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Quantum spin systems - models and 
computational methods 

Lecture outline
• Introduction to quantum spin systems
• Exact diagonalization methods

- use of symmetries for block diagonalization
- full diagonalization and the Lanczos method

• Quantum Monte Carlo
- introduction to path integrals
- the stochastic series expansion (SSE) method

• Studies of quantum phase transitions
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Classical spin models
Lattice models with “spin” degrees of freedom at the vertices

Classified by type of spin:

• Ising model: discrete spins, normally two-state σi = -1, +1
• XY model: planar vector spins (normally of length S=1)
• Heisenberg model: 3-dimensional vector spins (S=1)

Statistical mechanics
• spin configurations C
• energy E(C)
• some quantity Q(C)
• temperature T (kB=1)

〈Q〉 =
1
Z

∑

C

Q(C)e−E(C)/T

Z =
∑

C

e−E(C)/T

E =
∑

〈ij〉

Jijσiσj

E =
∑

〈ij〉

Jij
!Si · !Sj =

∑

〈ij〉

Jij cos(Θi −Θj)

E =
∑

〈ij〉

Jij
!Si · !Sj

(Ising)

(XY)

(Heisenberg)
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Phase transition: The 2D Ising model

E = J
∑

〈i,j〉

σiσj , σi = ±1

Ground state (T=0) depends on J, E(0)/N=-2J

• +J and -J systems are trivially related by sublattice transformation

• Ising ferromagnet and antiferromagnet have identical properties
σi → −σi for i on sublattice A

T > 0, thermal expectation values, phase transition

Tc/J ≈ 2.27

M =
1
N

∑

i

σi

〈A〉 =
1
Z

∑

n

Ane−En/T , Z =
∑

n

e−En/T

〈M〉 ∼ (Tc − T )β

(
M =

1
N

∑

i

σi(−1)xi+yi for AF

)
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Quantum spins
Spin magnitude S; basis states |Sz1,Sz2,...,SzN>,   Szi = -S, ..., S-1, S

Commutation relations: 

[Sx
i , Sy

i ] = i!Sz
i (we set ! = 1)

[Sx
i , Sy

j ] = [Sx
i , Sz

j ] = . . . = [Sz
i , Sz

j ] = 0 (i != j)

Spin (individual) squared operator: S2
i |Sz

i 〉 = S(S + 1)|Sz
i 〉

S=1/2 spins; very simple rules

Sz
i | ↑i〉 = +1

2 | ↑i〉 S−i | ↑i〉 = | ↓i〉 S+
i | ↑i〉 = 0

Sz
i | ↓i〉 = − 1

2 | ↓i〉 S+
i | ↓i〉 = | ↑i〉 S−i | ↓i〉 = 0

|Sz
i = +1

2 〉 = | ↑i〉, |Sz
i = − 1

2 〉 = | ↓i〉

Ladder (raising and lowering) operators:

S+
i |Sz

i 〉 =
√

S(S + 1)− Sz
i (Sz

i + 1)|Sz
i + 1〉,

S−i |Sz
i 〉 =

√
S(S + 1)− Sz

i (Sz
i − 1)|Sz

i − 1〉,

S+
i = Sx

i + iSy
i , S−i = Sx

i − iSy
i
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Quantum spin models
Ising, XY, Heisenberg hamiltonians
• the spins always have three (x,y,z) components
• interactions may contain 1 (Ising), 2 (XY), or 3 (Heisenberg) components  

H =
∑

〈ij〉

Jij
!Si · !Sj =

∑

〈ij〉

Jij [Sz
i Sz

j + 1
2 (S+

i S−
j + S−

i S+
j )]

H =
∑

〈ij〉

Jij [Sx
i Sx

j + Sy
i Sy

j ] = 1
2

∑

〈ij〉

Jij [S+
i S−

j + S−
i S+

j ]

H =
∑

〈ij〉

JijS
z
i Sz

j = 1
4

∑

〈ij〉

Jijσiσj (Ising)

(XY)

(Heisenberg)

〈Q〉 =
1
Z

Tr
{

Qe−H/T
}

Quantum statistical mechanics

Z = Tr
{

e−H/T
}

=
M−1∑

n=0

e−En/T

Large size M of the Hilbert space; M=2N for S=1/2
- difficult problem to find the eigenstates and energies 
- we are also interested in the ground state (T→0)
    - for classical systems the ground state is often trivial
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Why study quantum spin systems?

Solid-state physics
• localized electronic spins in Mott insulators (e.g., high-Tc cuprates)
• large variety of lattices, interactions, physical properties
• search for “exotic” quantum states in such systems (e.g., spin liquid)

Ultracold atoms (in optical lattices)
• spin hamiltonians can (?) be engineered
• some boson systems are very similar to spins (e.g., “hard-core” bosons)

Quantum information theory / quantum computing
• possible physical realizations of quantum computers using interacting spins
• many concepts developed using spins (e.g., entanglement)

Generic quantum many-body physics
• testing grounds for collective quantum behavior, quantum phase transitions
• identify “Ising models” of quantum many-body physics

Particle physics / field theory / quantum gravity
• some quantum-spin phenomena have parallels in high-energy physics

• e.g., spinon (quark) confinement-deconfinement transition
• spin foams (?)
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H = J
∑

〈i,j〉

!Si · !Sj

Prototypical Mott insulator; high-Tc cuprates (antiferromagnets)

CuO2 planes, localized spins on Cu sites
- Lowest-order spin model: S=1/2 Heisenberg
- Super-exchange coupling, J≈1500K

Many other quasi-1D and quasi-2D cuprates
• chains, ladders, impurities and dilution, frustrated interactions, ...

Ladder systems
- even/odd effects

non-magnetic impurities/dilution
- dilution-driven phase transition

• Cu (S = 1/2)
• Zn (S = 0)
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The antiferromagnetic (Néel) state and quantum fluctuations
The ground state of the 2D Heisenberg model 

H = J
∑

〈ij〉

!Si · !Sj = J
∑

〈ij〉

[Sz
i Sz

j + 1
2 (S+

i S−
j + S−

i S+
j )]

Does the “staggered” (Néel) order survive quantum fluctuations?
• order parameter: staggered (sublattice) magnetization

!ms =
1
N

(
!SA − !SB

)

!ms =
1
N

N∑

i=1

φi
!Si, φi = (−1)xi+yi (2D square lattice)

• For S→∞ (classical limit) <ms>→S
• what happens for small S (especially S=1/2)?

• <ms> ≈ 0.31 (≈60% of classical value 1/2)
• demonstrated using quantum Monte Carlo  (Reger and Young, 1989)
• in good agreement with experiments on cuprates

- neutron scattering, NMR,... 

• 1D Heisenberg chain: no magnetic order (Mermin-Wagner theorem)
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Non-magnetic states in 2D

The Néel states have higher energy (expectation values; not eigenstates)

|φNa
ij 〉 = |↑i↓j〉, |φNb

ij 〉 = |↓i↑j〉, 〈Hij〉 = −Jij/4

For Jij>0 the ground state is the singlet;

|φs
ij〉 =

|↑i↓j〉 − |↓i↑j〉√
2

, Eij = −3Jij/4

The Néel states are product states: 

|φNa
ij 〉 = |↑i↓j〉 = |↑i〉 ⊗ |↓j〉

The singlet is a maximally entangled state 
(furthest from product state)

Consider two spins, i and j, in isolation:

Hij = Jij
!Si · !Sj = Jij [Sz

i Sz
j + 1

2 (S+
i S−j + S−i S+

j )]
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N>2: each spin tends to entangle with its neighbors 
• entanglement is energetically favorable
• but cannot singlet-pair with more than 1 spin
• leads to fluctuating singlets (valence bonds)
➡ less entanglement, <Hij> > -3Jij/4
➡ closer to a product state (e.g., Néel)

• non-magnetic states possible (N=∞)
➡ resonating valence-bond (RVB) spin liquid
➡ valence-bond solid (VBS)

= (| ↑↓〉 − | ↓↑〉)/
√

2

Translationally invariant state
• no broken symmetries

Broken translational symmetry
• “strong” and “weak” 

correlations of neighbors

〈!S(r) · !S(r + x̂)〉
〈!S(r) · !S(r + ŷ)〉

10Friday, August 6, 2010



Quantum phase transitions (T=0; change in ground-state)
Example: Dimerized S=1/2 Heisenberg models
• every spin belongs to a dimer (strongly-coupled pair)
• many possibilities, e.g., bilayer, dimerized single layer

2D quantum spins map onto (2+1)D classical spins (Haldane) 
• Continuum field theory: nonlinear σ-model  (Chakravarty, Halperin, Nelson)
⇒ 3D classical Heisenberg (O3) universality class expected

Singlet formation on strong bonds ➙ Neel - disordered transition
Ground state (T=0) phases

∆ = spin gaps

weak interactions

strong interactions
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S=1/2 Heisenberg chain with frustrated interactions

= J2

= J1

• Antiferromagnetic “quasi order” (critical state) for g<0.2411...
    - exact solution - Bethe Ansatz - for J2=0
   - bosonization (continuum field theory) approach gives further insights
   - spin-spin correlations decay as 1/r

  
    - gapless spin excitations (“spinons”, not spin waves!) 

C(r) = 〈!Si · !Si+r〉 ∼ (−1)r ln1/2(r/r0)
r

• VBS order for g>0.2411... the ground state is doubly-degenerate state
   - gap to spin excitations; exponentially decaying spin correlations

   - singlet-product state is exact for g=0.5 (Majumdar-Gosh point)

C(r) = 〈!Si · !Si+r〉 ∼ (−1)re−r/ξ

Different types of ground states, depending on the ratio g=J2/J1 (both >0)

H = J1

N∑

i=1

!Si · !Si+1 + J2

N∑

i=1

!Si · !Si+2
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Frustration in higher dimensions
There are many (quasi-)2D and 3D materials with geometric spin frustration
• no classical spin configuration can minimize all bond energies

Kagome Pyroclore
triangular

(hexagonal)
SrCu2(BO3)2 

(Shastry-Sutherland)

A single triangular cell:
• 6-fold degenerate Ising model
• “120º Néel” order for vectors

Infinite triangular lattice
• highly degenerate Ising model (no order)
• “120º Néel” (3-sublattice) order for vectors

S=1/2 quantum triangular Heisenberg model
• the classical 3-sublattice order most likely survives

[White and Chernyshev, PRL 2007]

S=1/2 Kagome system
• very challenging, active research field; VBS or spin liquid?
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Frustration due to longer-range antiferromagnetic interactions in 2D
Quantum phase transitions as some coupling (ratio) is varied
• J1-J2 Heisenberg model is the prototypical example

H =
∑

〈i,j〉

Jij
!Si · !Sj

= J1

= J2

g = J2/J1

• Ground states for small and large g are well understood
‣ Standard Néel order up to g≈0.45
‣ collinear magnetic order for g>0.6 

0 ≤ g < 0.45 0.45 ≤ g < 0.6 g > 0.6
• A non-magnetic state exists between the magnetic phases
‣ Most likely a VBS (what kind? Columnar or “plaquette?)
‣ Some calculations (interpretations) suggest spin liquid

• 2D frustrated models are challenging 
‣ no generally applicable unbiased methods (numerical or analytical)
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Finite-lattice calculations
Numerically exact calculations (no approximations) for finite lattices
• extrapolate to infinite size, to learn about
‣ the ground state and excitations
‣ nature of quantum phase transitions
‣ associated T>0 physics

Example: Dimerized Heisenberg model
• QMC results for L×L lattices

• in a Néel state, spin-wave theory → 〈m2
s(L)〉 = 〈m2

s(∞)〉+ a/L + . . .

It is often known how various quantities should depend on L

• use finite-size scaling theory to study the quantum-critical point
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