits(t, N)

if (¢ < s) then
return

elseif (t = s) then
if (mod(k, N/i) # 0) return
R = 1; return

endif

enddo

Translations of the representative; cyclic permutation
* cyclic permutations of first N bits of integer t

The representative has the lowest state-integer among all its translations

check the magnetization

check if translated state has
lower integer representation

check momentum compatibility
-k is the integer corresponding
to the momentum; k=0,...,N-1

*momentum = k2rvN
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The Hamiltonian matrix. Write S = 1/2 chain hamiltonian as

Z ]+17 H]:%(S—i_ j+1+S+Sj+1) ]:1,,N

Act with H on a momentum state

1 N-—1 1 N N-1
Hla(k)) = > e T Hla) = > e T Hyla),
Na’ r=0 Na 7=0 r=0

N-—-1

Hla(k Z

Shift summatlon mdex r and use definition of momentum state

\b —> matrix elements

2

Hla(k)) = Y hje ™
7=0
(a(k)|Hola(k)) Zsj z

(bj (k)| Hj>ola(k)) = e bj) o< T~ Hjla).

Saturday, August 7, 2010 14




Pseudocode; hamiltonian construction
First, some elements needed; recall

Hjla) = hT=Y[by)  |bj) o< TV Hyla)

Finding the representative r of a state-integer s

* lowest integer among all translations

subroutine representative(s, r, )
r=s;t=s;01=0
doi=1,N—1

t = cyclebits(t, N)

if (t <r) then r = t; | = ¢ endif
enddo

Finding the location of the
representative in the state list
* may not be there, if the new

state is incompatible with k
e b=-1 for not found in list

r) =T's)

subroutine findstate(s, d)
bmin = ]-7 bmax = M
do
b= bmin + (bmax - bmln)/2
if (s < sp) then

bmax = b —1
elseif (s > s;) then
bmin =b + 1

else
exit
endif
if (bmin > bmax then
b= —1; exit
endif

enddo
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Construct all the matrix elements

doa=1 M
do:=0,N —1
j=mod(:+ 1, N)
if (sq[t] = sa[j]) then
H(a,a) = H(a,a) +
else
H(a,a) = H(a,a) —
s = flip(sa, 1, J)
call representative(s, r,1)
call findstate(r, b)
if (b > 0) then
H(a,b) = H(a,b) + £+/Rq/Rpe2™F/N
endif
endif
enddo
enddo

=

=
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Reflection symmetry (parity) Define a reflection (parity) operator
P|S7,55,...,8%) = |S%,...,55,57)
Consider a hamiltonian for which [H,P]=0 and [H, T]=0; but note that [P, T]=0

Can we still exploit both P and T at the same time? Consider the state
1 N—1
alk,p)) = == 2. Z e "I (14 pP)la), p=+1
This state has momentum k, but does it have parity p? Act with P

Pla(k, p)) ‘“‘“”T (P +p)la)

1 1o _
=p e""T"(1+pP)la) = pla(k,p))if k=0o0rk=m
Wg (1+pP)la) = pla(k.p)

k=0,m momentum blocks are split into p=+1 and p=-1 sub-blocks
* [T,P]=0 in the k=0, blocks

 physically clear because -k=k on the lattice for k=0,

« we can exploit parity in a different way for other k —
 semi-momentum states
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Semi-momentum states
Mix momenta +k and —k for k0,

ja” (k

)T oy _ ) cos(kr), o=+1
@) Cr(r) { sin(kr), o= —1.
2T

k=m— =1.....N/2—-1 = =1
mN m ..., N/ ., O

States with same k, different o are orthogonal

Semi-momentum states with parity

This state has definite parity with p=+1 or p=-1 for any k

a? (k,p)) = ZC )(1+ pP)T"|a).

VNC??“O

 (k,-1) and (k,+1) blocks
* the basis is of the same size as the original k-blocks
* but these states are real, not complex = computational advantage

* For k#0,1, the p=-1 and p=+1 states are degenerate
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Spin-inversion symmetry

Spin inversion operator: Z|S7,S55,...,5%) =|—57,—55,...,=5%)

In the magnetization block mz=0 we can use eigenstates of Z

a’ (k,p, 2)) = Z C7 (r)(1+pP)(1 + 22)T"|a),

\/NgrO

Zla% (k,p, z2)) = zla’ (k,p, 2)), z==1

Example: block sizes (. i i R
Total spin S conservation
mz=0, k=0 (largest momentum block) « difficult to exploit
(p=+1,2 = +1) e complicated basis states

8 7 1 0 2

12 35 15 9 21 R — S..S.

16 257 183 158 212 ; Zl Y

20 2518 2234 2136 2364 - ;

24 28968 27854 27482 28416

= 2 S, S, +-N

28 361270 356876 355458 359256 Z P9 4

32 4707969 4690551 4685150 4700500 | v )

Saturday, August 7, 2010 19




Example: Thermodynamics

some quantities can be computed using only the magnetization m,=0 sector

* spin-inversion symmetry can be used, smallest blocks

- spin-S state is (2S+1)-fold degenerate (no magnetix field) — weight factor

« possible spin dependence of expectation value — average over m;=-S,...,S

d{H) 1
C = — =) - (1))
; dim,) 1
o= mptt = s ((md) — (m.)?)
2 2 2
(m.) =0 <m2>:<mfc+m?‘/+mz>:<SQ>:S(S+1>
: ’ ? 3 3 3
o5F vV T
oal AN\ TTTEE
: N - Cgmpargd
\ — L=16 with leading
o ) high-T forms
ol i \ X = (1/4)/T
L) C = (3/13)/T2
I
0.1-;,/1

/lllllllllllllllllll
O'%.O 0.5 1.0 1.5 2.0
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The Lanczos method

If we need only the ground state and a small number of excitations
 can use “Krylov space” methods, which work for much larger matrices
* basis states with 107 states or more can be easily handled (30-40 spins)

The Krylov space and “projecting out” the ground state

Start with an arbitrary state 1)
* it has an expansion in eigenstates of H; act with a high power A of H

A
HAMO) = chEmm = B2 <COO> + ¢ (%) 1) +>

n

For large A, if the state with largest |IEnl dominates the sum
* one may have to subtract a constant, using H-C, to ensure ground state
* even better to use linear combination of states generated for different A

lwa Z¢a Hm’qf> a:O,...,A

» diagonalize H in this basis

In the Lanczos basis, H is tridiagonal, convenient to generate and use
* Normally M=50-200 basis states is enough; easy to diagonalize H
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Constructing the Lanczos basis

First: construct orthogonal but not normalized basis {fm}. Define
Nm:<fm‘fm>7 Hmm:<fm‘H‘fm>

The first state Ifo> is arbitrary, e.g., random. The next one is

|f1) = Hlfo) — ao|fo)
Demand orthogonality

(f1lfo) = (folH| fo) — ao{folfo) = Hoo — aoNo — ao = Hoo/Ny
All subsequent states are constructed according to

‘fm+1> — H‘fm> - am’fm> - bm—l‘fm—1>
Am — mm/Nm7 bm—l — Nm/Nm—l

Easy to prove orthogonality of all these states (<fm+1lfmn>=0 is enough)
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The hamiltonian in the Lanczos basis
Rewrite the state generation formula

H‘f’m> — ‘fm+1> + am’fm> + bm—llfm—1>

Because of the orthogonality, the only non-0 matrix elements are

<fm—1 H fm> — bm—le—l — Nm
<fm H fm> — amem
<fm+1 H fm> — Nm+1
But the f-states or not normalized. The normalized states are:
1
‘¢m> — —‘fm>

VN,

In this basis the H-matrix is

<¢m—1 H ¢m> — bm—l
<§bm H ¢m> —  Om
(Sm1Hlbm) = Vbm
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Alternative way

generate the normalized basis directly
e start with I$o> arbitrary, normalized, and then

1
[P1) = E(H\Qb& — ag|o))

_ 1 o ’7m+1>
|§bm_|_1> — Nm+1 (H’¢m> o a’m‘¢m> — Nm’¢m—1>) — Nm_|-1

The definition of Nm is different, and no bm:
U = (Om|H|dm)
Np, = <’7m‘/7m>_1/2

Generate lym> first, normalize to get Nm+1

The H-matrix is

<¢m—1 H ¢m> — Nm
<¢m H ¢m> — Um
<¢m—|-1 H ¢m> — Nm—l—l
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Operator expectation values

Diagonalizing the tri-diagonal matrix — eigenstates in the Lanczos basis
e eigenvectors v, energies Ep
» only some number of low-energy states (<< A) are correct eigenstates of H

To compute expectation values we go back to the original basis
A

Z Un (M) Pm(a),

m=0

a=1,..., M

Convergence properties of the Lanczos method

20 Ny 40 Example; 24-site chain
al — ) m;=0,k=0,p=1,2=1
o moo n=2 b\ block size M=28416
TTTon= [\ .
< ‘6_' ! N Total spin S extracted
3l o\ \ N -==" 1 assuming that
B N /
' it I N (S%) =S(S+1)
-10F : N
[ PR ST S S N SR S SR S N T ST S S | ] O [ — .\W_._IA. b1
0 10 20 30 40 0 20 30 40
A A

Ground state converges first, then successively excited states
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Spin correlations in the Heisenberg chain
Let’s look at the (staggered) spin correlation function
C(r) = (Si - Sipr)(=1)"
versus the distance r and at r=N/2 versus system size N

Theory (bosonization conformal field theory) predicts (for large r, N)

In'/2(r 70
C'(r) o« (r/7o)
r
Plausible based on Nupto 32  025- ]
 other methods for larger N
Power-law correlations are = 0201 i
a sign of a “critical” state; =
at the boundary between =
- ordered (antiferromagnetic)
» disordered (spin liquid)
0.10 | | | | | | | |
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