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Lecture outline

¢ |[ntroduction to quantum spin systems

e Exact diagonalization methods
- use of symmetries for block diagonalization
- full diagonalization and the Lanczos method

e Quantum Monte Carlo o
- introduction to path integrals @
- the stochastic series expansion (SSE) method

e Studies of quantum phase transitions
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Classical spin models

Lattice models with “spin” degrees of freedom at the vertices
Classified by type of spin:

¢ Ising model: discrete spins, normally two-state oi= -1, +1
e XY model: planar vector spins (normally of length S=1)
e Heisenberg model: 3-dimensional vector spins (S=1)

Statistical mechanics
e spin configurations C oo A&i
e energy E(C) ‘

e some quantity Q(C)
e temperature T (ks=1)

@ O0;=+1

E = ZJ..O-.O-. (|sing)
1 1701V 5
<Q> _ 2 Z Q(C)G_E(C)/T i)
C

E = Z ng; . gj = Z Jij COS(@@' — @J) (XY)
Z =Y e PO (i3) (i)
C

E = Z szg; : gj (Heisenberg)
(i5)
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Phase transition: The 2D Ising model
Ground state (T=0) depends on J, E(0)/N=-2J

E:JZUina o; = *x1
(4,5)

* +J and -J systems are trivially related by sublattice transformation
o; — —o; for i on sublattice A

* Ising ferromagnet and antiferromagnet have identical properties

T > 0, thermal expectation values, phase transition

(A) = % Y Ajem Tz = e BT

1 1 .
M = N Z g; <M = Nzi:ai(—l)'”+ i for AF)

Te/J =~ 2.27

v
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Quantum spins
Spin magnitude S; basis states |$%1,5%,...,8*n> S§% = -S, ..., S-1, S
Commutation relations:

[S7,S8Y] =ihS? (weset h=1)

(A J

Ladder (raising and lowering) operators:
St =5 +isY, S =87 —iS!

SFIS7) = /S(S+1)— Si(S7+1)[S7+ 1),

S7IS7) = /(S +1) - S7(SF - 1)|57 ~ 1),

Spin (individual) squared operator: S?|S?) = S(S + 1)|S7)
S=1/2 spins; very simple rules

1S7=+35)=11), |S7P=-%)=]1:)
SEI T =451y STIT) =1l ST =0
Sl L)y =—35li)  Slly=1) Silli)=0
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Quantum spin models

Ising, XY, Heisenberg hamiltonians

¢ the spins always have three (x,y,z) components

e interactions may contain 1 (Ising), 2 (XY), or 3 (Heisenberg) components

H = Z JiijS;-’ = iz Jijoi;0;  (Ising)
(29) (27)

H=> J;[SFS;+8YSY =4 JylSFS; +5;8 v
(i7) (i5)

H = Z JZJS; . gj = Z Jij [SZZS]Z + %(SZ—'_SJ_ + SZ_S;_)] (Heisenberg)
(27) (27)

Quantum statistical mechanics M—1
1

_ o —~H/T | _ —E,/T
:—TI'{ eH/T} Z—TI'{Q }— €
Q) = Tr{Q 2
Large size M of the Hilbert space; M=2" for S=1/2
- difficult problem to find the eigenstates and energies
- we are also interested in the ground state (T—0)
- for classical systems the ground state is often trivial
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Why study quantum spin systems?

Solid-state physics

e |ocalized electronic spins in Mott insulators (e.g., high-Tc cuprates)

e large variety of lattices, interactions, physical properties

e search for “exotic” quantum states in such systems (e.g., spin liquid)

Ultracold atoms (in optical lattices)
e spin hamiltonians can (?) be engineered
e some boson systems are very similar to spins (e.g., “hard-core” bosons)

Quantum information theory / quantum computing
¢ possible physical realizations of quantum computers using interacting spins
e many concepts developed using spins (e.g., entanglement)

Generic quantum many-body physics
¢ testing grounds for collective quantum behavior, qguantum phase transitions
¢ identify “Ising models” of quantum many-body physics

Particle physics / field theory / quantum gravity

¢ some quantum-spin phenomena have parallels in high-energy physics
® .g., spinon (quark) confinement-deconfinement transition

e spin foams (?)

Friday, August 6, 2010




Prototypical Mott insulator; high-Tc cuprates (antiferromagnets)

superexchange mechanism

13.18 A

c

CuO:2 planes, localized spins on Cu sites
- Lowest-order spin model: S=1/2 Heisenberg
- Super-exchange coupling, J=1500K

. | H=J § S, -
Many other quasi-1D and quasi-2D cuprates
* chains, ladders, impurities and dilution, frustrated interactions, . (,9)
o
H 14
& 1 i ) e Cu(S=1/2)
A *—o " ) =1 +—i & ° 2h1 (S — )
-2 I .—I
,.
Ladder systems non-magnetic impurities/dilution
- even/odd effects - dilution-driven phase transition
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The antiferromagnetic (Néel) state and quantum fluctuations
The ground state of the 2D Heisenberg model

H = JZS - S —JZS’"SZ 5(SFS; +S757)

Does the “staggered” (Neel) order survive quantum fluctuations?
e order parameter: staggered (sublattice) magnetization

1 -
=~ Z 0:iS;, O = )*itYi (2D square lattice)

Mg
1=1
i L (55 % ey

® For S— (classical limit) <ms>—S
¢ what happens for small S (especially S=1/2)?

e <ms> =~ 0.31 (=60% of classical value 1/2)

e demonstrated using quantum Monte Carlo (Reger and Young, 1989)
* in good agreement with experiments on cuprates
- neutron scattering, NMR,...

¢ 1D Heisenberg chain: no magnetic order (Mermin-Wagner theorem)
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Non-magnetic states in 2D

Consider two spins, i and j, in isolation:
H; = JiS; - S; = Jij[S7S; + 2(S;S; + 5;757))]

For Ji>0 the ground state is the singlet;

|¢Zsj> _ \Tzlﬂ\glﬁﬂ, Eij _ _3Jij/4

The Néel states have higher energy (expectation values; not eigenstates)
o) = 1aly), o) = 1Ly),  (Hy) = —Ji/4
The Néel states are product states:
Nao\ __ __
93570 = Tl = 1) ®@11,)

The singlet is a maximally entangled state
(furthest from product state)
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N>2: each spin tends to entangle with its neighbors
e entanglement is energetically favorable
e but cannot singlet-pair with more than 1 spin
e leads to fluctuating singlets (valence bonds)
= |ess entanglement, <Hij> > -3J;/4
= closer to a product state (e.g., Néel)

e non-magnetic states possible (N=c)
= resonating valence-bond (RVB) spin liquid
= valence-bond solid (VBS)

RVB Translationally invariant state
® no broken symmetries

Broken translational symmetry

* “strong” and “weak”
correlations of neighbors
(S(r) - S(r + %))

— = (1) -V (S(x) - S(r +39))
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Quantum phase transitions (T=0; change in ground-state)
Example: Dimerized S=1/2 Heisenberg models

e every spin belongs to a dimer (strongly-coupled pair)

¢ many possibilities, e.g., bilayer, dimerized single layer

== Strong interactions

g=Jo/J1 mmm Weak interactions
J2 Jg

J1 J1

Singlet formation on strong bonds => Neel - disordered transition
Ground state (T=0) phases

M A A = spin gap
1 \./ >
T egnevT  Go ELT 5 @) 1N J
£ oo LT

2D quantum spins map onto (2+1)D classical spins (Haldane)
® Continuum field theory: nonlinear a-model (Chakravarty, Halperin, Nelson)
= 3D classical Heisenberg (O3) universality class expected
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S=1/2 Heisenberg chain with frustrated interactions

N N
H = legi' S 11 +J22§i'§i+2
J2 =1

1=1
Different types of ground states, depending on the ratio g=J2/J1 (both >0)

» Antiferromagnetic “quasi order” (critical state) for g<0.2411...
- exact solution - Bethe Ansatz - for J>=0

- bosonization (continuum field theory) approach gives further insights
- spin-spin correlations decay as 1/r

5 & 2 (r/ro)
O(r) = (S - Sier) ~ (=1)"——
- gapless spin excitations (“spinons”, not spin waves!)

* VBS order for g>0.2411... the ground state is doubly-degenerate state
- gap to spin excitations; exponentially decaying spin correlations
O(r) = (S - i) ~ (~1)7e ™8

- singlet-product state is exact for g=0.5 (Majumdar-Gosh point)

—ellills—ellle—ellle —elllle —ellle—ell
e —allle—ellle —ellle —elllle —ellle—

Friday, August 6, 2010

12



Frustration in higher dimensions
There are many (quasi-)2D and 3D materials with geometric spin frustration
® no classical spin configuration can minimize all bond energies

NNV VNV NV VY v RN / A
AVAVAVAVAVAVAVARRID QS = | l S S
ANNNNNY > P ol
ANANNNNNY | )\ *\ \ /T’:?
AVAVAVAVAVAVAY; Nt Bt b
ANNANANNDY S P SIS
triangular Kagome SrCuz(B0O3)2 Pyroclore
(hexagonal) (Shastry-Sutherland)

A single triangular cell:
¢ 6-fold degenerate Ising model
e “120° Néel” order for vectors

Infinite triangular lattice
¢ highly degenerate Ising model (no order)
e “120° Néel” (3-sublattice) order for vectors

S$=1/2 quantum triangular Heisenberg model
¢ the classical 3-sublattice order most likely survives
[White and Chernyshev, PRL 2007]

S=1/2 Kagome system
e very challenging, active research field; VBS or spin liquid?
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Frustration due to longer-range antiferromagnetic interactions in 2D
Quantum phase transitions as some coupling (ratio) is varied
¢ J1-J2 Heisenberg model is the prototypical example

e Ground states for small and large g are well understood
» Standard Néel order up to g=0.45

» collinear magnetic order for g>0.6

N Y CIEN .
/ /
( ) (l) , ® \ , N 2N ’
I\ I I Is
- 4
’ \‘; ~
N /

0<g<0.45 0.45 < g < 0.6
* A non-magnetic state exists between the magnetic phases
» Most likely a VBS (what kind? Columnar or “plaquette?)
» Some calculations (interpretations) suggest spin liquid
¢ 2D frustrated models are challenging

» no generally applicable unbiased methods (numerical or analytical)
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Finite-lattice calculations
Numerically exact calculations (no approximations) for finite lattices
e extrapolate to infinite size, to learn about
» the ground state and excitations
» nature of quantum phase transitions
» associated T>0 physics
Example: Dimerized Heisenberg model
e QMC results for LxL lattices

I 1 I

<-

0.15:-

=010}

<m 2>

0.05

10 15 20 2 3. 0005 01 015 02 025

It is often known how various quantities should depend on L
e in a Néel state, spin-wave theory = (m2(L)) = (mZ(<)) +a/L + ...
¢ use finite-size scaling theory to study the quantum-critical point
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