Algorithms in Lattice Gauge Theory and Spin Systems IACS, Kolkata, Jan 27 - Feb 1, 2020

III. Applications

Anders W Sandvik

Finite-size scaling at critical points

- general method illustrated by 2D Ising model

Examples

- scaling corrections in dimerized Heisenberg models
- quantum phase transition inTICuCl₃ (3d dimerized Heisenberg)
- deconfined quantum criticality (J-Q models)
- emergent symmetries
- detecting deconfined spinons in spectral functions
- plaquett-solid state in SrCu₂(BO₃)₂; unusual first-order transition
- random-singlet state in the presence of disorder

Classical and quantum phase transitions

Classical (thermal) phase transition

- Fluctuations regulated by temperature T>0

Quantum (ground state, T=0) phase transition

- Fluctuations regulated by parameter g in Hamiltonian

In both cases phase transitions can be

- <u>first-order (discontinuous)</u>: finite correlation length ξ as $g \rightarrow g_c$ or $g \rightarrow g_c$
- <u>continuous</u>: correlation length diverges, ξ~|g-g_c|-ν or ξ~|T-T_c|-ν

There are many similarities between classical and quantum transitions

- and also important differences

The quantum phases (ground states) can also be highly non-trivial - even with rather simple lattice models

Example: Néel-paramagnetic quantum phase transition

Dimerized S=1/2 Heisenberg models

- every spin belongs to a dimer (strongly-coupled pair)
- many possibilities, e.g., bilayer, dimerized single layer

strong interactions

weak interactions

Singlet formation on strong bonds \rightarrow Néel - quantum-paramagnetic transition Ground state (T=0) phases

 \Rightarrow 3D classical Heisenberg (O3) universality class; QMC confirmed Experimental realization (3D coupled-dimer system): TICuCl₃

What's so special about quantum-criticality?

- large T>0 quantum-critical "fan" where T is the only relevant energy scale
- physical quantities show power laws governed by the T=0 critical point

2D Neel-paramegnet "cross-over diagram" [Chakravarty, Halperin, Nelson, PRB 1988]

QC: Universal quantum critical scaling regime

Changing T is changing the imaginary-time size L_{τ} :

- Finite-size scaling at gc leads to power laws
 - $\xi \sim T^{-1}$ $C \sim T^2$ (correlation length)
 - (specific heat)
 - $\chi(0) \sim T$ (uniform magnetic susceptibility)

Quantum phase transition (T=0) can be unusual - 'beyond Landau'

QMC used to test existing theories, discover new physics,...

Phase transitions - Finite-size scaling

Correlation length divergent for $T \to T_c$ $\xi \propto |\delta|^{-\nu}$, $\delta = T - T_c$ Other singular quantity: $A(L \to \infty) \propto |\delta|^{\kappa} \propto \xi^{-\kappa/\nu}$ For **L-dependence** at T_c just let $\xi \to L$: $A(T \approx T_c, L) \propto L^{-\kappa/\nu}$ Close to critical point: $A(L, T) = L^{-\kappa/\nu} g(\xi/L) = L^{-\kappa/\nu} f(\delta L^{1/\nu})$

2D Ising universality class $\gamma = 7/4, \ \nu = 1$ Critical T known

$$T_c = 2/\ln(1+\sqrt{2}) \approx 2.2692$$

When these are not known, treat as fitting parameters - or extract in other way

Binder ratios and cumulants

Consider the dimensionless ratio

 $R_2 = \frac{\langle m^4 \rangle}{\langle m^2 \rangle^2}$

We know R_2 exactly for $N \rightarrow \infty$

• for T<T_c: $P(m) \rightarrow \delta(m-m^*) + \delta(m+m^*)$ m^{*}=|peak m-value|. $R_2 \rightarrow 1$

• for T>T_c: $P(m) \rightarrow exp[-m^2/a(N)]$

 $a(N) \sim N^{-1} \mathbb{R}_2 \rightarrow 3$ (Gaussian integrals)

different

at T_c

and 2L

The **Binder cumulant** is defined as (n-component order parameter; n=1 for Ising)

$$U_{2} = \frac{n+2}{2} \left(1 - \frac{n}{n+2} R_{2} \right) \rightarrow \begin{cases} 1, & T < T_{c} \\ 0, & T > T_{c} \end{cases}$$
2D Ising model; MC results
$$\int_{0}^{0} \frac{1}{1-2} \left(1 - \frac{n}{n+2} R_{2} \right) \rightarrow \left\{ 1, & T < T_{c} \\ 0, & T > T_{c} \\ 0 - \frac{1}{1-2} \left(1 - \frac{n}{n+2} R_{2} \right) \right) \rightarrow \left\{ 1, & T < T_{c} \\ 0, & T > T_{c} \\ 0 - \frac{1}{1-2} \left(1 - \frac{n}{n+2} R_{2} \right) \rightarrow \left\{ 1, & T < T_{c} \\ 0, & T > T_{c} \\ 0 - \frac{1}{1-2} \left(1 - \frac{n}{n+2} R_{2} \right) \right\}$$

$$\int_{0}^{1} \frac{1}{1-2} \left(1 - \frac{n}{n+2} R_{2} \right) \rightarrow \left\{ 1, & T < T_{c} \\ 0, & T > T_{c} \\ 0 - \frac{1}{1-2} \left(1 - \frac{n}{n+2} R_{2} \right) \rightarrow \left\{ 1, & T < T_{c} \\ 0, & T > T_{c} \\ 0 - \frac{1}{1-2} \left(1 - \frac{n}{n+2} R_{2} \right) \rightarrow \left\{ 1, & T < T_{c} \\ 0, & T > T_{c} \\ 0 - \frac{1}{1-2} \left(1 - \frac{n}{n+2} R_{2} \right) \rightarrow \left\{ 1, & T < T_{c} \\ 0, & T > T_{c} \\ 0 - \frac{1}{1-2} \left(1 - \frac{n}{n+2} R_{2} \right) \rightarrow \left\{ 1, & T < T_{c} \\ 0 - \frac{1}{1-2} \left(1 - \frac{n}{n+2} R_{2} \right) \rightarrow \left\{ 1, & T < T_{c} \\ 0, & T > T_{c} \\ 0 - \frac{1}{1-2} \left(1 - \frac{n}{n+2} R_{2} \right) \rightarrow \left\{ 1, & T < T_{c} \\ 0, & T > T_{c} \\ 0 - \frac{1}{1-2} \left(1 - \frac{n}{n+2} R_{2} \right) \rightarrow \left\{ 1, & T < T_{c} \\ 0, & T > T_{c} \\ 0 - \frac{1}{1-2} \left(1 - \frac{n}{n+2} R_{2} \right) \rightarrow \left\{ 1, & T < T_{c} \\ 0, & T > T_{c} \\ 0 - \frac{1}{1-2} \left(1 - \frac{n}{n+2} R_{2} \right) \rightarrow \left\{ 1, & T < T_{c} \\ 0, & T > T_{c} \\ 0 - \frac{1}{1-2} \left(1 - \frac{n}{n+2} R_{2} \right) \rightarrow \left\{ 1, & T < T_{c} \\ 0, & T > T_{c} \\ 0,$$

Systematic crossing-point analysis (2D Ising)

Fit with L_{min}=12: T_c=2.2691855(5). Correct: T_c=2.2691853...

Case with more significant corrections

- common at quantum critical points
- S=1/2 Heisenberg model with
- columnar dimers (CDM)
- staggered dimers (SDM)

The SDM has been controversial

- O(3) or new universality class
- strange scaling behaviors

PHYSICAL REVIEW LETTERS 121, 117202 (2018)

Anomalous Quantum-Critical Scaling Corrections in Two-Dimensional Antiferromagnets Nysen Ma,^{1,2,3} Phillip Weinberg,³ Hui Shao,^{4,3} Wenan Guo,^{5,4} Dao-Xin Yao,^{1,*} and Anders W. Sandvik^{3,2,†}

Analyze critical behavior with two scaling corrections taken into account

$$O(g,L) = f[(g - g_c)L^{1/\nu}, \lambda_1 L^{-\omega_1}, \lambda_2 L^{-\omega_2}, \cdots]$$

Taylor expand, analyze crossing points for different dimensionless quantities

Compare CDM and SDM behaviors

Leading-order cross-point shifts

$$g^*(L) = g_c + aL^{-\omega_1 - 1/\nu},$$

 $O^*(L) = O_c + bL^{-\omega_1},$

- Works for CDM, ω₁≈0.78
- Two corrections needed for SDM ω₁≈0.78, ω₂≈1.25
- Fits within theory where the SDM field theory needs a new term (Fritz et al, PRB 2012)

Order parameter at the critical point

$$m^2 \rangle_c \propto L^{-(1+\eta)} (1 + b_1 L^{-\omega_1} + b_2 L^{-\omega_2} + \ldots)$$

$$\eta^*(L) = \ln[\langle m^2(L) \rangle_c / \langle m^2(2L) \rangle_c] / \ln(2) - 1$$

$$\eta^*(L) = \eta + c_1 L^{-\omega_1} + c_2 L^{-\omega_2} + \dots$$

TICuCl₃

Quantum and classical criticality in a dimerized quantum antiferromagnet

P. Merchant¹, B. Normand², K. W. Krämer³, M. Boehm⁴, D. F. McMorrow¹ and Ch. Rüegg^{1,5,6*}

nature

physics

3D Network of dimers- couplings can be changed by pressure

Universality of the Neel temperature in 3D dimerized systems?

[S. Jin, AWS, PRB2012]

Determine the Neel ordering temperature T_N and the T=0 ordered moment m_s for 3 different dimerization

patterns

Example: Columnar dimers

Couplings vs pressure not known experimentally

- plot T_N vs m_s to avoid this issue and study universality
- but how to normalize T_{N?}

Three normalizations

- weaker copling J₁
- sum J_s of couplings per spin
- peak T* of magnetic susceptibility

T* normalization is accessible experimentally

- some experimental susc. results available
- neutron data analyzed with this normalization

Same features observed in models and experiment

 experimental slope about 25% lower if g-factor =2 assumed (what exactly is the g-factor?)

More recent works to study log corrections, dynamics,.... Qin, Normand, Sandvik, Meng, PRB 2015, PRL 2017

Amplitude Mode in Three-Dimensional Dimerized Antiferromagnets

Yan Qi Qin,¹ B. Normand,² Anders W. Sandvik,³ and Zi Yang Meng¹

More complex non-magnetic states; systems with 1 spin per unit cell

$$\mathbf{H} = \mathbf{J} \sum_{\langle \mathbf{i}, \mathbf{j} \rangle} \mathbf{S}_{\mathbf{i}} \cdot \mathbf{S}_{\mathbf{j}} + \mathbf{g} \times \cdots$$

highly non-trivial non-magnetic ground states are possible, e.g.,

- resonating valence-bond (RVB) spin liquid
- ➡ valence-bond solid (VBS)

Non-magnetic states often have natural descriptions with valence bonds

$$\int_{i} \int_{j} = (\uparrow_{i} \downarrow_{j} - \downarrow_{i} \uparrow_{j}) / \sqrt{2}$$

The basis including bonds of all lengths is **overcomplete** in the singlet sector

non-magnetic states dominated by short bonds

Deconfined quantum criticality

Senthil, Vishwanath, Balents, Sachdev, Fisher (Science 2004) (+ many previous works; Read & Sachdev, Sachdev & Murthy, Motrunich & Vishwanath....)

Continuous AF - VBS transition at T=0

- would be violation of Landau rule
- first-order would normally be expected
- role of topological defects

Numerical (QMC) tests using J-Q models

The "J-Q" model with two projectors is (Sandvik, PRL 2007)

$$H = -J\sum_{\langle ij\rangle} C_{ij} - Q\sum_{\langle ijkl\rangle} C_{ij}C_{kl}$$

- Has Néel-VBS transition, appears to be continuous
- Not a realistic microscopic model for materials
- "Designer Hamiltonian" for VBS physics and AF-VBS transition
- Unusual scaling properties [Shao, Guo, Sandvik (Science 2016)]

Phase transition in the J-Q model

Staggered magnetization

$$\vec{M} = \frac{1}{N} \sum_{i} (-1)^{x_i + y_i} \vec{S}_i$$

Dimer order parameter (D_x,D_y)

$$D_x = \frac{1}{N} \sum_{i=1}^N (-1)^{x_i} \mathbf{S}_i \cdot \mathbf{S}_{i+\hat{x}}$$
$$D_y = \frac{1}{N} \sum_{i=1}^N (-1)^{y_i} \mathbf{S}_i \cdot \mathbf{S}_{i+\hat{y}}$$

Binder cumulants:

$$U_s = \frac{5}{2} \left(1 - \frac{1}{3} \frac{\langle M_z^4 \rangle}{\langle M_z^2 \rangle^2} \right)$$
$$U_d = 2 \left(1 - \frac{1}{2} \frac{\langle D^4 \rangle}{\langle D^2 \rangle^2} \right)$$

 $U_s \rightarrow 1, U_d \rightarrow 0$ in AFM phase $U_s \rightarrow 0, U_d \rightarrow 1$ in VBS phase

Phenomenological two-length scaling [Shao, Guo, Sandvik (Science 2016)]

Behaviors of crossing points → exponents

Competing scenario:

- weak first-order transition
- non-unitary conformal field theory

Exponent v: crossing-point analysis

H. Shao, W. Guo, A. W. Sandvik (Science 2016)

Binder ratio of the AF order parameter

$$R_1 = \frac{\langle m_{sz}^2 \rangle}{\langle |m_{sz}| \rangle^2}$$

- Crossing of R₁(g,L), R₁(g,rL), g=J/Q, g*(L), analyze size dependence (using r=2) $g^*(L) = g_c + aL^{-(1/\nu+\omega)} + \dots$ $R_1^*(L) = R_{1c} + aL^{-\omega} + \dots$ $\frac{1}{\nu^*} = \ln[s(g^*, rL)/s(g^*, L)] = \frac{1}{\nu}\ln(r) + aL^{-\omega} + s(g, L) = dR_1(g, L)/dg$ (slope)
- Small correction exponent; $\omega \approx 0.5$ - v = 0.45 +/- 0.01

No sign of first-order transition (then $v \ge 1/3$ in finite-size scaling)

The VBS order parameter

Dimer order parameter

$$D_x = \frac{1}{N} \sum_{x,y} (-1)^x \mathbf{S}_{x,y} \cdot \mathbf{S}_{x+1,y}$$
$$D_y = \frac{1}{N} \sum_{x,y} (-1)^y \mathbf{S}_{x,y} \cdot \mathbf{S}_{x,y+1}$$

Collect histograms $P(D_x, D_y)$ with valence-bond basis QMC

Two possible types of order patterns distinguished by histograms

Emergent U(1) symmetry of columnar VBS order

Realize stronger VBS order with J-Q3 model

Lou, Sandvik, Kawashima, PRB (2009), Sandvik, PRB (2012)

Strong columnar VBS when J/Q₃=0

J-Q₂ model with J/Q₂=0

- weak columnar VBS
- very large angular fluctuations
- emergent U(1) symmetry

L = 64

J-Q₃ model J_x=J_y, Q_x=Q_y

Analogy: Emergent U(1) in classical 3D XY model

$$H = -J\sum_{\langle ij\rangle}\cos(\Theta_i - \Theta_j) - h\sum_i\cos q\Theta_i$$

Dangerously irrelevant perturbation

- irrelevant at T_c, relevant for T<T_c
- correlation length $\xi \propto (g g_c)^{-\nu}$ and emergent U(1) length $\xi' \propto (g g_c)^{-\nu'}$ Jose, Kadanoff, Kirkpatrick, Nelson, PRB 1977 $\nu' > \nu$

Clock models Fixed points:

- P = paramagnet
- **X** = 3D XY critical point
- **Y** = XY symmetry breaking
- **Q** = Z_q symmetry breaking

Cross-over from XY ordering to Z_q ordering at length scale ξ'_q

RG flows can be observed in MC simulations "phenomenological renormalization"

MC simulations of classical 3D clock model

$$\begin{split} H &= -J\sum_{\langle ij\rangle}\cos(\Theta_i - \Theta_j) - h\sum_i\cos q\Theta_i \quad \text{ (soft clock model)} \\ H &= -J\sum_{\langle ij\rangle}\cos(\Theta_i - \Theta_j) \quad \text{ q clock angles (hard clock model)} \end{split}$$

Standard order parameter (mx,my)

$$m_x = \frac{1}{N} \sum_{i=1}^{N} \cos(\Theta_i)$$
 $m_y = \frac{1}{N} \sum_{i=1}^{N} \sin(\Theta_i) \rightarrow \text{global angle } \theta$

Probability distribution $P(m_x,m_y)$ shows cross-over from U(1) to Z_q for T<T_c

Can be quantified with "angular order parameter": $\oint_{\alpha} = \int_{\alpha}^{2\pi} d\theta \cos(\alpha\theta) P(\alpha)$

$$\phi_q = \int_0 d\theta \cos(q\theta) P(\theta)$$

 $\varphi_q > 0$ only if q-fold anisotropy Finite-size scaling of φ_q can be used to extract length scale $\xi' > \xi$ and associated scaling dimension y_q

Lou, Balents, Sandvik, PRL 2007

Angular order parameter φ_q reflects the dangerously irrelevant field Relevant field accessed through the Binder cumulant: $U_m = 2$ -**MC RG flows** in the plane (U_m, φ_q)

[Shao, Guo, Sandvik, arXiv:1905.13640]

Entire RG flow can be explained by phenomenological scaling function with two relevant arguments:

$$\phi_q = L^{y_q} \Phi(tL^{1/\nu}, tL^{1/\nu'_q})$$

The exponent v' can be directly extracted from φ_q when it is large - follows from scaling function

DQCP: In the field theory the VBS corresponds to condensation of topological defects (quadrupoled monopoles on square lattice)

Analogy with 3D clock models: The topological defects should be dangerously irrelevant

Fugacity of topological defects λ_4

Ratio v/v' plays important in finite-size scaling

Shao, Guo, Sandvik (Science 2016)

MC RG flows for J-Q₃ model - work in progress

Conventional first-order transition

Staircase J-Q3 model [Sen, Sandvik, PRB 2010]

Binder cumulant of AFM order parameter

No emergent symmetry seen in P(D_x,D_y)

Negative Cumulant peak is a sign of phase coexistence; first-order transition

Dynamic signatures of deconfined quantum criticality

PHYSICAL REVIEW B 98, 174421 (2018)

Editors' Suggestion

Dynamical signature of fractionalization at a deconfined quantum critical point

Nvsen Ma,¹ Guang-Yu Sun,^{1,2} Yi-Zhuang You,^{3,4} Cenke Xu,⁵ Ashvin Vishwanath,³ Anders W. Sandvik,^{1,6} and Zi Yang Meng^{1,7,8}

Planar J-Q model:
$$H_{JQ} = -J \sum_{\langle ij \rangle} (P_{ij} + \Delta S_i^z S_j^z) - Q \sum_{\langle ijklmn \rangle} P_{ij} P_{kl} P_{mn}$$

Spin structure factor S(q,ω)

Close to critical point: Good agreement with mean-field fermionic parton theory (π -flux)

$$\boldsymbol{S}_i = \frac{1}{2} f_i^{\dagger} \boldsymbol{\sigma} f_i$$

$$H_{\rm MF} = \sum_{i} i(f_{i+\hat{x}}^{\dagger} f_i + (-)^x f_{i+\hat{y}}^{\dagger} f_i) + \text{H.c.}$$

Deconfinment manifest on large length scales close to the phase transition

$$\epsilon_k = 2(\sin^2(k_x) + \sin^2(k_y))^{1/2}$$

Connection to experiments: Checker-board J-Q model

Plaquette-singlet solid (PSS) state

- 2-fold degenerate

Is the PSS-AFM transition a deconfined quantum critical point? nature physics

4-spin plaquette singlet state in the Shastry-Sutherland compound SrCu₂(BO₃)₂

M. E. Zayed^{1,2,3*}, Ch. Rüegg^{2,4,5}, J. Larrea J.^{1,6}, A. M. Läuchli⁷, C. Panagopoulos^{8,9}, S. S. Saxena⁸, M. Ellerby⁵, D. F. McMorrow⁵, Th. Strässle², S. Klotz¹⁰, G. Hamel¹⁰, R. A. Sadykov^{11,12}, V. Pomjakushin², M. Boehm¹³, M. Jiménez-Ruiz¹³, A. Schneidewind¹⁴, E. Pomjakushina¹⁵, M. Stingaciu¹⁵, K. Conder¹⁵ and H. M. Rønnow¹

Shastry-Sutherland (SS) model

PSS state known in the SS model (tensor network, iPEPS, calculations)

Corboz & Mila PRB 2013 Weak first-order transition from Neel to plaquette phase was found

Checker-board J-Q (CBJQ) model

B. Zhao, P. Weinberg, AWS, Nature Physics 2019

To study AFM-PSS transition in detail with QMC - replace frustrated bonds by 4-spin Q terms

$$\mathcal{H} = -J \sum_{\langle ij \rangle} P_{ij} - Q \sum_{ijkl \in \Box'} (P_{ij}P_{kl} + P_{ik}P_{jl})$$
$$P_{ij} = \frac{1}{4} - \mathbf{S}_i \cdot \mathbf{S}_j$$

Do we get a PSS phase, and what kind of phase transition?

Plaquette-Singlet Solid state in t

Zhao, Weinberg, AWS, Nature Physics 2019

The lattice and interactions are compatible

- 4 fold degenerate columnar VBS
- 2-fold degenerate PSS state

Both can be detected using the dimer orde

$$D_x = \frac{1}{N} \sum_{x,y} (-1)^x \mathbf{S}_{x,y} \cdot \mathbf{S}_{x+1,y}, \quad D_y = \frac{1}{N} \sum_{x,y} (-1)^y \mathbf{S}_{x,y}$$

With valence-bond QMC, collect $P(D_x, D_y)$

AFM

 D_x

We find 2-fold PSS order for small g=J/Q

AFM-PSS quantum phase transition

Define order parameters with z-spin components in SSE QMC

$$m_s = \frac{1}{N} \sum_{\mathbf{r}} \phi(\mathbf{r}) S^z(\mathbf{r}), \quad m_p = \frac{2}{N} \sum_{\mathbf{q}} \theta(\mathbf{q}) P^z(\mathbf{q})$$
$$P^z(\mathbf{q}) = S^z(\mathbf{q}) S^z(\mathbf{q} + \hat{x}) S^z(\mathbf{q} + \hat{y}) S^z(\mathbf{q} + \hat{x} + \hat{y})$$

Binder cumulants:

$$U_s = \frac{5}{2} \left(1 - \frac{\langle m_s^4 \rangle}{3 \langle m_s^2 \rangle^2} \right) \quad U_p = 2 \left(1 - \frac{1}{2} \frac{\langle m_p^4 \rangle}{\langle m_p^2 \rangle^2} \right)$$

Expectation: $U_s \rightarrow 1, U_p \rightarrow 0$ in AFM phase $U_s \rightarrow 0, U_p \rightarrow 1$ in PSS phase

Crossing points used to analyze the transition

No negative peaks in U - continuous transition?

Finite-size scaling behaviors show

- single AFM-PSS transition at $g_c = 0.2175(1)$
- coexistence of non-vanishing orders at $g_c \rightarrow first-order transition$

Analysis of slopes of U gives correlation-length exponent

$$\frac{1}{\nu_{sp}} = \frac{1}{\ln(b)} \ln \left[\frac{dU_{sp}(g, bL)/dg}{dU_{sp}(g, L)/dg} \right]_{g=g_c(L)}$$

Both exponent extrapolate to values > d+1 = 3; first-order behavior

Why are there no negative Binder peaks?

Do we know any phase transition with similar characteristics? Yes: 3D O(N) models with N=3,4,5,... in their ordered states (T < T_c) Example: Classical 3D O(3) (Heisenberg) model with tunable anisotropy

$$H = -\sum_{\langle ij \rangle} (\sigma_i^x \sigma_j^x + \sigma_i^y \sigma_j^y + \Delta \sigma_i^z \sigma_j^z)$$

Symmetry changes vs Δ : O(2) for Δ <1, O(3) for Δ =1, Z₂ for Δ >1

For T<T_c, analyze xy and z order parameters and Binder cumulants

Very similar behaviors as CBJQ model! But no point of obvious higher symmetry vs g in the CBJQ model... **Proposal: O(3) AFM and Z₂ PSS orders form emergent O(4) vector**

Detecting O(4) symmetry in the CBJQ model

- We know that the AFM component has O(3) symmetry
- Need to check only PSS order and one AFM component; P(mz,mp)
- O(4) projected down to a plane constant density within circle
- Radius fluctuates because of finite size

Appears that there is an O(4) point (the transition point)
 No sign of conventional AFM, PSS coexistence

Manifestation of O(4) in T>0 phase diagram

Specific heat, 3D T>0 phase diagram

Entropy change small at T>0 transition

 a lot of entropy goes to freezing out higher states on the plaquettes

3D effects should cause first-order line - could there be remnant O(4) above?

Similar behavior in SrCu₂(BO₃)₂

- high-pressure, low-T experiments (J. Guo et al., IOP) arXiv:1904.09927

Quantum phases of SrCu₂(**BO**₃)₂ from high-pressure thermodynamics arXiv:1904.09927

Jing Guo,¹ Guangyu Sun,^{1,2} Bowen Zhao,³ Ling Wang,⁴ Wenshan Hong,^{1,2} Vladimir A. Sidorov,⁵ Nvsen Ma,¹ Qi Wu,¹ Shiliang Li,^{1,2,6} Zi Yang Meng,^{1,7,6,8,*} Anders W. Sandvik,^{3,1,†} and Liling Sun^{1,2,6,‡}

First (P,T) phase diagram

- PS phase smallar than expected
- new AF phase

couplings from $T_{hump}(P)$ fit to SS model J'(P) = [75 - 8.3P/GPa] KJ(P) = [46.7 - 3.7P/GPa] K

Random-singlet (RS) state in disordered J-Q model

Lu Liu, Hui Shao, Yu-Cheng Lin, Wenan Guo, AWS (PRX 2018)

Spinon

nexus of four domain walls, with unpaired spin in the core (Levin, Senthil, 2004,...)

Spinons will form in pairs

Imry-Ma argument (1D, 2D) any amount of disorder in a VBS will cause domain formation

What kind of magnetic state forms from the interacting spinons?

1D: RS state in random S=1/2 chain

- infinite-randomnes fixed point $(z=\infty)$

2D: Controversial

- Our work: RS appears to be stable
- Kimchi, Nahum, Senthil, PRX 2018: Likely weak AFM order

Random-Q J-Q model (large Q/J)

Strongest bond at each site - empty if not strongest for both sites

Mechanism of RS state formation

- spinons appear in pairs (not random distribution of spinons)
- domain walls mediate spinon-spinon interactions
- pairing avoids AFM order, instead power-law correlations

Local susceptibility (normalized) $\chi_{\rm loc}(\mathbf{r}) = \int_{0}^{1/T} d\tau \langle S_{\mathbf{r}}^{z}(\tau) S_{\mathbf{r}}^{z}(0) \rangle$

Experiments

Some 'disordered spin liquids' may actually be RS states

Recent example Sr₂CuTe_xW_{1-x}O₆
square-lattice S=1/2 system with J₁ or J₂ randomly on plaquettes

Susceptibility divergence for x=0.5 may be sign of RS - re-analysis of experimental data shows power slower than 1/T Analyzing data from Watanabe et al. PRB 98, 054422 (2018)

- fitting to constant + T^{-a}
- use different high-T cutoffs

Indication of slower than Curie divergence; possible RS phase

