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Examples
- scaling corrections in dimerized Heisenberg models
- quantum phase transition inTlCuCl3 (3d dimerized Heisenberg)
- deconfined quantum criticality (J-Q models)
- emergent symmetries
- detecting deconfined spinons in spectral functions 
- plaquett-solid state in SrCu2(BO3)2; unusual first-order transition
- random-singlet state in the presence of disorder

Finite-size scaling at critical points
- general method illustrated by 2D Ising model
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Classical (thermal) phase transition 
- Fluctuations regulated by temperature T>0 
Quantum (ground state, T=0) phase transition 
- Fluctuations regulated by parameter g in Hamiltonian

Classical and quantum phase transitions

There are many similarities between classical and quantum transitions 
- and also important differences
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FIGURE 3. Temperature (T ) or coupling (g) dependence of the order parameter (e.g., the magnetization
of a ferromagnet) at a continuous (a) and a first-order (b) phase transition. A classical, thermal transition
occurs at some temperature T = Tc, whereas a quantum phase transition occurs at some g= gc at T = 0.

where the spin correlations decay exponentially with distance [60].
While quasi-1D antiferromagnets were actively studied experimentally already in the

1960s and 70s, these efforts were further stimulated by theoretical developments in the
1980s. Haldane conjectured [55], based on a field-theory approach, that the Heisenberg
chain has completely different physical properties for integer spin (S = 1,2, . . .) and
“half-odd integer” spin (S = 1/2,3/2, . . .). It was known from Bethe’s solution that the
S = 1/2 chain has a gapless excitation spectrum (related to the power-law decaying
spin correlations). Haldane suggested the possibility of the S= 1 chain instead having a
ground state with exponentially decaying correlations and a gap to all excitations; a kind
of spin liquid state [26]. This was counter to the expectation (based on, e.g., spin wave
theory) that increasing S should increase the tendency to ordering. Haldane’s conjecture
stimulated intense research activities, theoretical as well as experimental, on the S = 1
Heisenberg chain and 1D systems more broadly. There is now completely conclusive
evidence from numerical studies that Haldane was right [61, 62, 63]. Experimentally,
there are also a number of quasi-one-dimensional S = 1/2 [64] and S = 1 [65] (and
also larger S [66]) compounds which show the predicted differences in the excitation
spectrum. A rather complete and compelling theory of spin-S Heisenberg chains has
emerged (and includes also the VBS transitions for half-odd integer S), but even to this
date various aspects of their unusual properties are still being worked out [67]. There are
also many other variants of spin chains, which are also attracting a lot of theoretical and
experimental attention (e.g., systems including various anisotropies, external fields [68],
higher-order interactions [69], couplings to phonons [70, 71], long-range interactions
[72, 73], etc.). In Sec. 4 we will use exact diagonalization methods to study the S= 1/2
Heisenberg chain, as well as the extended variant with frustrated interactions (and also
including long-range interactions). In Sec. 5 we will investigate longer chains using the
SSE QMC method. We will also study ladder-systems consisting of several coupled
chains [9], which, for an even number of chains, have properties similar to the Haldane
state (i.e., exponentially decaying spin correlations and gapped excitations).

2.4. Models with quantum phase transitions in two dimensions

The existence of different types of ground states implies that phase transitions can
occur in a system at T = 0 as some parameter in the hamiltonian is varied (which
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In both cases phase transitions can be 
- first-order (discontinuous): finite correlation length ξ as g→gc or g→gc 
- continuous: correlation length diverges, ξ~|g-gc|-ν or ξ~|T-Tc|-ν

The quantum phases (ground states) can also be highly non-trivial 
- even with rather simple lattice models



Example: Néel-paramagnetic quantum phase transition 
Dimerized S=1/2 Heisenberg models 
• every spin belongs to a dimer (strongly-coupled pair) 
• many possibilities, e.g., bilayer, dimerized single layer

⇒ 3D classical Heisenberg (O3) universality class; QMC confirmed

Singlet formation on strong bonds ➙ Néel - quantum-paramagnetic transition
  Ground state (T=0) phases

� = spin gaps

weak interactions
strong interactions

Experimental realization (3D coupled-dimer system): TlCuCl3



What’s so special about quantum-criticality? 
- large T>0 quantum-critical “fan” where T is the only relevant energy scale

- physical quantities show power laws governed by the T=0 critical point

Changing T is changing the imaginary-time size Lτ:  
- Finite-size scaling at gc leads to power laws

⇠ ⇠ T�1

C ⇠ T 2

�(0) ⇠ T

(correlation length)
(specific heat)

(uniform magnetic susceptibility)

2D Neel-paramegnet

“cross-over diagram” 
[Chakravarty, Halperin, 
Nelson, PRB 1988]


T = 0 Néel order non-magnetic

high-T , lattice e�ects

�
⇢s

QC: Universal quantum

critical scaling regime

QMC used to test existing theories, discover new physics,…
Quantum phase transition (T=0) can be unusual - ‘beyond Landau’



Phase transitions - Finite-size scaling 
⇠ / |�|�⌫ , � = T � TcCorrelation length divergent for T → Tc

Other singular quantity: A(L ! 1) / |�| / ⇠�/⌫

For L-dependence at Tc just let ξ→L: A(T ⇡ Tc, L) / L�/⌫

2D Ising universality class

Critical T known

When these are not known,
treat as fitting parameters
- or extract in other way
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FIGURE 14. Monte Carlo results for the susceptibility (55) of the Ising model on several different L×L
lattices. (a) shows the temperature dependence, with the vertical line indicating Tc. Note the vertical log
scale. In (b) the data has been scaled using the exact values of the Ising exponents, γ = 7/4 and ν = 1,
and the exact value of Tc in t = (T −Tc)/Tc.

which, using ξ ∼ |t|−1/ν , we can also write as

Q(t,L) = Lσg(tL1/ν). (65)

This scaling law should hold both above (t > 0) and below (t < 0) the critical point.
Exactly at Tc, we recover the size-scaling Q(0,L) ∼ Lσ . To relate σ to the standard
critical exponents, we can use the fact that, for fixed t close to 0, as the system grows the
behavior for any t ̸= 0 eventually has to be given by Eq. (59);Q(t,L→∞)∼ |t|−κ (where
κ is negative for a singular non-divergent quantity, e.g., the for the order parameter we
have κ =−β ). To obtain this form, the scaling function g(x) in (65) must asymptotically
behave as g(x)∼ x−κ for x→ ∞. In order for the size-dependence in (65) to cancel out,
we therefore conclude that σ = κ/ν , i.e.,

Q(t,L) = Lκ/νg(tL1/ν). (66)

To extract the scaling function g(x) using numerical data, one can define

yL = Q(t,L)L−κ/ν , xL = tL1/ν , (67)

and plot yL versus xL for different system sizes. If the scaling hypothesis is correct,
data for different (large) system sizes should fall onto the same curve, which then is
the scaling function (this is referred to as curves collapsing onto each other); g(x) =
yL→∞(x). Fig. 14 illustrates this using Monte Carlo data for the magnetic susceptibility
of the 2D Ising model. The peak location in panel (a) clearly moves toward the known
Tc with increasing L. After scaling the data according to the above procedures, as shown
in panel (b), the curves indeed collapse almost onto each other close to t = 0, but further
away from the critical point deviations are seen for the smaller systems. These are due to
corrections to scaling, which in principle can be described with subleading exponents.
We can apply the scaling form (66) to the correlation length itself, for which κ = ν and

the L-scaling is independent of model-specific exponents. In cases where the universality
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Close to critical point: A(L, T ) = L�/⌫g(⇠/L) = L�/⌫f(�L1/⌫)



Binder ratios and cumulants
Consider the dimensionless ratio

We know R2 exactly for N→∞

R2 =
�m4⇥
�m2⇥2

• for T<Tc: P(m)→δ(m-m*)+δ(m+m*)

       m*=|peak m-value|.  R2→1 • for T>Tc: P(m)→exp[-m2/a(N)]


     a(N)∼N-1 R2→3  (Gaussian integrals)

Curves for different

L asymptotically cross 
each other at Tc

Extrapolate crossing

for sizes L and 2L

to infinite size

• converges faster than 

   single-size Tc defs.

2D Ising model; MC results

order parameter distribution

The Binder cumulant is defined as (n-component order parameter; n=1 for Ising)
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Systematic crossing-point analysis (2D Ising)

⇒ scaling corrections in crossings

  ~L-(1/ν+ω)    for T* → Tc


   ~L-ω          for U* → U(Tc)

Fit with Lmin=12: Tc=2.2691855(5). Correct: Tc=2.2691853...
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Figure 3: Binder cumulant for the 2D Ising model with L = 16, 32, 64 in the neighborhood of
the points at which the curves cross each other. The vertical and horizontal dashed lines indicate
the critical temperature Tc and the value of the cumulant at Tc, respectively. The solid curves
are cubic polynomial fits to the data sets. Error bars are much smaller than the plot symbols.

Fig. 3 shows examples of data for three different system sizes, where cubic polynomials
have been fitted to the data. The crossing points are extracted numerically to machine precision
using bisection. In order to analyze Tc and Uc in the thermodynamic limit, it suffices to consider
a small number of points very close to each crossing point to be analyzed. To obtain ⌫ from the
slopes according to Eq. (17), where the derivative in Eq. (13) is taken of the fitted polynomials,
it is better to have a more extended range of points. However, for a very large range a high order
of the polynomial has to be used in order to obtain a good fit, and it is then better in practice
to adapt the window size so that a relatively low order polynomial can be used. In the tests
reported here, cubic polynomials were used and all fits were statistically sound.

In order to compute error bars of the crossing points T ⇤(L) and the corresponding values
U⇤(L), a bootstrap method is used, i.e., with a large number of random samples of the binned
MC data, with each sample computed using B(L, T ) randomly chosen bins for each system
size and temperature, where B(L, T ) is the total number of data bins available for (L, T ). The
standard deviations of the values computed for these bootstrap samples correspond to the error
bars of the crossing points and values. Note that in the evaluation of the cumulant (19), for
the full data set or a bootstrap sample, the individual expectation values hm2

i i and hm4

i i are
computed first based on all the bins, after which the ratio is evaluated. If one instead uses ratios
computed for each bin separately, a statistically significant systematical error can be introduced
due to the nonlinear contributions to the statistical error propagated from the denominator.
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Figure 4: (a) Crossing temperature of the Binder cumulant for system-size pairs (L, 2L) versus
the inverse of the smaller size, along with a fit to the form (10) to the data points with L � 12.
(b) The value of the cumulant at the crossing points, along with a fit to the form (11) for L � 14.
In both (a) and (b), error bars are much too small to be visible. The insets shows the data minus
the fitted functions including the error bars.

Clearly this criterion is sensitive to the quality of the data—if the elements of the covariance ma-
trix are very small, even fits including only relatively large system sizes can detect the presence
of higher-order corrections and not pass our test, while with noisy data also small system sizes
can be included. If a fit satisfies the �2 criterion it can still not be completely guaranteed that no
effects of the higher-order corrections are present in the final result, but in general one would
expect any remaining systematical errors to be small relative to the statistical error. In principle
one can estimate the magnitude of the systematical error using the parameters obtained from the
fit and some knowledge or estimate of the nature of the higher-order corrections. We will not
attempt to do that here because in general such knowledge will be very limited. To minimize
any remaining systematical errors one can continue to exclude more system sizes even after
the soundness criterion (23) is satisfied, at the price of increasing the statistical errors of the
parameters extracted from the fits.
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Use correction with free exponent

U = U(�L1/⌫ , L�!1 , L�!2 , . . .)



Case with more significant corrections 
- common at quantum critical points
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Anomalous quantum-critical scaling corrections in two-dimensional antiferromagnets
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We study the Néel–paramagnetic quantum phase transition in two-dimensional dimerized S = 1/2
Heisenberg antiferromagnets using finite-size scaling of quantum Monte Carlo data. We resolve the
long standing issue of the role of cubic interactions arising in the bond-operator representation when
the dimer pattern lacks a certain symmetry. We find non-monotonic (monotonic) size dependence
in the staggered (columnar) dimerized model, where cubic interactions are (are not) present. We
conclude that there is an irrelevant field in the staggered model that is not present in the columnar
case, but, at variance with previous claims, it is not the leading irrelevant field. The new exponent
is ω2 ≈ 1.25 and the prefactor of the correction L−ω2 is large and comes with a different sign from
that of the formally leading conventional correction with exponent ω1 ≈ 0.78. Our study highlights
the possibility of competing scaling corrections at quantum critical points.

One of the best understood quantum phase transi-
tions is that between Néel antiferromagnetic (AFM) and
quantum paramagnetic ground states in bipartite two-
and three-dimensional (2D and 3D) dimerized Heisenberg
models with inter- and intra-dimer couplings J1 and J2
[1–6]. The ground state of such a system hosts AFM or-
der when the coupling ratio g = J2/J1 is close to g = 1,
and there is a critical point at some model dependent
gc > 1. The 3D version of this transition for the most
important case of S = 1/2 spins has an experimental re-
alization in TlCuCl3 under high pressure [7, 8]. While no
2D realization exists as of yet (though the magnetic field
driven transition out of the QPM does have realizations
[9]), this case has been very important for developing a
generic framework for 2D quantum phase transitions of
the Néel AFM state [10]. The field theory of the AFM–
paramagnetic transition is now well developed, and effi-
cient quantum Monte Carlo (QMC) methods can be used
to study ground states of microscopic models with tens
of thousands of spins [6]. Many non-trivial predictions
for scaling in temperature, frequency, system size, etc.,
have been tested this way [11–16].

Despite many successes, there are still remaining ques-
tions surrounding the 2D AFM–paramagnetic transition.
A long-standing unresolved issue is differences observed
in QMC calculations between two classes of dimer pat-
terns in S = 1/2 systems [17–21], exemplified by the often
studied columnar dimer model (CDM) and the initially
less studied staggered dimer model (SDM), both illus-
trated in Fig. 1. Indications from finite-size scaling of
a universality class different from the expected 3D O(3)
class in the SDM [17] led to several follow-up studies [19–
21]. The consensus now is that there is no new universal-
ity class, as defined by the standard critical exponents.
However, because of the lack of a certain local reflection

SDM CDM

FIG. 1. The CDM and SDM Heisenberg models studied in
this work. Black and red (thicker) bonds represent intra- and
inter-dimer exchange Si · Sj , of strength (prefactor) J1 and
J2, respectively, between S = 1/2 spins.

symmetry of the dimer pattern, cubic interactions arise in
the bond-operator description of the SDM, which in the
renormalization group corresponds to an irrelevant field
that is present neither in the CDM nor in the classical
O(3) model [20]. Thus, the SDM contains an interesting
quantum effect worthy of further investigations.

In this Letter we report large-scale detailed compar-
isons of the finite size (L) scaling corrections of type
L−ω in the CDM and SDM. While previous works on
judiciously chosen observables [19] and lattices with opti-
mized aspect ratios [21] have convincingly demonstrated
that there is no new universality class, the reasons for the
unusual scaling behaviors of the SDM have never been
adequately explained. In Ref. 20, QMC calculations in-
dicated that the exponent of the leading correction is
smaller than in the CDM, but the values, the observed
ω ≈ 0.6 in the SDM [20, 21] versus the conventional value
ω ≈ 0.78 [22, 23] in the standard O(3) model and the
CDM, are not very different. The only slightly smaller
value for the SDM does not fully explain all the observed
anomalous finite-size scaling properties, and, as we will
show here, this scenario is actually incorrect.

S=1/2 Heisenberg model with 
- columnar dimers (CDM) 
- staggered dimers (SDM)
The SDM has been controversial 
- O(3) or new universality class 
- strange scaling behaviors

2

We study L×L CDM and SDM systems of size up to
L = 256. Focusing on the scaling corrections, we fix the
leading critical exponents at their known O(3) values in
our finite-size analysis. This enables us to go to higher
order in the irrelevant fields and investigate also sub-
leading corrections. In contrast to the previous studies,
we demonstrate that the SDM actually does not have a
smaller ω1 than the CDM. Instead, the cubic interaction
induces the next correction, which has ω2 = 1.25(3) and
a large prefactor of sign different from that of the first
correction. This causes non-monotonic finite-size behav-
iors that were previously either not observed [19, 20] or
were not analyzed properly [21].
QMC and fitting procedures.—We use the standard

stochastic series expansion QMC method [6, 24] for S =
1/2 spins and set the inverse temperature β at L/2; thus
the ratio L/β is close to the value of the spinwave ve-
locity [21] and the effective imaginary time dimension is
approximately equal to the spatial dimension. At a quan-
tum phase transition with dynamic exponent z = 1 (as
is the case here), as long as β ∝ L the temperature does
not appear as an independent argument in the scaling
function obtained from renormalization group theory. In
the case of a dimensionless quantity we have [25, 26]

O(g, L) = f [(g − gc)L
1/ν ,λ1L

−ω1 ,λ2L
−ω2 , · · · ], (1)

if g is sufficiently close to gc. Here λi denotes the irrele-
vant fields, which we order such that ωi+1 > ωi > 0. Use-
ful dimensionless quantities to study in QMC calculations
include the Binder ratio R = ⟨m4

z⟩/⟨m
2
z⟩

2, where mz is
the component of the staggered magnetization along the
quantization axis, the L-normalized spin stiffness con-
stants Lρx and Lρy (with x and y referring to the lattice
directions), and the uniform susceptibility Lχu. We refer
to Ref. 6 for technical details.
Denoting the deviation g−gc from the critical point by

δ, the standard approach to analyzing the leading critical
behavior with a single correction is to expand Eq. (1) to
linear order in the first irrelevant field,

O(g, L) = f0(δL
1/ν) + L−ω1f1(δL

1/ν), (2)

where f0 and f1 are scaling functions related to the orig-
inal f . Thus, in the absence of corrections, a dimension-
less quantity is completely size independent at gc, and
by expanding f0 we see that O(g, L) for different L cross
each other at gc. With the scaling correction, the cross-
ing points only drift toward gc as L → ∞, and for two
different sizes L and L′ = rL (where we will use r = 2)
one can derive simple expressions for the crossing value
g∗(L) and the observable O∗(L) at this point [27];

g∗(L) = gc + aL−ω1−1/ν , (3a)

O∗(L) = Oc + bL−ω1, (3b)

with constants a and b.
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FIG. 2. Binder ratio of the SDM for several system sizes in
the neighborhood of gc. The curves are polynomial fits giving
crossing points between (L, 2L) data.

We extract the crossing points using polynomial fits
(typically of third order) to several points (of the order
10) in the neighborhood of gc = g∗(∞). The window
[g1, g2] of points used in these fits is reduced as the system
size is increased, so that we are always in the regime
where a low-order expansion around gc is expected to be
valid. Since we interpolate, as opposed to extrapolate,
this is a very reliable way of extracting the crossing points
and their statistical errors (using bootstrapping for the
latter). Examples of raw data along with fits are shown
in Fig. 2 in the case of the Binder ratio of the SDM.
In the following we analyze crossing points between

curves for system sizes L and 2L. When fitting the so de-
fined g∗(L) and O∗(L) to appropriate forms from finite-
size scaling theory, it should be noted that the same sys-
tem size L can appear in two pairs, (L, 2L) as well as
(L/2, L). There are therefore some covariance effects,
which we take into account by using the full covariance
matrix (computed using bootstrap analysis) in the defini-
tion of the goodness of the fit χ2 (normalized per degree
of freedom henceforth). When jointly fitting to two dif-
ferent but correlated quantities, we also account for the
associated covariance. For the functional forms, we will
go beyond the first-order expansion leading to Eqs. (3),
and this will be the key to our findings and conclusions.
Finite-size scaling.—The size dependence of R cross-

ing points is shown in Fig. 3 for both models. A striking
feature is the non-monotonic behaviors apparent for the
SDM but not present for the CDM. Note here that 1/L
on the horizontal axis refers to the smaller of the two
system sizes (L, 2L) used for the crossing points, and the
maximums are located at 2L ≈ 80. In the original discov-
ery of the anomalous behaviors for the SDM [17], all the
systems were smaller, and no non-monotonic behaviors
were therefore observed. It is clear that extrapolations
only based on the smaller system sizes cannot reproduce
the correct asymptotic behaviors.
We will first assume that only one irrelevant field is

important but treat the corrections beyond the first-order

Analyze critical behavior with two scaling 
corrections taken into account

Taylor expand, analyze crossing points 
for different dimensionless quantities

Compare CDM and SDM behaviors

2
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O(g, L) = f [(g − gc)L
1/ν ,λ1L

−ω1 ,λ2L
−ω2 , · · · ], (1)

if g is sufficiently close to gc. Here λi denotes the irrele-
vant fields, which we order such that ωi+1 > ωi > 0. Use-
ful dimensionless quantities to study in QMC calculations
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z⟩/⟨m
2
z⟩

2, where mz is
the component of the staggered magnetization along the
quantization axis, the L-normalized spin stiffness con-
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directions), and the uniform susceptibility Lχu. We refer
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1/ν), (2)
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g∗(L) and the observable O∗(L) at this point [27];
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with constants a and b.
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FIG. 2. Binder ratio of the SDM for several system sizes in
the neighborhood of gc. The curves are polynomial fits giving
crossing points between (L, 2L) data.

We extract the crossing points using polynomial fits
(typically of third order) to several points (of the order
10) in the neighborhood of gc = g∗(∞). The window
[g1, g2] of points used in these fits is reduced as the system
size is increased, so that we are always in the regime
where a low-order expansion around gc is expected to be
valid. Since we interpolate, as opposed to extrapolate,
this is a very reliable way of extracting the crossing points
and their statistical errors (using bootstrapping for the
latter). Examples of raw data along with fits are shown
in Fig. 2 in the case of the Binder ratio of the SDM.
In the following we analyze crossing points between

curves for system sizes L and 2L. When fitting the so de-
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matrix (computed using bootstrap analysis) in the defini-
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and this will be the key to our findings and conclusions.
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ing points is shown in Fig. 3 for both models. A striking
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SDM but not present for the CDM. Note here that 1/L
on the horizontal axis refers to the smaller of the two
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We will first assume that only one irrelevant field is

important but treat the corrections beyond the first-order
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One of the best understood quantum phase transitions is
that between Néel antiferromagnetic (AFM) and quantum
paramagnetic ground states in bipartite two- and three-
dimensional dimerized Heisenberg models with inter- and
intradimer couplings J1 and J2 [1–6]. The ground state
hosts AFM order when g ¼ J2=J1 ≈ 1, and there is a
critical point at some model-dependent gc > 1. The 3D
version of this transition for S ¼ 1=2 spins has an exper-
imental realization in TlCuCl3 under high pressure [7,8].
While no 2D realization exists as of yet (though the
magnetic field driven transition has been realized [9]), this
case has been very important for developing the framework
for 2D quantum phase transitions of the Néel AFM state
[10]. The field theory of the AFM-paramagnetic transition
is now well developed, and efficient quantum Monte Carlo
(QMC) methods can be used to study ground states of
microscopic models with tens of thousands of spins [6].
Many nontrivial predictions for scaling in temperature,
frequency, system size, etc., have been tested [11–16].
Despite many successes, there are still questions sur-

rounding the 2D AFM-paramagnetic transition. A long-
standing unresolved issue is differences observed in QMC
calculations between two classes of dimer patterns [17–21],
exemplified by the often-studied columnar dimer model
(CDM) and the initially less-studied staggered dimer model
(SDM), both illustrated in Fig. 1. Indications from finite-
size scaling of a universality class different from the
expected 3D O(3) class in the SDM [17] led to several
follow-up studies [18–21]. The consensus now is that there

is no new universality class, as defined by the standard
critical exponents. However, because of the lack of a certain
local symmetry, cubic interactions arise in the bond-
operator description of the SDM, which in the renormal-
ization group corresponds to an irrelevant field that is
present neither in the CDM nor in the classical O(3) model
[20]. Thus, the SDM contains an interesting quantum effect
worthy of further investigations.
In this Letter we report detailed comparisons of the

finite-size (L) scaling corrections of type L−ω in the CDM
and SDM. While previous works on judiciously chosen
observables [19] and lattices with optimized aspect ratios
[21] have convincingly demonstrated O(3) universality,
the reasons for the unusual scaling behaviors of the SDM
have never been adequately explained. In Ref. [20], QMC
calculations indicated that the exponent of the leading

FIG. 1. The Heisenberg SDM and CDM studied in this work.
Black (thinner) and red (thicker) bonds represent intra- and
interdimer exchange Si · Sj, of strength (prefactor) J1 and J2,
respectively, between S ¼ 1=2 spins.
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FIG. 4. Joint fits of crossing data for several quantities
where g∗(∞) = gc is fixed to a common value and two scal-
ing corrections are used to first order, with ω1 = 0.78 and
1/ν = 1.406. For the SDM (a), the fit has χ2

≈ 1.0 and deliv-
ers gc(∞) = 2.51945(1) as well as ω2 = 1.30(7), 1.3(1), 1.2(1)
and 1.0(2) from R2, Lχu, Lρx, and Lρy , correspondingly. In
the CDM fits (b), 2ω1 = 1.56 was used in place of ω2 and the
fitted critical point is gc = 1.90956(2), with χ2

≈ 1.2.

actually not unexpected within the scenario of irrelevant
cubic interactions [20], because the standard leading cor-
rection with ω1 ≈ 0.78 should still be present and may
produce various “effective” scaling behaviors over a lim-
ited range of system sizes when combined with the cubic
perturbation. Thus, a reliable analysis of the SDM data
should require at least ω1 and ω2.
We can generalize Eqs. (4) to two correction exponents,

ω1 and ω2, but in that case it is very difficult to determine
both of them with sufficient precision. However, since the
standard leading correction should still be present [20],
we now also can fix ω1 = 0.78 and only treat ω2 as a
free parameter. We find that it is then sufficient to go
only to linear order in the corrections and yet obtain fully
acceptable fits with χ2 ≈ 1. We obtain gc = 2.51945(1)
and ω2 = 1.22(5) for the SDM. The new fitted curve is
shown in the inset of Fig. 3(a). The estimate of gc is
now a bit higher than the previous value from the R∗ fit
(though not much outside one error bar of the difference).
The key result here is clearly that ω2 comes out larger

than the leading O(3) exponent. It is, however, signifi-
cantly smaller than the expected second irrelevant O(3)
exponent with value ≈ 1.8 [32, 33], and it is also less
than 2ω1. The new correction should therefore be due to
the cubic interactions [20] in the low-energy theory of the
SDM. To test the stability of ω2 across different quanti-
ties, we also used a slightly different procedure of fitting
only to g∗ (instead of the joint fit with R∗) and requiring
the same L → ∞ value of gc for all the quantities consid-
ered. We still also fix 1/ν = 1.406 and ω1 = 0.78 but keep
ω2 free for all individual quantities. The SDM data with
fits are displayed in Fig. 4(a), with the resulting gc and
ω2 estimates listed in the caption. All four ω2 estimates
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FIG. 5. Size dependence of the exponent η as defined in
Eq. (6). The known infinite-size value η = 0.0375 is fixed
in the fits (curves). The CDM data are fitted with only the
first correction term in Eq. (7), with ω1 = 0.78 fixed. In
the SDM fit ω1 = 0.78 is also fixed and the second exponent
ω2 = 1.29(5) is the result of the fit.

are statistically consistent with the value obtained above.
In the case of the CDM, shown Fig. 4(b), we follow the
same procedures but replace ω2 by 2ω1 and there is no
free exponent. This fit is of marginally good statistical
quality even when starting the fits from L = 16, indicat-
ing some effects still of the higher-order terms that were
included in Fig. 3(b). We therefore keep the value from
R in Tab. I as our best gc estimate for this model.
To further ascertain our conclusions about the SDM,

we also consider the squared order parameter itself. Hav-
ing determined a precise estimate of gc, we study the
scaling of ⟨m2⟩ at this point, where we expect

⟨m2⟩c ∝ L−(1+η)(1 + b1L
−ω1 + b2L

−ω2 + . . .). (5)

We can then define a size-dependent exponent as

η∗(L) = ln[⟨m2(L)⟩c/⟨m
2(2L)⟩c]/ ln(2)− 1, (6)

which should scale as

η∗(L) = η + c1L
−ω1 + c2L

−ω2 + . . . . (7)

To test this form and extract ω2, we use the known value
η = 0.0375(5) [23] and fix ω1 = 0.78. As shown in Fig. 5,
the form fits the data very well and gives ω2 = 1.29(5).
Here one can again see how access to only system sizes
less than L = 80 would lead to the wrong conclusion.
A fit with two adjustable exponents give ω1 = 0.77(6)
and ω2 = 1.31(7), perfectly consistent with the fit with
ω1 fixed. In the case of the CDM, also shown in Fig. 5,
we find that the data are well described with a single
correction with the known value of the exponent.
Conclusions.—We have analyzed the SDM under the

scenario [20] of an O(3) quantum phase transition with
an additional irrelevant perturbation that is absent in the
CDM. Our results are consistent with this picture and de-
mand a new scaling correction with exponent ω2 ≈ 1.25
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where g∗(∞) = gc is fixed to a common value and two scal-
ing corrections are used to first order, with ω1 = 0.78 and
1/ν = 1.406. For the SDM (a), the fit has χ2

≈ 1.0 and deliv-
ers gc(∞) = 2.51945(1) as well as ω2 = 1.30(7), 1.3(1), 1.2(1)
and 1.0(2) from R2, Lχu, Lρx, and Lρy , correspondingly. In
the CDM fits (b), 2ω1 = 1.56 was used in place of ω2 and the
fitted critical point is gc = 1.90956(2), with χ2

≈ 1.2.

actually not unexpected within the scenario of irrelevant
cubic interactions [20], because the standard leading cor-
rection with ω1 ≈ 0.78 should still be present and may
produce various “effective” scaling behaviors over a lim-
ited range of system sizes when combined with the cubic
perturbation. Thus, a reliable analysis of the SDM data
should require at least ω1 and ω2.
We can generalize Eqs. (4) to two correction exponents,

ω1 and ω2, but in that case it is very difficult to determine
both of them with sufficient precision. However, since the
standard leading correction should still be present [20],
we now also can fix ω1 = 0.78 and only treat ω2 as a
free parameter. We find that it is then sufficient to go
only to linear order in the corrections and yet obtain fully
acceptable fits with χ2 ≈ 1. We obtain gc = 2.51945(1)
and ω2 = 1.22(5) for the SDM. The new fitted curve is
shown in the inset of Fig. 3(a). The estimate of gc is
now a bit higher than the previous value from the R∗ fit
(though not much outside one error bar of the difference).
The key result here is clearly that ω2 comes out larger

than the leading O(3) exponent. It is, however, signifi-
cantly smaller than the expected second irrelevant O(3)
exponent with value ≈ 1.8 [32, 33], and it is also less
than 2ω1. The new correction should therefore be due to
the cubic interactions [20] in the low-energy theory of the
SDM. To test the stability of ω2 across different quanti-
ties, we also used a slightly different procedure of fitting
only to g∗ (instead of the joint fit with R∗) and requiring
the same L → ∞ value of gc for all the quantities consid-
ered. We still also fix 1/ν = 1.406 and ω1 = 0.78 but keep
ω2 free for all individual quantities. The SDM data with
fits are displayed in Fig. 4(a), with the resulting gc and
ω2 estimates listed in the caption. All four ω2 estimates
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FIG. 5. Size dependence of the exponent η as defined in
Eq. (6). The known infinite-size value η = 0.0375 is fixed
in the fits (curves). The CDM data are fitted with only the
first correction term in Eq. (7), with ω1 = 0.78 fixed. In
the SDM fit ω1 = 0.78 is also fixed and the second exponent
ω2 = 1.29(5) is the result of the fit.

are statistically consistent with the value obtained above.
In the case of the CDM, shown Fig. 4(b), we follow the
same procedures but replace ω2 by 2ω1 and there is no
free exponent. This fit is of marginally good statistical
quality even when starting the fits from L = 16, indicat-
ing some effects still of the higher-order terms that were
included in Fig. 3(b). We therefore keep the value from
R in Tab. I as our best gc estimate for this model.
To further ascertain our conclusions about the SDM,

we also consider the squared order parameter itself. Hav-
ing determined a precise estimate of gc, we study the
scaling of ⟨m2⟩ at this point, where we expect

⟨m2⟩c ∝ L−(1+η)(1 + b1L
−ω1 + b2L

−ω2 + . . .). (5)

We can then define a size-dependent exponent as

η∗(L) = ln[⟨m2(L)⟩c/⟨m
2(2L)⟩c]/ ln(2)− 1, (6)

which should scale as

η∗(L) = η + c1L
−ω1 + c2L

−ω2 + . . . . (7)

To test this form and extract ω2, we use the known value
η = 0.0375(5) [23] and fix ω1 = 0.78. As shown in Fig. 5,
the form fits the data very well and gives ω2 = 1.29(5).
Here one can again see how access to only system sizes
less than L = 80 would lead to the wrong conclusion.
A fit with two adjustable exponents give ω1 = 0.77(6)
and ω2 = 1.31(7), perfectly consistent with the fit with
ω1 fixed. In the case of the CDM, also shown in Fig. 5,
we find that the data are well described with a single
correction with the known value of the exponent.
Conclusions.—We have analyzed the SDM under the

scenario [20] of an O(3) quantum phase transition with
an additional irrelevant perturbation that is absent in the
CDM. Our results are consistent with this picture and de-
mand a new scaling correction with exponent ω2 ≈ 1.25

2

We study L×L CDM and SDM systems of size up to
L = 256. Focusing on the scaling corrections, we fix the
leading critical exponents at their known O(3) values in
our finite-size analysis. This enables us to go to higher
order in the irrelevant fields and investigate also sub-
leading corrections. In contrast to the previous studies,
we demonstrate that the SDM actually does not have a
smaller ω1 than the CDM. Instead, the cubic interaction
induces the next correction, which has ω2 = 1.25(3) and
a large prefactor of sign different from that of the first
correction. This causes non-monotonic finite-size behav-
iors that were previously either not observed [19, 20] or
were not analyzed properly [21].
QMC and fitting procedures.—We use the standard

stochastic series expansion QMC method [6, 24] for S =
1/2 spins and set the inverse temperature β at L/2; thus
the ratio L/β is close to the value of the spinwave ve-
locity [21] and the effective imaginary time dimension is
approximately equal to the spatial dimension. At a quan-
tum phase transition with dynamic exponent z = 1 (as
is the case here), as long as β ∝ L the temperature does
not appear as an independent argument in the scaling
function obtained from renormalization group theory. In
the case of a dimensionless quantity we have [25, 26]

O(g, L) = f [(g − gc)L
1/ν ,λ1L

−ω1 ,λ2L
−ω2 , · · · ], (1)

if g is sufficiently close to gc. Here λi denotes the irrele-
vant fields, which we order such that ωi+1 > ωi > 0. Use-
ful dimensionless quantities to study in QMC calculations
include the Binder ratio R = ⟨m4

z⟩/⟨m
2
z⟩

2, where mz is
the component of the staggered magnetization along the
quantization axis, the L-normalized spin stiffness con-
stants Lρx and Lρy (with x and y referring to the lattice
directions), and the uniform susceptibility Lχu. We refer
to Ref. 6 for technical details.
Denoting the deviation g−gc from the critical point by

δ, the standard approach to analyzing the leading critical
behavior with a single correction is to expand Eq. (1) to
linear order in the first irrelevant field,

O(g, L) = f0(δL
1/ν) + L−ω1f1(δL

1/ν), (2)

where f0 and f1 are scaling functions related to the orig-
inal f . Thus, in the absence of corrections, a dimension-
less quantity is completely size independent at gc, and
by expanding f0 we see that O(g, L) for different L cross
each other at gc. With the scaling correction, the cross-
ing points only drift toward gc as L → ∞, and for two
different sizes L and L′ = rL (where we will use r = 2)
one can derive simple expressions for the crossing value
g∗(L) and the observable O∗(L) at this point [27];

g∗(L) = gc + aL−ω1−1/ν , (3a)

O∗(L) = Oc + bL−ω1, (3b)

with constants a and b.
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FIG. 2. Binder ratio of the SDM for several system sizes in
the neighborhood of gc. The curves are polynomial fits giving
crossing points between (L, 2L) data.

We extract the crossing points using polynomial fits
(typically of third order) to several points (of the order
10) in the neighborhood of gc = g∗(∞). The window
[g1, g2] of points used in these fits is reduced as the system
size is increased, so that we are always in the regime
where a low-order expansion around gc is expected to be
valid. Since we interpolate, as opposed to extrapolate,
this is a very reliable way of extracting the crossing points
and their statistical errors (using bootstrapping for the
latter). Examples of raw data along with fits are shown
in Fig. 2 in the case of the Binder ratio of the SDM.
In the following we analyze crossing points between

curves for system sizes L and 2L. When fitting the so de-
fined g∗(L) and O∗(L) to appropriate forms from finite-
size scaling theory, it should be noted that the same sys-
tem size L can appear in two pairs, (L, 2L) as well as
(L/2, L). There are therefore some covariance effects,
which we take into account by using the full covariance
matrix (computed using bootstrap analysis) in the defini-
tion of the goodness of the fit χ2 (normalized per degree
of freedom henceforth). When jointly fitting to two dif-
ferent but correlated quantities, we also account for the
associated covariance. For the functional forms, we will
go beyond the first-order expansion leading to Eqs. (3),
and this will be the key to our findings and conclusions.
Finite-size scaling.—The size dependence of R cross-

ing points is shown in Fig. 3 for both models. A striking
feature is the non-monotonic behaviors apparent for the
SDM but not present for the CDM. Note here that 1/L
on the horizontal axis refers to the smaller of the two
system sizes (L, 2L) used for the crossing points, and the
maximums are located at 2L ≈ 80. In the original discov-
ery of the anomalous behaviors for the SDM [17], all the
systems were smaller, and no non-monotonic behaviors
were therefore observed. It is clear that extrapolations
only based on the smaller system sizes cannot reproduce
the correct asymptotic behaviors.
We will first assume that only one irrelevant field is

important but treat the corrections beyond the first-order

Leading-order cross-point shifts

- Works for CDM, ω1≈0.78 
- Two corrections needed for SDM 
    ω1≈0.78, ω2≈1.25
- Fits within theory where the SDM 

field theory needs a new term 
(Fritz et al, PRB 2012)
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FIG. 4. Joint fits of crossing data for several quantities
where g∗(∞) = gc is fixed to a common value and two scal-
ing corrections are used to first order, with ω1 = 0.78 and
1/ν = 1.406. For the SDM (a), the fit has χ2

≈ 1.0 and deliv-
ers gc(∞) = 2.51945(1) as well as ω2 = 1.30(7), 1.3(1), 1.2(1)
and 1.0(2) from R2, Lχu, Lρx, and Lρy , correspondingly. In
the CDM fits (b), 2ω1 = 1.56 was used in place of ω2 and the
fitted critical point is gc = 1.90956(2), with χ2

≈ 1.2.

actually not unexpected within the scenario of irrelevant
cubic interactions [20], because the standard leading cor-
rection with ω1 ≈ 0.78 should still be present and may
produce various “effective” scaling behaviors over a lim-
ited range of system sizes when combined with the cubic
perturbation. Thus, a reliable analysis of the SDM data
should require at least ω1 and ω2.
We can generalize Eqs. (4) to two correction exponents,

ω1 and ω2, but in that case it is very difficult to determine
both of them with sufficient precision. However, since the
standard leading correction should still be present [20],
we now also can fix ω1 = 0.78 and only treat ω2 as a
free parameter. We find that it is then sufficient to go
only to linear order in the corrections and yet obtain fully
acceptable fits with χ2 ≈ 1. We obtain gc = 2.51945(1)
and ω2 = 1.22(5) for the SDM. The new fitted curve is
shown in the inset of Fig. 3(a). The estimate of gc is
now a bit higher than the previous value from the R∗ fit
(though not much outside one error bar of the difference).
The key result here is clearly that ω2 comes out larger

than the leading O(3) exponent. It is, however, signifi-
cantly smaller than the expected second irrelevant O(3)
exponent with value ≈ 1.8 [32, 33], and it is also less
than 2ω1. The new correction should therefore be due to
the cubic interactions [20] in the low-energy theory of the
SDM. To test the stability of ω2 across different quanti-
ties, we also used a slightly different procedure of fitting
only to g∗ (instead of the joint fit with R∗) and requiring
the same L → ∞ value of gc for all the quantities consid-
ered. We still also fix 1/ν = 1.406 and ω1 = 0.78 but keep
ω2 free for all individual quantities. The SDM data with
fits are displayed in Fig. 4(a), with the resulting gc and
ω2 estimates listed in the caption. All four ω2 estimates
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FIG. 5. Size dependence of the exponent η as defined in
Eq. (6). The known infinite-size value η = 0.0375 is fixed
in the fits (curves). The CDM data are fitted with only the
first correction term in Eq. (7), with ω1 = 0.78 fixed. In
the SDM fit ω1 = 0.78 is also fixed and the second exponent
ω2 = 1.29(5) is the result of the fit.

are statistically consistent with the value obtained above.
In the case of the CDM, shown Fig. 4(b), we follow the
same procedures but replace ω2 by 2ω1 and there is no
free exponent. This fit is of marginally good statistical
quality even when starting the fits from L = 16, indicat-
ing some effects still of the higher-order terms that were
included in Fig. 3(b). We therefore keep the value from
R in Tab. I as our best gc estimate for this model.
To further ascertain our conclusions about the SDM,

we also consider the squared order parameter itself. Hav-
ing determined a precise estimate of gc, we study the
scaling of ⟨m2⟩ at this point, where we expect

⟨m2⟩c ∝ L−(1+η)(1 + b1L
−ω1 + b2L

−ω2 + . . .). (5)

We can then define a size-dependent exponent as

η∗(L) = ln[⟨m2(L)⟩c/⟨m
2(2L)⟩c]/ ln(2)− 1, (6)

which should scale as

η∗(L) = η + c1L
−ω1 + c2L

−ω2 + . . . . (7)

To test this form and extract ω2, we use the known value
η = 0.0375(5) [23] and fix ω1 = 0.78. As shown in Fig. 5,
the form fits the data very well and gives ω2 = 1.29(5).
Here one can again see how access to only system sizes
less than L = 80 would lead to the wrong conclusion.
A fit with two adjustable exponents give ω1 = 0.77(6)
and ω2 = 1.31(7), perfectly consistent with the fit with
ω1 fixed. In the case of the CDM, also shown in Fig. 5,
we find that the data are well described with a single
correction with the known value of the exponent.
Conclusions.—We have analyzed the SDM under the

scenario [20] of an O(3) quantum phase transition with
an additional irrelevant perturbation that is absent in the
CDM. Our results are consistent with this picture and de-
mand a new scaling correction with exponent ω2 ≈ 1.25
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FIG. 3. Inverse system size dependence of (L, 2L) crossing
data for the SDM (a,b) and the CDM (c,d) along with joint
fits (green curves) of the form Eq. (4). The exponent ω is
adjusted for optimal fits, giving ω = 0.60(4) for the SDM and
ω = 0.80(2) for the CDM. The insets show the large system
data on more detailed scales. The red curve in the inset of
(a) shows a fit with only the leading terms arising from the
first and second irrelevant fields, with ω1 = 0.78 fixed and
ω2 = 1.22(5) resulting from the fit; the fitting curve in (b)
barely changes and is not shown.

expansion, Eq. (2), in L−ω1 . Later we will argue that
one has to include also the next exponent ω2 in the case
of the SDM, while for the CDM this exponent is much
larger and does not have to be considered. Even with
only one irrelevant field, if the associated exponent ω =
ω1 is small, the higher order terms such as L−2ω will
clearly also be important. As a guide to how far to go,
we here compare the previous estimates ω1 ≈ 0.5 − 0.6
[20, 21] in the SDM with the second correction exponent
of the O(3) model, ω2 ≈ 1.8 [32], and also note that
several additional corrections with exponents close to 2
are expected [33]. It would then be pointless to go to
higher order than 3ω in the first irrelevant field, and with
1/ν ≈ 1.4 we also do not include mixed corrections with
ω and 1/ν. Thus, for the SDM we use

g∗(L) =gc + L−1/ν(a1L
−ω + a2L

−2ω + a3L
−3ω), (4a)

R∗(L) =Rc + b1L
−ω + b2L

−2ω + b3L
−3ω, (4b)

and exclude small systems until good fits are obtained.
For the CDM, with ω1 = 0.78, by the above arguments
we do not include the 3ω corrections.
The fitting coefficients ai and bi in Eq. (4) are not fully

independent of each other but are related because they
originate from the same scaling function, Eq. (1). We do
not write down the rather complicated relationships here
but fully take them into account in joint fits of the g∗ and
O∗ data. These nonlinear fits are quite demanding and
we make use of a slow but reliable stochastic approach

similar to the one discussed in Ref. 28. The stability of
the fits is greatly aided by fixing 1/ν to its known 3D
O(3) value 1.406 [23]. The resulting curves are shown in
Fig. 3. Here, as in all cases below, all data points shown
in the figure were included in the fits (with smaller sizes
excluded until the fits become acceptable).
For the CDM, our result for the critical coupling is gc =

1.90951(1), where the number within parathesis here and
henceforth denotes the statistical error (one standard de-
viation of the mean) in the preceding digit. This is con-
sistent with the best previous result, gc = 1.90948(4) [6]
and gc = 1.90947(3) [21], but with reduced statistical er-
ror. For the correction, we obtain ω = 0.80(2), which
agrees with the O(3) value ω1 = 0.782(13) [23].
For the SDM we obtain gc = 2.51943(1), which is con-

sistent with 2.5196(2) obtained previously using L × L
lattices [17], but with a much smaller error bar. It
should be noted that the previous analysis was differ-
ent from our approach here. Using rectangular lattices
with optimized aspect ratio, the critical point was esti-
mated at 2.51941(2) in Ref. [21], which agrees with our
result within error bars. For the correction we obtain
ω = 0.60(4), which is clearly smaller than the known
O(3) value cited above but in good agreement with the
values presented in both Refs. [20] and [21].
Although Rc is universal in the sense that it does

not depend on the micro structure of lattice and details
of the interactions, its value does depend on boundary
conditions [29, 30], including aspect ratios. The CDM
and SDM have different critical spin wave velocities and,
therefore, effectively different time-space aspect ratios
even though β/L is the same. This explains the different
Rc values in Fig. 3; see also Supplemental Material [31].
By analyzing also the spin stiffness and the uniform

susceptibility in the manner described above, we obtain
the results summarized in Tab. I. The results for the
CDM consistently reproduce the known O(3) value of ω1,
while in the case of the SDM the different quantities pro-
duce a wide range of results. This behavior makes us sus-
pect that in this case the extracted ω may not be the true
smallest correction exponent, but, as also pointed out in
Ref. [20], should be regarded as an “effective exponent”,
i.e., one influenced by neglected further corrections. The
inability of a single irrelevant field to describe the data is

TABLE I. Results for the critical point and correction expo-
nent obtained from the fits of various dimensionless quantities
to scaling forms analogous to Eq. (4), keeping corrections up
to 3ω for the SDM and 2ω for the CDM.

CDM SDM
ω gc ω gc

Lρx 0.77(3) 1.90953(2) 0.88(2) 2.51946(2)
Lρy 0.77(4) 1.90957(2) 0.39(5) 2.51942(3)
Lχu 0.78(3) 1.90956(3) 0.68(6) 2.51945(2)
R2 0.80(2) 1.90951(1) 0.60(4) 2.51943(1)
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FIG. 3. Inverse system size dependence of (L, 2L) crossing
data for the SDM (a,b) and the CDM (c,d) along with joint
fits (green curves) of the form Eq. (4). The exponent ω is
adjusted for optimal fits, giving ω = 0.60(4) for the SDM and
ω = 0.80(2) for the CDM. The insets show the large system
data on more detailed scales. The red curve in the inset of
(a) shows a fit with only the leading terms arising from the
first and second irrelevant fields, with ω1 = 0.78 fixed and
ω2 = 1.22(5) resulting from the fit; the fitting curve in (b)
barely changes and is not shown.

expansion, Eq. (2), in L−ω1 . Later we will argue that
one has to include also the next exponent ω2 in the case
of the SDM, while for the CDM this exponent is much
larger and does not have to be considered. Even with
only one irrelevant field, if the associated exponent ω =
ω1 is small, the higher order terms such as L−2ω will
clearly also be important. As a guide to how far to go,
we here compare the previous estimates ω1 ≈ 0.5 − 0.6
[20, 21] in the SDM with the second correction exponent
of the O(3) model, ω2 ≈ 1.8 [32], and also note that
several additional corrections with exponents close to 2
are expected [33]. It would then be pointless to go to
higher order than 3ω in the first irrelevant field, and with
1/ν ≈ 1.4 we also do not include mixed corrections with
ω and 1/ν. Thus, for the SDM we use

g∗(L) =gc + L−1/ν(a1L
−ω + a2L

−2ω + a3L
−3ω), (4a)

R∗(L) =Rc + b1L
−ω + b2L

−2ω + b3L
−3ω, (4b)

and exclude small systems until good fits are obtained.
For the CDM, with ω1 = 0.78, by the above arguments
we do not include the 3ω corrections.
The fitting coefficients ai and bi in Eq. (4) are not fully

independent of each other but are related because they
originate from the same scaling function, Eq. (1). We do
not write down the rather complicated relationships here
but fully take them into account in joint fits of the g∗ and
O∗ data. These nonlinear fits are quite demanding and
we make use of a slow but reliable stochastic approach

similar to the one discussed in Ref. 28. The stability of
the fits is greatly aided by fixing 1/ν to its known 3D
O(3) value 1.406 [23]. The resulting curves are shown in
Fig. 3. Here, as in all cases below, all data points shown
in the figure were included in the fits (with smaller sizes
excluded until the fits become acceptable).
For the CDM, our result for the critical coupling is gc =

1.90951(1), where the number within parathesis here and
henceforth denotes the statistical error (one standard de-
viation of the mean) in the preceding digit. This is con-
sistent with the best previous result, gc = 1.90948(4) [6]
and gc = 1.90947(3) [21], but with reduced statistical er-
ror. For the correction, we obtain ω = 0.80(2), which
agrees with the O(3) value ω1 = 0.782(13) [23].
For the SDM we obtain gc = 2.51943(1), which is con-

sistent with 2.5196(2) obtained previously using L × L
lattices [17], but with a much smaller error bar. It
should be noted that the previous analysis was differ-
ent from our approach here. Using rectangular lattices
with optimized aspect ratio, the critical point was esti-
mated at 2.51941(2) in Ref. [21], which agrees with our
result within error bars. For the correction we obtain
ω = 0.60(4), which is clearly smaller than the known
O(3) value cited above but in good agreement with the
values presented in both Refs. [20] and [21].
Although Rc is universal in the sense that it does

not depend on the micro structure of lattice and details
of the interactions, its value does depend on boundary
conditions [29, 30], including aspect ratios. The CDM
and SDM have different critical spin wave velocities and,
therefore, effectively different time-space aspect ratios
even though β/L is the same. This explains the different
Rc values in Fig. 3; see also Supplemental Material [31].
By analyzing also the spin stiffness and the uniform

susceptibility in the manner described above, we obtain
the results summarized in Tab. I. The results for the
CDM consistently reproduce the known O(3) value of ω1,
while in the case of the SDM the different quantities pro-
duce a wide range of results. This behavior makes us sus-
pect that in this case the extracted ω may not be the true
smallest correction exponent, but, as also pointed out in
Ref. [20], should be regarded as an “effective exponent”,
i.e., one influenced by neglected further corrections. The
inability of a single irrelevant field to describe the data is

TABLE I. Results for the critical point and correction expo-
nent obtained from the fits of various dimensionless quantities
to scaling forms analogous to Eq. (4), keeping corrections up
to 3ω for the SDM and 2ω for the CDM.

CDM SDM
ω gc ω gc

Lρx 0.77(3) 1.90953(2) 0.88(2) 2.51946(2)
Lρy 0.77(4) 1.90957(2) 0.39(5) 2.51942(3)
Lχu 0.78(3) 1.90956(3) 0.68(6) 2.51945(2)
R2 0.80(2) 1.90951(1) 0.60(4) 2.51943(1)

SDM CDM
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Thallium copper chloride is a quantum spin liquid of S!1/2 Cu2" dimers. Interdimer superexchange
interactions give a three-dimensional magnon dispersion and a spin gap significantly smaller than the dimer
coupling. This gap is closed by an applied hydrostatic pressure of approximately 2 kbar or by a magnetic field
of 5.6 T, offering a unique opportunity to explore both types of quantum phase transition and their associated
critical phenomena. We use a bond-operator formulation to obtain a continuous description of all disordered
and ordered phases, and thus of the transitions separating these. Both pressure- and field-induced transitions
may be considered as the Bose–Einstein condensation of triplet magnon excitations, and the respective phases
of staggered magnetic order as linear combinations of dimer-singlet and dimer-triplet modes. We focus on the
evolution with applied pressure and field of the magnetic excitations in each phase, and in particular on the
gapless !Goldstone" modes in the ordered regimes which correspond to phase fluctuations of the ordered
moment. The bond-operator description yields a good account of the magnetization curves and of magnon
dispersion relations observed by inelastic neutron scattering under applied fields, and a variety of experimental
predictions for pressure-dependent measurements.

DOI: 10.1103/PhysRevB.69.054423 PACS number!s": 75.10.Jm, 75.40.Cx, 75.40.Gb

I. INTRODUCTION

Thallium copper chloride1–3 presents an insulating, quan-
tum magnetic system of dimerized S!1/2 Cu2" ions. Inelas-
tic neutron scattering !INS" measurements of the elementary
magnon excitations4,5 reveal a strong dispersion in all three
spatial dimensions indicative of significant interdimer inter-
actions. The dispersion minimum gives a spin gap #0
!0.7 meV, which is significantly smaller than the antiferro-
magnetic !AF" dimer superexchange parameter J$5 meV.
The corresponding critical field, Hc!5.6 T, makes TlCuCl3
one of the few known inorganic systems in which the gap
may be closed by application of laboratory magnetic fields.2
Neutron-diffraction measurements at fields H#Hc revealed
that a field-induced AF order in the plane normal to the ap-
plied field appears simultaneously with the uniform
moment.6 Recent INS measurements of the magnon spectra
in finite fields,7 including those exceeding Hc ,8 have pro-
vided dynamical information concerning the elementary ex-
citations, in particular the linear Goldstone mode,9 in the
phase of field-induced magnetic order.
TlCuCl3 !Fig. 1" is one member of a group of related

compounds. The potassium analog KCuCl3 !Refs. 1,2,10–
13,7" is similarly dimerized, but has significantly weaker in-
terdimer couplings,14 resulting in a large spin gap of 2.6
meV. A further material in the same class, NH4CuCl3, has no
spin gap and exhibits magnetic order with a very small mo-
ment, but also shows a complicated low-temperature struc-
ture which gives rise to magnetization plateaus only at 1/4
and 3/4 of the saturation value.15 While the apparent increase
of interdimer couplings with anion size may suggest a con-
tribution of the anion to superexchange processes, it should
be noted that the physical origin of the properties of
NH4CuCl3 may be rather different from the other
members.16 Turning from chemical to physical pressure,

Tanaka et al.17 found by magnetization measurements under
hydrostatic pressure that TlCuCl3 has a pressure-induced
magnetically ordered phase, with a very small critical pres-
sure for the onset of magnetic order, Pc%2 kbar. Oosawa
et al.18 have shown very recently by elastic neutron-
scattering measurements under a pressure of 1.48 GPa that
the pressure-induced ordered phase has a strong staggered
moment !60% of the saturation value", again reflecting the
low value of Pc . The magnetic Bragg reflections are found
at reciprocal-lattice points Q!(0,0,2&) !following the nota-
tion of Ref. 4", as in the field-induced ordered phase of
TlCuCl3. The aim of the present work is to compare and
contrast the field- and pressure-induced ordered phases of the
system, and to provide a complete description of the static
magnetization and dynamical excitations at all fields and
pressures.

FIG. 1. Structure of TlCuCl3: small circles represent Cl$ ions,
medium-sized circles Cu2" ions, and large circles Tl" ions.

PHYSICAL REVIEW B 69, 054423 !2004"

0163-1829/2004/69!5"/054423!20"/$22.50 ©2004 The American Physical Society69 054423-1

Figure 4.1: Crystal structure of TlCuCl
3

: small circles represent Cl� ions, medium-sized

circles Cu2+ ions, and large circles Tl+ ions. Dimers are formed between S = 1

2

Cu2+ pairs,

with superexchange via Cl� [3–9]. This graph is from Ref. [10].

couplings are di↵erent.

A universal aspect of the ordering temperature, from systems close to the quantum-

critical point to deep inside the Néel phase, is uncovered based on an unbiased quantum

Monte Carlo calculation. A scaling procedure of direct relevance to experiments is devel-

oped. The results also provide new insights into the relevant energy scales present in the 3D

Néel state and demonstrate an e↵ective decoupling of thermal and quantum fluctuations.

4.1 TlCuCl3 and Dimer Spin Models

The strong interdimer interaction of TlCuCl
3

is revealed by elementary magnon exitation

with neutron scattering experiment [6, 88]. Quantum phase transitions can be realized in
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Quantum and classical criticality in a dimerized
quantum antiferromagnet
P. Merchant1, B. Normand2, K. W. Krämer3, M. Boehm4, D. F. McMorrow1 and Ch. Rüegg1,5,6*

A quantum critical point (QCP) is a singularity in the phase diagram arising because of quantum mechanical fluctuations.
The exotic properties of some of the most enigmatic physical systems, including unconventional metals and superconductors,
quantum magnets and ultracold atomic condensates, have been related to the importance of critical quantum and thermal
fluctuations near such a point. However, direct and continuous control of these fluctuations has been di�cult to realize, and
complete thermodynamic and spectroscopic information is required to disentangle the e�ects of quantum and classical physics
around a QCP. Here we achieve this control in a high-pressure, high-resolution neutron scattering experiment on the quantum
dimer material TlCuCl3. By measuring the magnetic excitation spectrum across the entire quantum critical phase diagram,
we illustrate the similarities between quantum and thermal melting of magnetic order. We prove the critical nature of the
unconventional longitudinal (Higgs) mode of the ordered phase by damping it thermally. We demonstrate the development of
two types of criticality, quantum and classical, and use their static and dynamic scaling properties to conclude that quantum
and thermal fluctuations can behave largely independently near a QCP.

In classical isotropic antiferromagnets, the excitations of
the ordered phase are gapless spin waves emerging on the
spontaneous breaking of a continuous symmetry1. The classical

phase transition, occurring at the critical (Néel) temperature TN,
is driven by thermal fluctuations. In quantum antiferromagnets,
quantum fluctuations suppress long-range order, and can destroy it
completely even at zero temperature2. The ordered and disordered
phases are separated by a QCP, where quantum fluctuations restore
the broken symmetry and all excitations become gapped, giving
them characteristics fundamentally di�erent from the Goldstone
modes on the other side of the QCP (Fig. 1). At finite temperatures
around a QCP, the combined e�ects of quantum and thermal
fluctuations bring about a regime where the characteristic energy
scale of spin excitations is the temperature itself, and this quantum
critical regime has many special properties3.

Physical systems do not often allow the free tuning of a
quantum fluctuation parameter through a QCP. The quantum
critical regime has been studied in some detail in heavy-fermion
metals with di�erent dopings, where the quantum phase transition
(QPT) is from itinerant magnetic phases to unusual metallic or
superconducting ones4–6, in organic materials where a host of
insulating magnetic phases become (super)conducting7,8, and in
cold atomic gases tuned from superfluid toMott-insulating states9,10.
However, the dimerized quantum spin system TlCuCl3 occupies
a very special position in the experimental study of QPTs. The
quantum disordered phase at ambient pressure and zero field has
a small gap to spin excitations. An applied magnetic field closes
this gap, driving a QPT to an ordered phase, a magnon condensate
in the Bose–Einstein universality class, with a single, nearly
massless excitation11,12.

Far more remarkably, an applied pressure also drives a QPT
to an ordered phase13, occurring at the very low critical pressure

pc = 1.07 kbar (ref. 14) and sparking detailed studies15,16. This
ordered phase is a di�erent type of condensate, whose defining
feature is a massive excitation, a Higgs boson or longitudinal
fluctuationmode of theweakly orderedmoment17,18. This excitation,
which exists alongside the two transverse (Goldstone) modes
of a conventional well-ordered magnet, has been characterized
in detail by neutron spectroscopy with continuous pressure
control through the QPT (ref. 19) and subsequently by di�erent
theoretical approaches20,21. TlCuCl3 is therefore an excellent system
for answering fundamental questions about the development of
criticality, the nature of the quantum critical regime, and the
interplay of quantum and thermal fluctuations by controlling both
the pressure and the temperature.

Here we present inelastic neutron scattering (INS) results that
map the evolution of the spin dynamics of TlCuCl3 throughout the
quantum critical phase diagram in pressure and temperature. The
spin excitations we measure exhibit di�erent forms of dynamical
scaling behaviour arising from the combined e�ects of quantum
and thermal fluctuations, particularly on crossing the quantum
critical regime and at the line of phase transitions to magnetic
order (Fig. 1). To probe these regions, we collected spectra up to
1.8 meV for temperatures between T =1.8 K and 12.7 K, and over
a range of applied hydrostatic pressures. Our measurements were
performed primarily at p = 1.05 kbar (' pc at the lowest
temperatures), 1.75 kbar and 3.6 kbar, and also for all pressures at
T = 5.8 K. Most measurements were made at the ordering
wavevector, Q0 = (0 4 0) reciprocal lattice units (r.l.u.), and so
concern triplet mode gaps. From the INS selection rules, only one
transverse mode of the ordered phase is observable at Q = Q0,
and it is gapped (�T2 = 0.38 meV) owing to a 1% exchange
anisotropy19. These features allow an unambiguous separation of
the intensity contributions from modes of each transverse or

1London Centre for Nanotechnology and Department of Physics and Astronomy, University College London, London WC1E 6BT, UK, 2Department of
Physics, Renmin University of China, Beijing 100872, China, 3Department of Chemistry and Biochemistry, University of Bern, CH–3012 Bern, Switzerland,
4Institut Laue Langevin, BP 156, 38042 Grenoble Cedex 9, France, 5Laboratory for Neutron Scattering, Paul Scherrer Institute, CH–5232 Villigen,
Switzerland, 6DPMC–MaNEP, University of Geneva, CH–1211 Geneva, Switzerland. *e-mail: christian.rueegg@psi.ch
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Figure 4 | Quantum and classical criticality. a, Scattered neutron intensity at p=pc as a function of temperature. Points show the energies ✏Q extracted
from the intensity for the modes becoming gapless (L and T1, yellow) and gapped (T2, black) as T !0. b, �Q as a function of T at p=pc. Error bars in a and
b indicate uncertainties in the resolution deconvolution. c, Complete experimental phase diagram, showing quantum disordered (QD), quantum critical
(QC), classical critical (CC) and renormalized classical (RC-AFM) phases. The dashed lines denote energy scales marking crossovers in behaviour. Grey
symbols denote TN(p) (ref. 14), blue symbols labelled TSL(p) show the limit of classical critical scaling in the data for the staggered magnetization, ms(T),
and the blue bars are taken from �Q/✏Q(T) (see text). d, Linear proportionality of the measured TN(p) and ms(p) (ref. 14). e, Scaling of TN and ms, including
one high-p data point (open circle) taken from ref. 25 for an absolute calibration of ms. Data for ms are normalized by Tmax =35 K, the maximum of the
magnetic susceptibility13,16. Red lines in d and e represent scaling behaviour discussed in the text and error bars are the statistical uncertainties in the
intensity measurements determining ms.

on the calculated quantities, but no detectable qualitative ones (for
example, on exponents). From our measurements, the best fits to
the pressure exponents for ms and TN lie close to the classical value
of 0.35 (ref. 14), although the quantum value of 0.5 is not beyond
the error bars very close to the QCP. From experiment, the two
quantities scale well together near the QCP, as shown in Fig. 4d,e,
but depart from universal scaling16 around an ordered moment of
0.4µB/Cu (Fig. 4e).

We have shown that the e�ects on the spectrum of quantum
and thermal melting are qualitatively very similar. Both result
in the systematic evolution of excitations whose gap increases
away from the classical phase transition line, rather than simply
a loss of coherence due to thermal fluctuations. Microscopically,
quantum fluctuations in a dimer-based system cause enhanced
singlet formation and loss of interdimer magnetic correlations,

whereas thermal fluctuations act to suppress the spin correlation
function hSi · Sji on both the dimer and interdimer bonds. These
correlation functions may be estimated from neutron-scattering
intensities23 and also measured in dimerized optical lattices of
ultracold fermions29. In TlCuCl3, both methods of destroying
interdimer coherence cause the triplet modes to evolve in the same
way. A key question in the understanding of quantum criticality is
whether quantum and thermal fluctuations can be considered as
truly independent, andwhether this independencemay be taken as a
definition of the quantumcritical regime16. Our experimental results
suggest that weak departures from universality become detectable at
(p,T ) values away from the quantum critical and classical critical
regimes, and particularly as we increase the excitation energy,
presumably as microscopic details of the fluctuation redistribution
cause a mixing of quantum and thermal e�ects.
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FIG. 1. (Color online) Dimerized 3D lattices: (a) columnar
dimers, (b) staggered dimers, and (c) double cube. For a system of
length L, the number of spins is N = L3 in (a) and (b), and N = 2L3

in (c). The two different coupling strengths J1 and J2 are indicated
by thin (black dashed and solid) and thick (red) lines, respectively.

not just close to the quantum-critical point but extending to
strongly ordered systems. Our results give a parameter-free
scaling function that can be compared with experiments.

Quantum Monte Carlo calculations. We have used the
stochastic series expansion (SSE) QMC method with very
efficient loop updates5–7 to calculate the squares ⟨m2

z⟩ and
⟨m2

sz⟩ of the z components of the uniform and staggered
magnetizations,

mz = 1
N

N∑

i=1

Sz
i , msz = 1

N

N∑

i=1

φiS
z
i , (2)

where the phases φi = ±1 correspond to the sublattices of the
bipartite systems in Fig. 1. The uniform susceptibility is χ =
⟨m2

z⟩/(NT ). We also study the Binder ratio R2 = ⟨m4
sz⟩/⟨m2

sz⟩2

and the spin stiffness constants ρα
s in all lattice directions (α =

x,y,z), ρα
s = d2E(θα)/dθ2

α , where E is the internal energy per
spin and θα a uniform twist angle imposed between spins in
planes perpendicular to the α axis. The stiffness constants can
be related to winding number fluctuations in the simulations.7

We use standard finite-size scaling7 to extract TN . At TN , the
stiffness constants scale with the system length as ρα

s ∝ L2−d ,
where the dimensionality d = 3. Thus, ρα

s L should be size
independent at TN , while this quantity vanishes (diverges) for
T > TN (T < TN ). In practice, this means that curves versus
T (at fixed g) for two different system sizes L cross each other
at a point which drifts (due to scaling corrections) toward TN

with increasing L. The dimensionless Binder ratio also has this
kind of behavior and provides us with a different TN estimate
to check for consistency. Figures 2(a) and 2(b) show examples
of these crossing behaviors for ρx

s L and R2. The crossing
points drift in different directions and bracket TN . Figure 2(c)
shows the L dependence of crossing points extracted from data
for (L,L + 2) system pairs, for R2 and two different stiffness
constants. Power-law fits are used to extrapolate to infinite
size. The mutual consistency of the TN value so obtained using
different quantities gives us confidence in the accuracy of this
procedure.

To extract the T = 0 sublattice magnetization, we carry out
simulations at temperature T = J1/L. Note that, in a Néel
phase with TN > 0, any T (L) such that T (L → ∞) → 0 can
be used for extrapolations to the thermodynamic limit and
T = 0. Our choice is a natural way to to scale the temperature
since the lowest spin waves have energy ∝1/L. We also did
some calculations with T = 1/2L and obtained consistent
extrapolated results. Examples of the L dependence are shown

0.5

1.0

1.5

ρ sx L

L=6
L=8, ... , 20
L=22

0.76 0.78 0.8 0.82 0.84
T

1.9

2.0

2.1

2.2

2.3

2.4

2.5

R
2

L=6
L=8, ... , 20
L=22

0.00 0.05 0.10
1/L

0.79

0.80

0.81

0.82

T

ρs
x
L crossing

ρs
y
L crossing

R2 crossing

(a)

(b)

(c)

FIG. 2. (Color online) Procedures used to extract the critical
temperature TN . (a) and (b) show ρx

s L and R2, respectively, for
the columnar dimer model at coupling ratio g = 3.444. The error
bars are smaller than the symbols. Using polynomial fits to data for
two lattice sizes, L and L + 2, crossing points between the curves
are extracted. Results are shown in (c), along with fits of the form
TN (L) = TN (∞) + a/Lw (to the large-L data for which this form
obtains). Extrapolations of the three quantities give TN = 0.7996(3),
0.7996(6), and 0.7999(5) for L → ∞, all consistent with each other
within errors bars.

in Fig. 3 for the double-cube model at several different
coupling ratios. Taking into account rotational averaging in
spin space, the final result for the sublattice magnetization is
given by the L → ∞ extrapolated ⟨m2

sz⟩ (for which we use a
polynomial fit, as shown in Fig. 3), ms =

√
3⟨m2

sz⟩.
Universality of TN versus ms . Following the above pro-

cedures, we have calculated TN and ms accurately for all
three dimer models at several coupling ratios g, from close
to gc to deep inside the Néel phase. We graph TN versus
ms in Fig. 4. TN is scaled by three different energy units:
the interdimer coupling J1 in Fig. 4(a), the sum of couplings
Js connected to each spin in Fig. 4(b), and the temperature
T ∗ at which the susceptibility exhibits a peak in Fig. 4(c).
Before discussing these normalizations of TN in detail, let us
examine the reason for the linear behavior, TN ∝ ms , seen in
the QMC results for small [and in Figs. 4(b) and 4(c) even quite
large] ms .
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FIG. 1. (Color online) Dimerized 3D lattices: (a) columnar
dimers, (b) staggered dimers, and (c) double cube. For a system of
length L, the number of spins is N = L3 in (a) and (b), and N = 2L3

in (c). The two different coupling strengths J1 and J2 are indicated
by thin (black dashed and solid) and thick (red) lines, respectively.

not just close to the quantum-critical point but extending to
strongly ordered systems. Our results give a parameter-free
scaling function that can be compared with experiments.

Quantum Monte Carlo calculations. We have used the
stochastic series expansion (SSE) QMC method with very
efficient loop updates5–7 to calculate the squares ⟨m2

z⟩ and
⟨m2

sz⟩ of the z components of the uniform and staggered
magnetizations,

mz = 1
N

N∑

i=1

Sz
i , msz = 1

N

N∑

i=1

φiS
z
i , (2)

where the phases φi = ±1 correspond to the sublattices of the
bipartite systems in Fig. 1. The uniform susceptibility is χ =
⟨m2

z⟩/(NT ). We also study the Binder ratio R2 = ⟨m4
sz⟩/⟨m2

sz⟩2

and the spin stiffness constants ρα
s in all lattice directions (α =

x,y,z), ρα
s = d2E(θα)/dθ2

α , where E is the internal energy per
spin and θα a uniform twist angle imposed between spins in
planes perpendicular to the α axis. The stiffness constants can
be related to winding number fluctuations in the simulations.7

We use standard finite-size scaling7 to extract TN . At TN , the
stiffness constants scale with the system length as ρα

s ∝ L2−d ,
where the dimensionality d = 3. Thus, ρα

s L should be size
independent at TN , while this quantity vanishes (diverges) for
T > TN (T < TN ). In practice, this means that curves versus
T (at fixed g) for two different system sizes L cross each other
at a point which drifts (due to scaling corrections) toward TN

with increasing L. The dimensionless Binder ratio also has this
kind of behavior and provides us with a different TN estimate
to check for consistency. Figures 2(a) and 2(b) show examples
of these crossing behaviors for ρx

s L and R2. The crossing
points drift in different directions and bracket TN . Figure 2(c)
shows the L dependence of crossing points extracted from data
for (L,L + 2) system pairs, for R2 and two different stiffness
constants. Power-law fits are used to extrapolate to infinite
size. The mutual consistency of the TN value so obtained using
different quantities gives us confidence in the accuracy of this
procedure.

To extract the T = 0 sublattice magnetization, we carry out
simulations at temperature T = J1/L. Note that, in a Néel
phase with TN > 0, any T (L) such that T (L → ∞) → 0 can
be used for extrapolations to the thermodynamic limit and
T = 0. Our choice is a natural way to to scale the temperature
since the lowest spin waves have energy ∝1/L. We also did
some calculations with T = 1/2L and obtained consistent
extrapolated results. Examples of the L dependence are shown
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FIG. 2. (Color online) Procedures used to extract the critical
temperature TN . (a) and (b) show ρx

s L and R2, respectively, for
the columnar dimer model at coupling ratio g = 3.444. The error
bars are smaller than the symbols. Using polynomial fits to data for
two lattice sizes, L and L + 2, crossing points between the curves
are extracted. Results are shown in (c), along with fits of the form
TN (L) = TN (∞) + a/Lw (to the large-L data for which this form
obtains). Extrapolations of the three quantities give TN = 0.7996(3),
0.7996(6), and 0.7999(5) for L → ∞, all consistent with each other
within errors bars.

in Fig. 3 for the double-cube model at several different
coupling ratios. Taking into account rotational averaging in
spin space, the final result for the sublattice magnetization is
given by the L → ∞ extrapolated ⟨m2

sz⟩ (for which we use a
polynomial fit, as shown in Fig. 3), ms =

√
3⟨m2

sz⟩.
Universality of TN versus ms . Following the above pro-

cedures, we have calculated TN and ms accurately for all
three dimer models at several coupling ratios g, from close
to gc to deep inside the Néel phase. We graph TN versus
ms in Fig. 4. TN is scaled by three different energy units:
the interdimer coupling J1 in Fig. 4(a), the sum of couplings
Js connected to each spin in Fig. 4(b), and the temperature
T ∗ at which the susceptibility exhibits a peak in Fig. 4(c).
Before discussing these normalizations of TN in detail, let us
examine the reason for the linear behavior, TN ∝ ms , seen in
the QMC results for small [and in Figs. 4(b) and 4(c) even quite
large] ms .
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FIG. 4. (Color online) The Néel temperature TN vs the sublattice
magnetization for the three different dimerized models and with
TN normalized in three different ways. TN is measured in units of
(a) the interdimer coupling J1, (b) the total coupling Js per spin, and
(c) the peak temperature T ∗ of the susceptibility. A linear dependence
obtains in all cases for small to moderate ms , as indicate by fitted lines.
Note that ms ! 1/2 for S = 1/2.

A semiclassical mean-field argument (inspired by
the “renormalized classical” picture developed in two
dimensions1) leading to TN ∝ ms is the following: To compute
TN in a classical system of spins of length S, one replaces the
coupling of a spin S0 to the total spin of its neighbors δ,
J

∑
δ Sδ , by the thermal average J

∑
δ⟨Sδ⟩. In the presence of

quantum fluctuations, this mean field seen by S0 is reduced,
which is taken into account by a renormalization, ⟨Sδ⟩ →
(ms/S)⟨Sδ⟩. The thermal fluctuations are, thus, added on top of
the quantum fluctuations at T = 0, under the assumption that
the quantum effects will not change appreciably for T > 0 (i.e.,
the thermal fluctuations are assumed to be solely responsible
for further reducing the order). Note that S0 should not be
renormalized here, but is computed as a thermal expectation
value and should satisfy the self-consistency condition ⟨Sδ⟩ =
⟨S0⟩. The final magnetization curve is given by (ms/S)⟨S0⟩.
In this procedure of decoupling the classical and quantum
fluctuations, one clearly effectively has J → (ms/S)J and,
thus, TN ∝ ms .

The assumption that the quantum renormalization factor
ms/S is T independent up to TN can be valid only if TN is
small. The energy scale in which to measure TN when stating
this condition should be dictated by the spin-wave velocity,
which stays nonzero at the quantum-critical point17 [i.e., not
by the long-distance energy scale ρs(T = 0), which vanishes
as g → gc and is unrelated to the density of thermally excited
spin waves]. A linear dependence is seen in Fig. 4 up to rather
large values of ms (where TN ∼ J1). A linear dependence was
also recently found in the columnar dimer model based on
high-T expansions18 (with much larger error bars).

Returning now to the issue of how to best normalize TN ,
we note that in Fig. 4(a), where the interdimer coupling J1
is used, the curve for the double-cube model is significantly
above the other two. This is clearly because the constant J1
does not account for the different average couplings in the
models. Using instead the sum Js of couplings connected to
each spin, i.e., Js = 5 + g for the columnar and staggered
dimers and 6 + g for the double cube (setting J1 = 1), the
curves, shown in Fig. 4(b), collapse almost on top of each
other. Note that also the curves for the columnar and staggered
dimers are closer to each other than in Fig. 4(a), although they
have the same definition of Js . This can be the case because Js

rescales the curves nonuniformly, since ms(g) and, therefore,
Js(ms), is different for the two models. The linearity of TN/Js

versus ms is also much clearer than before and extends all the
way up to ms ≈ 0.3.

Although the data collapse is already quite good in TN/Js ,
we can do even better when normalizing with a physical
quantity that measures the effective lattice-scale energy. One
such energy scale in antiferromagnets is the temperature at
which the uniform magnetic susceptibility χ exhibits a peak.
This peak is due to the crossover from the high-T Curie form
to the low-T weakly temperature-dependent form typical of
antiferromagnets. The peak temperature T ∗, thus, reflects the
short-distance energy scale at which antiferromagnetic corre-
lations become significant. T ∗ is often used experimentally
to extract the value of the exchange constant, using, e.g.,
the “Bonner-Fisher” curve in one dimension.19 In spatially
anisotropic systems such as the dimerized models we consider
here, a natural assumption is that T ∗ reflects an effective
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FIG. 3. (Color online) Extrapolation of the sublattice magneti-
zation obtained in simulations with T = J1/L of the double-cube
Heisenberg model at different coupling ratios g. The error bars are
much smaller than the symbols. The fitting function used for L → ∞
extrapolations is a + b/L2 + c/L3 (where we exclude the linear term
because it comes out very close to zero in fits including it).
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FIG. 4. (Color online) The Néel temperature TN vs the sublattice
magnetization for the three different dimerized models and with
TN normalized in three different ways. TN is measured in units of
(a) the interdimer coupling J1, (b) the total coupling Js per spin, and
(c) the peak temperature T ∗ of the susceptibility. A linear dependence
obtains in all cases for small to moderate ms , as indicate by fitted lines.
Note that ms ! 1/2 for S = 1/2.

A semiclassical mean-field argument (inspired by
the “renormalized classical” picture developed in two
dimensions1) leading to TN ∝ ms is the following: To compute
TN in a classical system of spins of length S, one replaces the
coupling of a spin S0 to the total spin of its neighbors δ,
J

∑
δ Sδ , by the thermal average J

∑
δ⟨Sδ⟩. In the presence of

quantum fluctuations, this mean field seen by S0 is reduced,
which is taken into account by a renormalization, ⟨Sδ⟩ →
(ms/S)⟨Sδ⟩. The thermal fluctuations are, thus, added on top of
the quantum fluctuations at T = 0, under the assumption that
the quantum effects will not change appreciably for T > 0 (i.e.,
the thermal fluctuations are assumed to be solely responsible
for further reducing the order). Note that S0 should not be
renormalized here, but is computed as a thermal expectation
value and should satisfy the self-consistency condition ⟨Sδ⟩ =
⟨S0⟩. The final magnetization curve is given by (ms/S)⟨S0⟩.
In this procedure of decoupling the classical and quantum
fluctuations, one clearly effectively has J → (ms/S)J and,
thus, TN ∝ ms .

The assumption that the quantum renormalization factor
ms/S is T independent up to TN can be valid only if TN is
small. The energy scale in which to measure TN when stating
this condition should be dictated by the spin-wave velocity,
which stays nonzero at the quantum-critical point17 [i.e., not
by the long-distance energy scale ρs(T = 0), which vanishes
as g → gc and is unrelated to the density of thermally excited
spin waves]. A linear dependence is seen in Fig. 4 up to rather
large values of ms (where TN ∼ J1). A linear dependence was
also recently found in the columnar dimer model based on
high-T expansions18 (with much larger error bars).

Returning now to the issue of how to best normalize TN ,
we note that in Fig. 4(a), where the interdimer coupling J1
is used, the curve for the double-cube model is significantly
above the other two. This is clearly because the constant J1
does not account for the different average couplings in the
models. Using instead the sum Js of couplings connected to
each spin, i.e., Js = 5 + g for the columnar and staggered
dimers and 6 + g for the double cube (setting J1 = 1), the
curves, shown in Fig. 4(b), collapse almost on top of each
other. Note that also the curves for the columnar and staggered
dimers are closer to each other than in Fig. 4(a), although they
have the same definition of Js . This can be the case because Js

rescales the curves nonuniformly, since ms(g) and, therefore,
Js(ms), is different for the two models. The linearity of TN/Js

versus ms is also much clearer than before and extends all the
way up to ms ≈ 0.3.

Although the data collapse is already quite good in TN/Js ,
we can do even better when normalizing with a physical
quantity that measures the effective lattice-scale energy. One
such energy scale in antiferromagnets is the temperature at
which the uniform magnetic susceptibility χ exhibits a peak.
This peak is due to the crossover from the high-T Curie form
to the low-T weakly temperature-dependent form typical of
antiferromagnets. The peak temperature T ∗, thus, reflects the
short-distance energy scale at which antiferromagnetic corre-
lations become significant. T ∗ is often used experimentally
to extract the value of the exchange constant, using, e.g.,
the “Bonner-Fisher” curve in one dimension.19 In spatially
anisotropic systems such as the dimerized models we consider
here, a natural assumption is that T ∗ reflects an effective
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FIG. 5. (Color online) (a) Susceptibility vs temperature of the
staggered dimer model at different coupling ratios. The system size is
L = 12, for which the peak height and location are already L → ∞
converged. (b) The peak temperature vs the coupling ratio for the
three different models.

average coupling. In Fig. 5(a) we show examples of the
susceptibility close to its peak, and in Fig. 5(b) we show the
dependence of T ∗ on g for all three models. Normalizing TN

with T ∗ leads to remarkably good data collapse, as shown
in Fig. 4(c). Deviations from a common curve are barely
detectable. Although we cannot prove that this function is
really universal for all 3D networks of dimers, the results are
very suggestive of this.

Discussion. The universal behavior implies that the T > 0
disordering mechanism in the 3D Néel state is completely
governed by a single lattice-scale energy (which, as we have
shown here, can be taken as the peak temperature T ∗ of the
susceptibility) and the T = 0 sublattice magnetization ms . The
extended linear behavior seen in Figs. 4(b) and 4(c) shows
that the quantum and classical fluctuations at T < TN are
completely decoupled all the way from g = gc (excluding gc

itself, where TN = 0) to quite far away from the quantum-
critical point. Depending on a lattice-scale energy instead of
the quantum-critical spin stiffness, the linear behavior is not
fundamentally a quantum-critical effect. We have discussed
the linearity and decoupling of the fluctuations in terms of a
semiclassical mean-field theory, the validity of which implies
that the quantum-critical regime2 commences only above TN .
Deviations from linearity at larger ms show that the quantum
fluctuations are affected (become T dependent) here, due to
the high density of excited spin waves as T → TN because
TN is high. It is remarkable that this coupling of quantum
and classical fluctuations also takes place in an, apparently,
universal fashion for different systems. It would be interesting
to explain this more quantitatively, by deriving the full function
TN versus ms analytically. Progress in the linear regime has
been made recently in work parallel to ours.20

From a practical point of view, the data collapse of
TN/T ∗ versus ms is very useful, because all the quantities
involved can be measured experimentally and do not rely on
microscopic details. The universal curve can be used to test
the 3D Heisenberg scenario without adjustable parameters.
The universality likely applies not only to dimer networks, but
also to systems where the quantum fluctuations are regulated
in other ways.
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Couplings vs pressure not known experimentally 
- plot TN vs ms to avoid  this issue and study universality

- but how to normalize TN? Three normalizations 

- weaker copling J1

- sum Js of couplings per spin

- peak T* of magnetic susceptibility



T* normalization is accessible experimentally 
- some experimental susc. results available

- neutron data analyzed with this normalization

Same features observed in models and experiment 
- experimental slope about 25% lower if g-factor =2 assumed

   (what exactly is the g-factor?)
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Figure 4 | Quantum and classical criticality. a, Scattered neutron intensity at p=pc as a function of temperature. Points show the energies ✏Q extracted
from the intensity for the modes becoming gapless (L and T1, yellow) and gapped (T2, black) as T !0. b, �Q as a function of T at p=pc. Error bars in a and
b indicate uncertainties in the resolution deconvolution. c, Complete experimental phase diagram, showing quantum disordered (QD), quantum critical
(QC), classical critical (CC) and renormalized classical (RC-AFM) phases. The dashed lines denote energy scales marking crossovers in behaviour. Grey
symbols denote TN(p) (ref. 14), blue symbols labelled TSL(p) show the limit of classical critical scaling in the data for the staggered magnetization, ms(T),
and the blue bars are taken from �Q/✏Q(T) (see text). d, Linear proportionality of the measured TN(p) and ms(p) (ref. 14). e, Scaling of TN and ms, including
one high-p data point (open circle) taken from ref. 25 for an absolute calibration of ms. Data for ms are normalized by Tmax =35 K, the maximum of the
magnetic susceptibility13,16. Red lines in d and e represent scaling behaviour discussed in the text and error bars are the statistical uncertainties in the
intensity measurements determining ms.

on the calculated quantities, but no detectable qualitative ones (for
example, on exponents). From our measurements, the best fits to
the pressure exponents for ms and TN lie close to the classical value
of 0.35 (ref. 14), although the quantum value of 0.5 is not beyond
the error bars very close to the QCP. From experiment, the two
quantities scale well together near the QCP, as shown in Fig. 4d,e,
but depart from universal scaling16 around an ordered moment of
0.4µB/Cu (Fig. 4e).

We have shown that the e�ects on the spectrum of quantum
and thermal melting are qualitatively very similar. Both result
in the systematic evolution of excitations whose gap increases
away from the classical phase transition line, rather than simply
a loss of coherence due to thermal fluctuations. Microscopically,
quantum fluctuations in a dimer-based system cause enhanced
singlet formation and loss of interdimer magnetic correlations,

whereas thermal fluctuations act to suppress the spin correlation
function hSi · Sji on both the dimer and interdimer bonds. These
correlation functions may be estimated from neutron-scattering
intensities23 and also measured in dimerized optical lattices of
ultracold fermions29. In TlCuCl3, both methods of destroying
interdimer coherence cause the triplet modes to evolve in the same
way. A key question in the understanding of quantum criticality is
whether quantum and thermal fluctuations can be considered as
truly independent, andwhether this independencemay be taken as a
definition of the quantumcritical regime16. Our experimental results
suggest that weak departures from universality become detectable at
(p,T ) values away from the quantum critical and classical critical
regimes, and particularly as we increase the excitation energy,
presumably as microscopic details of the fluctuation redistribution
cause a mixing of quantum and thermal e�ects.
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FIG. 3. (Color online) Extrapolation of the sublattice magneti-
zation obtained in simulations with T = J1/L of the double-cube
Heisenberg model at different coupling ratios g. The error bars are
much smaller than the symbols. The fitting function used for L → ∞
extrapolations is a + b/L2 + c/L3 (where we exclude the linear term
because it comes out very close to zero in fits including it).
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FIG. 4. (Color online) The Néel temperature TN vs the sublattice
magnetization for the three different dimerized models and with
TN normalized in three different ways. TN is measured in units of
(a) the interdimer coupling J1, (b) the total coupling Js per spin, and
(c) the peak temperature T ∗ of the susceptibility. A linear dependence
obtains in all cases for small to moderate ms , as indicate by fitted lines.
Note that ms ! 1/2 for S = 1/2.

A semiclassical mean-field argument (inspired by
the “renormalized classical” picture developed in two
dimensions1) leading to TN ∝ ms is the following: To compute
TN in a classical system of spins of length S, one replaces the
coupling of a spin S0 to the total spin of its neighbors δ,
J

∑
δ Sδ , by the thermal average J

∑
δ⟨Sδ⟩. In the presence of

quantum fluctuations, this mean field seen by S0 is reduced,
which is taken into account by a renormalization, ⟨Sδ⟩ →
(ms/S)⟨Sδ⟩. The thermal fluctuations are, thus, added on top of
the quantum fluctuations at T = 0, under the assumption that
the quantum effects will not change appreciably for T > 0 (i.e.,
the thermal fluctuations are assumed to be solely responsible
for further reducing the order). Note that S0 should not be
renormalized here, but is computed as a thermal expectation
value and should satisfy the self-consistency condition ⟨Sδ⟩ =
⟨S0⟩. The final magnetization curve is given by (ms/S)⟨S0⟩.
In this procedure of decoupling the classical and quantum
fluctuations, one clearly effectively has J → (ms/S)J and,
thus, TN ∝ ms .

The assumption that the quantum renormalization factor
ms/S is T independent up to TN can be valid only if TN is
small. The energy scale in which to measure TN when stating
this condition should be dictated by the spin-wave velocity,
which stays nonzero at the quantum-critical point17 [i.e., not
by the long-distance energy scale ρs(T = 0), which vanishes
as g → gc and is unrelated to the density of thermally excited
spin waves]. A linear dependence is seen in Fig. 4 up to rather
large values of ms (where TN ∼ J1). A linear dependence was
also recently found in the columnar dimer model based on
high-T expansions18 (with much larger error bars).

Returning now to the issue of how to best normalize TN ,
we note that in Fig. 4(a), where the interdimer coupling J1
is used, the curve for the double-cube model is significantly
above the other two. This is clearly because the constant J1
does not account for the different average couplings in the
models. Using instead the sum Js of couplings connected to
each spin, i.e., Js = 5 + g for the columnar and staggered
dimers and 6 + g for the double cube (setting J1 = 1), the
curves, shown in Fig. 4(b), collapse almost on top of each
other. Note that also the curves for the columnar and staggered
dimers are closer to each other than in Fig. 4(a), although they
have the same definition of Js . This can be the case because Js

rescales the curves nonuniformly, since ms(g) and, therefore,
Js(ms), is different for the two models. The linearity of TN/Js

versus ms is also much clearer than before and extends all the
way up to ms ≈ 0.3.

Although the data collapse is already quite good in TN/Js ,
we can do even better when normalizing with a physical
quantity that measures the effective lattice-scale energy. One
such energy scale in antiferromagnets is the temperature at
which the uniform magnetic susceptibility χ exhibits a peak.
This peak is due to the crossover from the high-T Curie form
to the low-T weakly temperature-dependent form typical of
antiferromagnets. The peak temperature T ∗, thus, reflects the
short-distance energy scale at which antiferromagnetic corre-
lations become significant. T ∗ is often used experimentally
to extract the value of the exchange constant, using, e.g.,
the “Bonner-Fisher” curve in one dimension.19 In spatially
anisotropic systems such as the dimerized models we consider
here, a natural assumption is that T ∗ reflects an effective
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Supplemental Material (SM) [27]. The former probes
S ¼ 1 excitations of the ground state and contains the
longitudinal susceptibility, while the latter, the symmetric
scalar response [14–16], probes S ¼ 0 excitations. We
employ SAC methods [32–37] to obtain high-resolution
data for the spin and dimer spectral functions, and discuss
the concepts and practicalities of this procedure in Sec. SII
of the SM [27]. Depending on the value of g, both spectral
functions contain features arising from the Goldstone,
amplitude, and triplon (gapped singlet-triplet) excitations.
Henceforth we use the term “Higgs” as shorthand for the
amplitude-mode contributions. The nature and energies of
these modes are represented schematically in Fig. 1.
Our simulations are performed on a system of N ¼ 2L3

sites at an inverse temperature Jβ ¼ 2L, such that the low-
temperature limit, T → 0, is achieved as L → ∞. The
dynamical magnetic (S ¼ 1) response is obtained from
the spin correlation function

Sðq; τÞ ¼ hSz−qðτÞSzqð0Þi; ð1Þ

where τ is the imaginary time [Eq. (S1)] and

Szq ¼ 1ffiffiffiffi
N

p
X

r

e−iq·rðS1zr − S2zr Þ; ð2Þ

where superscripts 1 and 2 denote the two cubic lattices.
When analytically continued to real frequency, Sðq; τÞ
gives the dynamical structure factor, Sðq;ωÞ, measured
by inelastic neutron scattering. Our simulations contain
no breaking of spin-rotation symmetry and thus do not
separate the longitudinal and transverse components of
Sðq;ωÞ explicitly. The Higgs mode of the AFM phase is

contained in the longitudinal part, but the transverse part
contains both spin-wave excitations and a multimagnon
continuum that could obscure the Higgs contribution in
the rotationally averaged Sðq;ωÞ. However, unlike the 2D
case [38], the transverse continuum is expected to be very
small in 3D, especially at the staggered wave vector,
q ¼ Q ¼ ðπ; π; πÞ, on which we focus here.
The scalar (S ¼ 0) dynamical response is obtained from

the dimer correlation function at the zone center,
q ¼ Γ ¼ ð0; 0; 0Þ, which is given by

DðΓ; τÞ ¼ hBΓðτÞBΓð0Þi; BΓ ¼ 1ffiffiffiffi
N

p
X

r

Br; ð3Þ

where Br ¼ S1
r · S2

r − hS1
r · S2

ri is the inter-cubic dimer
bond operator. This quantity was also employed in a recent
study of the ð2þ 1ÞD (bilayer) model [39]. The real-
frequency quantity DðΓ;ωÞ may be probed experimentally
by Raman scattering [40,41].
Gap information can also be extracted by a direct

analysis of the large-τ decay of the correlation functions
[42,43]. Considering the spin sector, the smallest singlet-
triplet gap occurs at q ¼ Q and in the QD phase SðQ; τÞ is
dominated by the triplon mode. In the AFM phase, this gap
corresponds to the lowest Goldstone mode, which has only
a finite-size energy proportional to 1=N. Thus SðQ; τÞ
decays very slowly with τ in this case and the dominant
Goldstone contribution threatens to obscure the Higgs
contribution [14–17,44]. Examples of imaginary-time data
for SðQ; τÞ and of gap extractions are presented in Secs. SII
and SIII of the SM [27].
We begin the discussion of our results by analyzing the

triplon gap in the QD phase (g > gc). For a given value of g,
we extract the finite-size gap, ΔTðLÞ, from SðQ; τÞ for a
range of system sizes. As shown in Fig. 2(a), ΔTðLÞ
decreases with increasing L before converging to the
thermodynamic limit. The extrapolated values of ΔTðgÞ
are shown in Fig. 2(b) as a function of the separation
(jg − gcj=gc) from the QCP.
In the ϕ4 theory for an OðNÞ order parameter, atD ¼ Dc

one expects physical quantities to exhibit power-law scal-
ing with mean-field critical exponents, but with multipli-
cative log corrections [3,45], which have now been found in
a number of recent studies [24,46,47]. The scaling form of
the triplon gap can be obtained directly from the correlation
length (Δ ∼ 1=ξ), whence

ΔT ∼ ðjg − gcj=gcÞνln−ν̂ðjg − gcj=gcÞ; ð4Þ

with ν ¼ 1=2 [3,48] and ν̂ ¼ ðN þ 2Þ=2ðN þ 8Þ from per-
turbative renormalization-group calculations [45,49], i.e.,
ν̂ ¼ 5=22 ≈ 0.227 for N ¼ 3. It is clear from Fig. 2(b) that
Eq. (4) describes the data far better than the pure mean-field
form and, by performing an optimized fit [24] with ν̂ as a free
parameter, we deduce the exponent ν̂ ¼ 0.230ð2Þ, fully
consistent with the theoretical prediction.

FIG. 1. Schematic representation of ground states, excitation
processes, and corresponding gaps in a dimerized antiferromag-
net. The ratio g ¼ J0=J of the intra- and interdimer coupling
constants controls a QPT from an AFM to a QD state. In the AFM
phase, the excitations are two gapless spin waves (Goldstone
modes, ΔG ¼ 0, red line) plus an amplitude mode with gap ΔH,
corresponding respectively to axial and radial fluctuations in the
“Mexican hat” potential. In the QD phase, singlet-triplet dimer
excitations have gap ΔT .
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To study the amplitude mode in detail, we analyze the
spectral functions SðQ;ωÞ and DðΓ;ωÞ in the AFM phase
(g < gc) near gc. Figure 3 shows both quantities at g ¼
4.724 for several system sizes. Because SSE-QMC calcu-
lations of DðΓ; τÞ are significantly more demanding
(Sec. SI), these are restricted to L ≤ 16, whereas for
SðQ; τÞ we access sizes up to L ¼ 24.
SðQ;ωÞ [Fig. 3(a)] is dominated by the Goldstone

contribution, whose energy (spectral weight) is propor-
tional to 1=N (N) at T ¼ 0 (becoming the magnetic Bragg
peak as L → ∞). The Higgs spectral weight also diverges
as g → gc; away from gc the Higgs mode remains as a
clearly resolved finite-energy peak with convergent spectral
weight, as also observed experimentally in TlCuCl3 [9,10].
In DðΓ;ωÞ [Fig. 3(b)], the Higgs contribution is the
distinctive low-energy peak. It is separated by a region
of suppressed spectral weight from a broad maximum at
higher energies due to multiple excitations. At low ener-
gies, one expects a characteristic scaling form on which we
comment in detail below.

We observe good convergence with increasing L in each
of SðQ;ωÞ andDðΓ;ωÞ. The peak widths in both quantities
are invariant on increasing the amount of QMC data,
demonstrating that any artificial broadening arising from
the SAC procedure is negligible. Examples of supporting
tests are presented in Sec. SII of the SM [27]. We have
confirmedbyabootstrapping analysis that the fluctuations in
the height and width of the lowerDðΓ; τÞ peak forL ≥ 10 in
Fig. 3(b) reflect statistical errors. Our system sizes are
sufficient for a reliable study of the L → ∞ limit in both
sectors for the g values shown in Fig. 3 (i.e., g ≈ gc − 0.1).
We find that the positions of the finite-energy peaks in

SðQ; τÞ and DðΓ; τÞ converge to the same value as L → ∞
[inset, Fig. 3(b)]. In the phenomenological U(1) model for
the broken-symmetry phase, one expects the S ¼ 0 Higgs
mode to be an elementary scalar [50], and thus in the AFM
phase that the Higgs part of the S ¼ 1 spectrum arises from
a combination of this scalar with a gapless spin wave
(S ¼ 1, q ¼ $Q). Although our finite-size calculations
contain no explicit symmetry-breaking, they reflect this
physics directly in that the spin peak lies higher than the
dimer peak and their energy difference scales with 1=N, as
expected for a Goldstone mode. Thus the consistency
between peaks in the S ¼ 0 and 1 spectral functions

FIG. 2. (a) Extrapolation of finite-size triplon gaps, using the
form ΔTðLÞ ¼ a expð−bLÞ þ c, shown for selected values of
g > gc (QD phase). (b) Triplon gaps in the thermodynamic limit
(blue triangles), shown as a function of jg − gcj=gc. The red line is
a pure mean-field (square-root) form, the blue line includes the
log correction of Eq. (4) with fitted exponent ν̂ ¼ 0.230ð2Þ, and
green points show the extrapolated Higgs energy, ΔH , obtained
for values of g < gc (AFM phase) mirroring those used in panel
(a). The blue dashed line is the log-corrected ΔT result multiplied
by

ffiffiffi
2

p
. Error bars in both panels are smaller than the symbol

sizes.

FIG. 3. (a) SðQ;ωÞ and (b) DðΓ;ωÞ obtained by SAC at g ¼
4.724 for different system sizes. The large low-energy (Gold-
stone) peak in panel (a) is cut off in order to show the secondary
(Higgs) peak. The lower peak in panel (b) is the Higgs mode. The
positions of both Higgs contributions converge with increasing L
to the same thermodynamic limit, as shown in the inset of
panel (b). Spectral features outside the energy ranges shown are
extremely weak.
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provides strong confirmation that both do indeed corre-
spond to the Higgs mode.
In Fig. 2(b) we compare the extrapolated Higgs energies

in the AFM phase with the triplet gaps in the QD phase at
the same distance, jg − gcj=gc, from the QCP. The predictedffiffiffi
2

p
ratio [44,46,48] between ΔH and ΔT is clearly obeyed

over this rather broad coupling range. We stress that this
relation implies the presence of equivalent multiplicative
log corrections [Eq. (4)] to both ΔT in the QD phase and
ΔH on the AFM side.
To investigate the scaling properties of the spectral

functions near the QCP, we normalize ω by the L → ∞
Higgs gap; results forΔ2

HSðQ;ω=ΔHÞ andDðΓ;ω=ΔHÞ are
shown respectively in Figs. 4(a) and 4(b) for the largest
accessible system sizes. The amplitude-mode contributions
to both the spin and dimer spectral functions exhibit near-
ideal data collapse when scaled in this way. The collapse of
the peak positions indicates that our data represent the
quantum critical regime and the thermodynamic limit. The
collapse of the peak widths demonstrates the critically
damped nature of the Higgs mode. We note that Fig. 4(a)
also indicates the spectral weight of the next-order S ¼ 1
processes, whose peak positions near ω ¼ 2ΔH suggest
excitations involving two Higgs modes, but statistical
errors preclude a deeper analysis.
A universal scaling form for the scalar susceptibility

(dimer spectral function) in the vicinity of the QCP,

DðΓ;ωÞ ∼ Δdþz−2=ν
H Φðω=ΔHÞ; ð5Þ

has been derived perturbatively in 1=N for theOðNÞmodel
[15–17] and by a 4 − ϵ expansion [44]. In ð3þ 1ÞD with
z ¼ 1, one expects DðΓ;ωÞ ¼ Φðω=ΔHÞ, which is fully
consistent with the data in Fig. 4(b). This type of scaling
has been documented in ð2þ 1ÞD for both O(2) [16,17,
51–53] and O(3) models [39,53], but Fig. 4(b) constitutes
the only unbiased numerical demonstration to date in
ð3þ 1ÞD. The infrared tail is expected [14] to have the
scaling form DðΓ;ωÞ ∝ ω4, but with the available system
sizes is too weak to verify this. For SðQ;ω=ΔHÞ, we obtain
data collapse by appealing to the result [9] that the
integrated spectral weight diverges as 1=ΔH when
g → gc, which requires a rescaling by Δ2

H [Fig. 4(a)].
The scaling function Φðω=ΔHÞ is shown in Ref. [44] to

approach a δ-function at g ¼ gc, due to the presence of log
corrections in the width-to-energy ratios [18,19]. For a
quantitative analysis of the Higgs-peak widths, in Fig. 4(c)
we show the size-dependence of the ratios obtained from
the FWHM σS of the spin and σD of the dimer peak. The
error bars obtained by bootstrapping are significant, but it
is clear that (i) the L-dependence of σS=ΔH and σD=ΔH is
weak, (ii) any g-dependence is weak, and (iii) σD exceeds
σS by a factor of 3. We fit error-weighted averages of the
width ratios, obtained from all g values at each L, to a
quadratic polynomial in 1=L, as shown in Fig. 4(c). At the

mean-field level, we estimate the constant ratios σS=ΔH ¼
0.15ð4Þ and σD=ΔH ¼ 0.43ð6Þ. The log dependence
on jg − gcj is too weak to discern given the quality of the
present data and the separation from the critical point.
However, future calculations with smaller jg − gcj, larger
system sizes, and higher precision in GðτÞ and DðτÞ should
be able to detect log corrections also in the width-to-energy
ratios.
Remarkably, our SAC value for σS=ΔH on the double-

cubic lattice is in excellent agreement with the neutron
scattering results for TlCuCl3 near its QCP [9,10,20].
Given the difference in lattices and couplings, this result
mandates a deeper investigation of possible reasons for
a very weak dependence on microscopic details. The
significantly larger value of σD=ΔH reflects the different

FIG. 4. (a) Scaled spectrum, Δ2
HSðQ;ω=ΔHÞ, calculated with

L ¼ 24 for a range of g values. (b) DðΓ;ω=ΔHÞ calculated with
L ¼ 16. (c) Width-to-energy ratios shown as functions of 1=L.
Circles and triangles are obtained respectively from DðΓ;ω=ΔHÞ
and SðQ;ω=ΔHÞ. Dashed lines are second-order polynomial fits
to error-weighted average ratios.
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The amplitude (“Higgs”) mode is a ubiquitous collective excitation related to spontaneous breaking of a
continuous symmetry. We combine quantum Monte Carlo (QMC) simulations with stochastic analytic
continuation to investigate the dynamics of the amplitude mode in a three-dimensional dimerized quantum
spin system. We characterize this mode by calculating the spin and dimer spectral functions on both sides of
the quantum critical point, finding that both the energies and the intrinsic widths of the excitations satisfy
field-theoretical scaling predictions. While the line width of the spin response is close to that observed in
neutron scattering experiments on TlCuCl3, the dimer response is significantly broader. Our results
demonstrate that highly nontrivial dynamical properties are accessible by modern QMC and analytic
continuation methods.
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The spontaneous breaking of a continuous symmetry
allows collective excitations of the direction and amplitude
of the order parameter; for OðNÞ symmetry, there are N − 1
massless directional (Goldstone) modes and one massive
amplitude mode [1–4]. In loose analogy with the standard
model, the latter is often called a Higgs mode. A strongly
damped amplitude mode has been reported in two dimen-
sions (2D) at the Mott transition of ultracold bosons [5] and
at the disorder-driven superconductor-insulator transition
[6,7]. In 3D, the amplitude mode is expected on theoretical
grounds to be more robust, and indeed the cleanest
observation to date of a “Higgs boson” in condensed
matter is at the pressure-induced magnetic quantum phase
transition (QPT) in the dimerized quantum antiferromagnet
TlCuCl3 [8–10].
Below the upper critical number of space-time dimen-

sions, which for an OðNÞ model is Dc ¼ 4, the amplitude
mode is unstable, decaying primarily into pairs of
Goldstone bosons [11–13]. In both 2D and 3D, the
longitudinal dynamic susceptibility exhibits an infrared
singularity due to the Goldstone modes [14], whose
consequences for the visibility of the amplitude mode have
been investigated extensively in 2D [15–17]. It was noted
[14] that the scalar OðNÞ-symmetric susceptibility remains
uncontaminated by infrared contributions, which should
permit the amplitude mode to be observed as a well-defined
peak. The ð3þ 1ÞD O(3) case of TlCuCl3 is at Dc and the
amplitude mode is critically damped, meaning that its
width is proportional to its energy at the mean-field level
[9,18–20]. This mode can be probed through the spin
response (longitudinal susceptibility) by neutron spectros-
copy, and measurements over a wide range of pressures
reveal a rather narrow peak width of just 15% of the
excitation energy [10]. The value of this near-constant

width-to-energy ratio is the key to the mode visibility, thus
calling for unbiased numerical calculations in suitable
model Hamiltonians.
In this Letter, we provide a systematic investigation of

the dynamics and scaling of the amplitude mode at
coupling values across the QPT in a 3D dimerized spin-
1=2 antiferromagnet, by performing large-scale stochastic
series expansion quantum Monte Carlo (SSE-QMC) sim-
ulations and applying advanced stochastic analytic-
continuation (SAC) methods. Thus we provide an unbiased
numerical demonstration that the amplitude mode is criti-
cally damped and that its energy, width, and height obey
field-theoretical predictions. Beyond these universal scal-
ing forms, we quantify the nonuniversal width-to-energy
ratios of the amplitude-mode peaks in the spin and dimer
channels.
We consider the double-cubic geometry shown in Fig. 1

[21], which consists of two simple cubic lattices whose
sites are connected pairwise by nearest-neighbor
Heisenberg exchange interactions, Jij~Si · ~Sj, with Jij ¼ J
in each cubic lattice and Jij ¼ J0 for inter-cube (dimer)
bonds. Increasing the ratio g ¼ J0=J drives a QPT where
the ground state changes from a “renormalized classical”
[22,23] antiferromagnetic (AFM) state to a quantum dis-
ordered (QD) dimer-singlet state (Fig. 1). This transition is
in the same universality class as the pressure-driven QPT in
TlCuCl3. In a recent QMC analysis of the static properties
of the double-cubic system [24], we established the
quantum critical point (QCP) as gc ¼ 4.837 04ð6Þ and
quantified the logarithmic (log) scaling corrections
expected near criticality in the AFM state at Dc.
We use SSE-QMC [25,26] simulations to measure

both spin and dimer correlation functions in imaginary
time; technical details may be found in Sec. SI of the
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The spontaneous breaking of a continuous symmetry
allows collective excitations of the direction and amplitude
of the order parameter; for OðNÞ symmetry, there are N − 1
massless directional (Goldstone) modes and one massive
amplitude mode [1–4]. In loose analogy with the standard
model, the latter is often called a Higgs mode. A strongly
damped amplitude mode has been reported in two dimen-
sions (2D) at the Mott transition of ultracold bosons [5] and
at the disorder-driven superconductor-insulator transition
[6,7]. In 3D, the amplitude mode is expected on theoretical
grounds to be more robust, and indeed the cleanest
observation to date of a “Higgs boson” in condensed
matter is at the pressure-induced magnetic quantum phase
transition (QPT) in the dimerized quantum antiferromagnet
TlCuCl3 [8–10].
Below the upper critical number of space-time dimen-

sions, which for an OðNÞ model is Dc ¼ 4, the amplitude
mode is unstable, decaying primarily into pairs of
Goldstone bosons [11–13]. In both 2D and 3D, the
longitudinal dynamic susceptibility exhibits an infrared
singularity due to the Goldstone modes [14], whose
consequences for the visibility of the amplitude mode have
been investigated extensively in 2D [15–17]. It was noted
[14] that the scalar OðNÞ-symmetric susceptibility remains
uncontaminated by infrared contributions, which should
permit the amplitude mode to be observed as a well-defined
peak. The ð3þ 1ÞD O(3) case of TlCuCl3 is at Dc and the
amplitude mode is critically damped, meaning that its
width is proportional to its energy at the mean-field level
[9,18–20]. This mode can be probed through the spin
response (longitudinal susceptibility) by neutron spectros-
copy, and measurements over a wide range of pressures
reveal a rather narrow peak width of just 15% of the
excitation energy [10]. The value of this near-constant

width-to-energy ratio is the key to the mode visibility, thus
calling for unbiased numerical calculations in suitable
model Hamiltonians.
In this Letter, we provide a systematic investigation of

the dynamics and scaling of the amplitude mode at
coupling values across the QPT in a 3D dimerized spin-
1=2 antiferromagnet, by performing large-scale stochastic
series expansion quantum Monte Carlo (SSE-QMC) sim-
ulations and applying advanced stochastic analytic-
continuation (SAC) methods. Thus we provide an unbiased
numerical demonstration that the amplitude mode is criti-
cally damped and that its energy, width, and height obey
field-theoretical predictions. Beyond these universal scal-
ing forms, we quantify the nonuniversal width-to-energy
ratios of the amplitude-mode peaks in the spin and dimer
channels.
We consider the double-cubic geometry shown in Fig. 1

[21], which consists of two simple cubic lattices whose
sites are connected pairwise by nearest-neighbor
Heisenberg exchange interactions, Jij~Si · ~Sj, with Jij ¼ J
in each cubic lattice and Jij ¼ J0 for inter-cube (dimer)
bonds. Increasing the ratio g ¼ J0=J drives a QPT where
the ground state changes from a “renormalized classical”
[22,23] antiferromagnetic (AFM) state to a quantum dis-
ordered (QD) dimer-singlet state (Fig. 1). This transition is
in the same universality class as the pressure-driven QPT in
TlCuCl3. In a recent QMC analysis of the static properties
of the double-cubic system [24], we established the
quantum critical point (QCP) as gc ¼ 4.837 04ð6Þ and
quantified the logarithmic (log) scaling corrections
expected near criticality in the AFM state at Dc.
We use SSE-QMC [25,26] simulations to measure

both spin and dimer correlation functions in imaginary
time; technical details may be found in Sec. SI of the
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The spontaneous breaking of a continuous symmetry
allows collective excitations of the direction and amplitude
of the order parameter; for OðNÞ symmetry, there are N − 1
massless directional (Goldstone) modes and one massive
amplitude mode [1–4]. In loose analogy with the standard
model, the latter is often called a Higgs mode. A strongly
damped amplitude mode has been reported in two dimen-
sions (2D) at the Mott transition of ultracold bosons [5] and
at the disorder-driven superconductor-insulator transition
[6,7]. In 3D, the amplitude mode is expected on theoretical
grounds to be more robust, and indeed the cleanest
observation to date of a “Higgs boson” in condensed
matter is at the pressure-induced magnetic quantum phase
transition (QPT) in the dimerized quantum antiferromagnet
TlCuCl3 [8–10].
Below the upper critical number of space-time dimen-

sions, which for an OðNÞ model is Dc ¼ 4, the amplitude
mode is unstable, decaying primarily into pairs of
Goldstone bosons [11–13]. In both 2D and 3D, the
longitudinal dynamic susceptibility exhibits an infrared
singularity due to the Goldstone modes [14], whose
consequences for the visibility of the amplitude mode have
been investigated extensively in 2D [15–17]. It was noted
[14] that the scalar OðNÞ-symmetric susceptibility remains
uncontaminated by infrared contributions, which should
permit the amplitude mode to be observed as a well-defined
peak. The ð3þ 1ÞD O(3) case of TlCuCl3 is at Dc and the
amplitude mode is critically damped, meaning that its
width is proportional to its energy at the mean-field level
[9,18–20]. This mode can be probed through the spin
response (longitudinal susceptibility) by neutron spectros-
copy, and measurements over a wide range of pressures
reveal a rather narrow peak width of just 15% of the
excitation energy [10]. The value of this near-constant

width-to-energy ratio is the key to the mode visibility, thus
calling for unbiased numerical calculations in suitable
model Hamiltonians.
In this Letter, we provide a systematic investigation of

the dynamics and scaling of the amplitude mode at
coupling values across the QPT in a 3D dimerized spin-
1=2 antiferromagnet, by performing large-scale stochastic
series expansion quantum Monte Carlo (SSE-QMC) sim-
ulations and applying advanced stochastic analytic-
continuation (SAC) methods. Thus we provide an unbiased
numerical demonstration that the amplitude mode is criti-
cally damped and that its energy, width, and height obey
field-theoretical predictions. Beyond these universal scal-
ing forms, we quantify the nonuniversal width-to-energy
ratios of the amplitude-mode peaks in the spin and dimer
channels.
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[21], which consists of two simple cubic lattices whose
sites are connected pairwise by nearest-neighbor
Heisenberg exchange interactions, Jij~Si · ~Sj, with Jij ¼ J
in each cubic lattice and Jij ¼ J0 for inter-cube (dimer)
bonds. Increasing the ratio g ¼ J0=J drives a QPT where
the ground state changes from a “renormalized classical”
[22,23] antiferromagnetic (AFM) state to a quantum dis-
ordered (QD) dimer-singlet state (Fig. 1). This transition is
in the same universality class as the pressure-driven QPT in
TlCuCl3. In a recent QMC analysis of the static properties
of the double-cubic system [24], we established the
quantum critical point (QCP) as gc ¼ 4.837 04ð6Þ and
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expected near criticality in the AFM state at Dc.
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SSE and SAC used to study scaling of 

the “Higgs” mode in the “double cube”

Q=(𝜋,𝜋,𝜋,𝜋)



• highly non-trivial non-magnetic ground states are possible, e.g.,

➡ resonating valence-bond (RVB) spin liquid

➡ valence-bond solid (VBS)

H = J
�

�i,j⇥

Si · Sj + g ⇥ · · ·
More complex non-magnetic states; systems with 1 spin per unit cell

Non-magnetic states often have natural descriptions with valence bonds

= (⇥i⇤j � ⇤i⇥j)/
⌅

2
i j

• non-magnetic states dominated by short bonds

�

�

The basis including bonds of all lengths 
is overcomplete in the singlet sector



= ⟨S⃗i · S⃗j⟩

(Sandvik, PRL 2007)The “J-Q” model with two projectors is

H = �J
�

�ij⇥

Cij �Q
�

�ijkl⇥

CijCkl

• Has Néel-VBS transition, appears to be continuous 
• Not a realistic microscopic model for materials 
• “Designer Hamiltonian” for VBS physics and AF-VBS transition

Deconfined quantum criticality
Senthil, Vishwanath, Balents, Sachdev, Fisher (Science 2004)
(+ many previous works; Read & Sachdev, Sachdev & Murthy, Motrunich & Vishwanath….)

Continuous AF - VBS transition at T=0

- would be violation of Landau rule

- first-order would normally be expected

- role of topological defects 

Cij = 1
4 � ⇤Si · ⇤Sj

Numerical (QMC) tests using J-Q models

[Shao, Guo, Sandvik (Science 2016)]• Unusual scaling properties

f̃ (dL1/n,L1/n'–1/n,L–w). If f̃ (d = 0) is constantwhen
L → 1, then L1/n'–1/n acts like just another ir-
relevant field, as in the standard scenario for dan-
gerously irrelevant perturbations in classical clock
models (31). Our proposal is a different large-L
limit of Eq. 2, controlled by y = dL1/n', which leads
to concrete predictions of scaling anomalies. In
the case of the stiffness, the correct thermody-
namic limit is obtained with ñ ¼ n0 and k = zn if
f(x,y,L–w)º yzn for largeL. Then rs(d =0)º L–zn/n',
which we can also obtain with ñ ¼ n and f̃ º
Lz(1–n/n') for d → 0. A function f̃ behaving as a
power ofLwas implicitly suggested in (19), though
with no specific form.
This alternative scaling behavior corresponds

to xº (x') n/n' saturating at xº L n/n' when x'→ L
upon approaching the critical point, in contrast
to the standard scenario in which x grows until it
also reaches L (32). The criticality at distances r <
Ln/n' is conventional, whereas r> Ln/n' is governed
by the unconventional power laws. Different be-
haviors for r ≪ L and r ≈ L were observed in a
recent loop-model study (24), and a dangerously
irrelevant field was proposed as a possible expla-
nation, but with no quantitative predictions of
the kind offered by our approach. The anomalous
scaling law controlled by n/n', which we confirm
numerically below, is an unexpected feature of
DQCphysics andmay also apply to other systems
with two divergent lengths.
The J-Qmodel (15) for spins S = 1/2 is defined

using singlet projectors (Pij = 1/4 – Si · Sj) as

H ¼ −J
X

hiji

Pij − Q
X

hijkli

PijPkl ð3Þ

where hiji denotes nearest-neighbor sites on a
periodic square lattice with L2 sites, and ij and kl
in hijkliform the horizontal and vertical edges of
2 × 2 plaquettes. The Hamiltonian H has all sym-
metries of the square lattice, and the VBS ground
state for g= J/Q< gc (with gc≈ 0.045) is columnar,
breaking the translational and 90° rotational sym-
metries spontaneously. The Néel state for g > gc
breaks the spin rotation symmetry.
Although we have argued that the asymptotic

L→1 behavior when d ≠ 0 in Eq. 2 is controlled
by the second argument of f, the critical finite-
size scaling close to d = 0 (when dL1/n is of order
1) can still be governed by the first argument (32).
Wewill demonstrate that, depending on the quan-
tity, either dL1/n or dL1/n' is the relevant argument,
and, therefore, n and n' can be extracted using
single-parameter scaling. We will first consider
dimensionless quantities, corresponding to k =
0 in Eq. 2, before testing the anomalous powers
of L in other quantities.
If the effective one-parameter scaling holds

close to gc, then Eq. 2 implies thatA(g,L1) =A(g,L2)
at some point g that we denote g*(L1,L2), and a
crossing-point analysis (Fisher’s phenomenolog-
ical renormalization) can be performed (29). For a
k = 0 quantity, if L1 = L and L2 = rL with r >
1 being constant, a Taylor expansion of f shows
that the crossing points g*(L) approach gc as
g*(L) – gcº L–(1/n+w), if n is the relevant exponent
(which we assume here for definiteness). A* =

A(g*) approaches its limit Ac as A*(L) – Ac º
L–w, and it can also be shown that the quantity

1
n$ðLÞ

¼ 1
lnðrÞ

ln
dAðg; rLÞ=dg
dAðg;LÞ=dg

! "

g¼g$
ð4Þ

converges to 1/n at the rate L–w. In practice,
simulation data can be generated on a grid of
points close to the crossing values, with poly-
nomials used for interpolation and derivatives.
We present details and tests of such a scheme for
the Ising model in (32).

In the S = 1 sector, spinon physics can be
studiedwith projector QMC simulations in a basis
of valence bonds (singlet pairs) and two unpaired
spins (33, 34). Previously, the size of the spinon
bound state in the J-Qmodel was extrapolated to
the thermodynamic limit (35), but the results were
inconclusive as to the rate of divergence upon
approaching the critical point. Here we consider
the critical finite-size behavior. We define the size
L of the spinon pair by using the strings connect-
ing theunpaired spins in valence-bond simulations
(Fig. 1) (32–34).
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Fig. 1. Illustration of spinons. Shown is a QMC transition graph (33, 34) representing a sampled overlap
hyleftjyrighti of S = 1 states with two strings (spinons, shown in red and green) in a background of valence-
bond loops. Arches above and below the plane represent the states jyrighti and hyleftj, respectively.

0.04

0.05

0.06

0.07

0.045

0.050

0.055

1.48

1.50

0.408

0.409

0 0.05 0.1 0.15

1.0

1.5

2.0

0 0.06

1.0

1.2

1.4

1.6

From 2-spinon distance From Binder ratio

0.040.02

Fig. 2. (L,2L) crossing-point analysis. The size of the spinon bound state and the Binder ratio were
used to generate the left and right panels, respectively. The monotonic quantities were fitted with
simple power-law corrections; two additional subleading corrections were included in the fits of the non-
monotonic quantities.
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Figure 2: Crossing-point analysis of (L, 2L) pairs for the size of the spinon bound state (left) and
the Binder ratio (right). The monotonic quantities are fitted with simple power law corrections,
while two subleading corrections were included in the fits of the non-monotonic quantities.

netization msz as R
1

= hm2

szi/h|msz|i2, which has smaller subleading scaling corrections than

R
2

= hm4

szi/hm2

szi2. Here we use T > 0 QMC simulations at � = 1/T = L as in Ref. (18).

Results are shown in the right column of Fig. 2. The non-monotonic behaviors mentioned above

are clearly visible in the crossing points. Unless only the largest sizes are used, the data must

be fitted with several corrections and precise values of the critical point and the critical R
1

are

difficult to extract. The behavior is nevertheless consistent with gc obtained above from ⇤/L.

The crossing value R⇤
1

for L ! 1 has an uncertainty of over 1% because of an apparently

small value of the subleading exponent; ! ⇡ 0.5. Interestingly, the slope estimator (4) of the

exponent 1/⌫ is monotonic and requires only a single L�! correction, also with ! ⇡ 0.5, even

for systems as small as L = 6 (the fit shown includes L � 8 but accommodates well also the

L = 6 point). The extrapolated exponent ⌫ = 0.446(8) is significantly smaller than ⌫ 0 extracted

above and close to the value obtained recently for the loop model (24). Note that the exponent

8

- Crossing of R1(g,L), R1(g,rL), g=J/Q,

   g*(L), analyze size dependence (using r=2)

- Small correction exponent; ω ≈ 0.5

- ν = 0.45 +/- 0.01

No sign of first-order transition (then ν ≥1/3 in finite-size scaling)

H. Shao, W. Guo, A. W. Sandvik (Science 2016)

g⇤(L) = gc + aL�(1/⌫+!) + . . .

R⇤
1(L) = R1c + aL�! + . . .

s(g, L) = dR1(g, L)/dg

1

⌫⇤
= ln[s(g⇤, rL)/s(g⇤, L)] =

1

⌫
ln(r) + aL�! + . . .

(slope)

Binder ratio of the AF order parameter

R1 =
hm2

szi
h|msz|i2



The VBS order parameter

7

zation

m =
1

N

NX

i=1

S
i

, (4)

and we evaluate the expectation of its square; hm2i. The
VBS order can form with horizontal or vertical bonds,
and these are captured by the bond order parameters

D
x

=
1

N

X

x,y

(�1)xS
x,y

· S
x+1,y, (5a)

D
y

=
1

N

X

x,y

(�1)yS
x,y

· S
x,y+1, (5b)

where for convenience we have switched to a notation
where the double subscripts on S

x,y

refer to the integer
coordinates on the square lattice. In this case as well
we need the squared order parameter, hD2i = hD2

x

i =
hD2

y

i, which has a reasonably simple direct transition-
graph loop estimator [? ].

With the above order parameters we can also define
the corresponding Binder cumulants. In the case of the
O(3) symmetric AFM order the proper definition of the
cumulant is

U
m

=
3

2

✓
1� 1

3

hm4i
hm2i2

◆
, (6)

where the coe�cients are chosen such that with increas-
ing system size U

m

! 1 in the AFM phase and U
m

! 0
if there is no AFM order. For hm4i rangle as well there is
a simple direct loop expression [? ]. In the case of VBS
order, the coe�cients of the cumulant should be chosen
as those for a 2-component vector order parameter, thus

U
D

= 2� hD4i
hD2i2 . (7)

Here hD4i involves eight-spin correlation functions that
in practice are too di�cult to compute e�ciently [? ]. We
therefore invoke an approximation that does not impact
the scaling properties; we simply evaluate (D

x

, D
y

) using
the loop estimator for the two-point operators (5a) and
(5b), and then use this vector of c-numbers to D2 and
D4. While the expectation values entering (7) are then
not strictly the correct quantum-mechanical expectation
values, they still reflect perfectly the absence or presence
of VBS order in the system.

In addition to the squared order parameters hm2i and
hD2i evaluated on the full lattice, we will also consider
the distance dependent spin and dimer correlation func-
tions,

C
s

(r) = hS
x,y

· S
x+r

x

,y+r

y

i, (8a)

C
d

(r) = h(S
x,y

· S
x+1,y)(Sx+r

x

,y+r

y

· S
x+1+r

x

,y+r

y

)i
� hS

x,y

· S
x+1,yi2 (8b)

where we spaitially average over the reference coordinates
x, y for each disorder sample. The spin correlations have
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FIG. 5. Sublattice magnetization versus inverse system size
for di↵erent values of the coupling ratio of the random-Q
model. The curves show fits to the expected forms; low-order
polynomials (here third-order) including linear terms in the
AFM phase and excluding linear terms in the RS phase.

a staggered sign (�1)rx+r

y , while the sign of the dimer
correlator with x oriented bond as above is (�1)rx (and
we take the proper average with the y-oriented ones).

B. Site Diluted J1-J2 static-dimer model

C. Site Diluted J-Q model

In the site-diluted model spins are removed (vacancies
are introduced) at random locations at some fixed con-
centration p. Any J or Q term in Eq. (1) that acting on
one or more vanacies are excluded from the sums. In the
AFM phase, as long as p is below the percolation thresh-
old p

c

above which the system (in the thermodynamic
limit) breaks up into finite decoupled clusters, the va-
cancies do not destroy the long-range AFM order, only
weaken it. If Q = 0 (the pure Heisenberg model), the
percolation point is the standard percolation point of the
square lattice, p

c

⇡ 0.407, while with Q > 0 the perco-
lation point will clearly increase further. Here we will
be interested in low concentrations, far below the perco-
lation point. In the gapped VBS host, when Q > Q

c

,
wth Q

c

/J ⇡ 0.667, the vacancies are expected to lo-
calize magnetic spin-1/2 moments around them. These
moments interact weakly with each other through the
gapped host, and since these interactions are, by sim-
ple arguments for a bipartite lattice, not frustrated, they
will develop a subsystem with AFM long-range-order at
T = 0. Thus, one would expect the sharp AFM–VBS
transition to be ruined.
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Emergent U(1) symmetry of columnar VBS order
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L = 64 L = 128

0

max

FIG. 27. (Color online) VBS order parameter distribution
P (Dx,Dy) in the Q2 model on periodic L × L lattices with L = 64
(left) and L = 128 (right). The size of both squares corresponds to
10% of the maximum value Dmax/10 of the components, Dx,Dy ∈
[−Dmax,Dmax], where Dmax = 3/8 (for a perfect columnar VBS).

“instanton” events between the peaks (i.e., the simulations “get
stuck” in one quarter of the configuration space). It should be
noted that this very slow simulation dynamics of the VBS order
parameter does not affect the estimate of the total squared order
parameter ⟨D2⟩ and most other physical quantities of interest.

The degree of Z4 symmetry of the order parameter can be
quantified by the function

W4 =
∑

Dx

∑

Dy

P (Dx,Dy) cos(4φxy), (A1)

where φxy is the angle corresponding to the point (Dx,Dy).
While this function (and the underlying probability distri-
bution) is not a physical observable, in the sense that it
is not a bona fide quantum mechanical expectation value,
it, nevertheless, reflects the fluctuations of the VBS order
parameter and can be used to characterize the the U(1)-Z4
crossover.

Results as a function of L for the Q3 model are shown
in Fig. 26. Here, the convergence W4 → 1 when L → ∞ is
apparent, as would be expected for a columnar VBS in the
thermodynamic limit. In principle, the curve W4(L) could be
used to define the length ", e.g., using W4(") = 1/2, but there
is clearly an arbitrariness in choosing the particular number.
For studying the scaling of " when some parameter of the
Hamiltonian is changed (e.g., J/Q3) this ambiguity does not
matter. In Ref. 40, curves W4(L) for different coupling rations
were analyzed using standard finite-size scaling techniques,
with the results that " grows slightly faster than the correlation
length " ∼ ξ 1+a with a ≈ 0.2.

Comparing with the behavior of the squared order parame-
ters in Fig. 4, it can be noted that ⟨D2

x⟩ approaches 0 (and ⟨D2
y⟩

tends to a nonzero value) very quickly above L ≈ 20, which
is approximately where W4(L) = 1/2 in Fig. 26. On the other
hand, the decay of the edge-induced y component of the order

0 0.2 0.4 0.6 0.8 1
φ/2π

0.154

0.156

0.158

0.160

0.162

0.164

0.166

P
(φ

)

L=128
L=64
L=32

FIG. 28. (Color online) Angular distribution of the VBS order
parameter of the Q2 model for system sizes L = 32, 64, and 128. To
improve the statistics, these results were obtained by symmetrizing
the distributions using the expected 90◦ rotational symmetry. The
jaggedness of the curves (especially for L = 32) is due to the
discreteness of the allowed (Dx,Dy) values (with N possible values
for each component).

parameter in Figs. 17 and 18 (where the system far from
theedge has only x order) gives a length ≈6.5, which could also
be taken as a practical definition of ". This length corresponds
to W4 ≈ 0.1 in Fig. 26.

In contrast to the Q3 model, in the Q2 model no clear
Z4 symmetry is visible in P (Dx,Dy) up to systems as large
as L = 64 and 128, as shown in Fig. 27. These histograms
are ring-shaped, although for L = 128 the weight is not
evenly distributed because of lack of sufficient QMC statistics.
The VBS angle fluctuates very slowly in simulations of
large systems and very long runs are required in order to
obtain symmetric distributions. The data shown are based
on ≈3.5 × 108 Monte Carlo sweeps for L = 64 and 8 × 107

for L = 128 (which required more than 104 CPU hours in
both cases). By symmetrizing the distributions using 90◦

rotations, one can still detect small deviations from perfect
U(1) symmetry, as shown in Fig. 28. The peak positions again
correspond to a columnar state.

Note that in Fig. 27 the ring for L = 128 is considerably
thinner than for L = 64, with the radius (the location of the
maximum or average weight) remaining almost unchanged.
This reflects an expected reduction of the fluctuations of the
magnitude of the VBS order parameter with increasing system
size. Based on these results, the crossover length scale " for the
Q2 model should be ≫128, which explains why both order-
parameter components are essentially equal for the largest
systems in Fig. 8.
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may work, but some interaction similar to the multispin Q
terms discussed here could be even better suited for inducing
the desired type of VBS.

Spin liquid states have recently also been claimed to exist
in electronic Hubbard models and frustrated spin models on
the honeycomb lattice.105–107 For the Hubbard model, 2D
lattices with up to hundreds of sites were used.105 The VBS
correlations in this case decay very rapidly with distance, and
the system does not seem to exhibit the kind of problematic
scaling issues pointed out in this paper. On the other hand, work
on effective spin models constructed to capture the putative
spin-liquid state have not so far been conclusive.62,107–109 Also
here it would be useful to extend the models in such a way that
a VBS phase transition can be studied. The VBS should then
be the one to which the “bare” honeycomb model is the most
susceptible (which may in itself not be easy to determine in
this case).

D. Bench-mark challenge

Finally, as a challenge to DMRG, tensor-product, and
MERA techniques, it would be very interesting and useful to
see these methods applied to J -Q models as well. Comparing
with the known phase diagram and critical behavior extracted
on the basis of unbiased QMC simulations would be a very
good test of the capabilities of these methods to capture
nontrivial ground states and quantum phase transitions. If the
outcome is positive, it may be very useful to systematically
investigate the behavior when frustration is added to this
model, as was recently done in an exact diagonalization study
of a 2D model combining the Q2 interaction with the frustrated
J1-J2 Heisenberg model.110
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APPENDIX: U(1)-Z4 CROSSOVER OF THE VBS
SYMMETRY IN PERIODIC SYSTEMS

The emergent U(1) symmetry of a columnar VBS in the
neighborhood of a critical point can be characterized by
the probability distribution P (Dx,Dy) generated in QMC
simulations on periodic L × L lattices. A systematic study
aimed at extracting the scaling of the U(1)-Z4 crossover length
! was presented in Ref. 40. Here, additional results for the
pure Q2 and Q3 models will be presented in order to facilitate
comparisons with the boundary effects discussed in the main
text. Specifically, it will be shown that the lack of Dx-Dy

symmetry on 2L × L lattices, as seen in Fig. 4 for the Q3 model
for all system sizes, is matched by a clear Z4 symmetric order
parameter on all L × L lattices. Conversely, the symmetry
seen for the Q2 model on large lattices in Fig. 4 is consistent

L = 12 L = 24

0

max

FIG. 25. (Color online) VBS order parameter distribution
P (Dx,Dy) in the Q3 model on periodic L × L lattices with L = 12
(left) and L = 24 (right). The size of both squares corresponds
to the full space of possible values of the components Dx,Dy ∈
[−Dmax,Dmax], where Dmax = 3/8 (for a perfect columnar VBS).

with only very small deviations (barely detectable) from U(1)
symmetry on L × L lattices with L as large as 128.

In the projector QMC simulations, each generated config-
uration is associated with a pair of order parameters (Dx,Dy),
which are matrix elements of the corresponding operators
defined in Eqs. (12) and (13) computed in the valence bond
basis. These matrix elements are of the form 3n/4N , where
n is an integer in the range [−N/2,N/2], with the extremal
values corresponding to both the bra and ket state (making up
the transition graph) having the same perfect columnar pattern
of valence bonds of length one lattice constant. The histogram
P (Dx,Dy) is constructed based on these matrix elements.

Figure 25 shows results for the Q3 model for L = 12
and 24. In this model, the histogram P (Dx,Dy) exhibits a
distinct fourfold symmetry even for the smallest systems (also
smaller than L = 12, not shown here, where the discreteness
of the distribution function also becomes apparent). The four
peaks sharpen with increasing lattice size, and above some
size the suppression of the weight between the peaks severely
impedes QMC fluctuations between the peaks. In Fig. 25, the
visibly different weight in the four peaks (with the right peak
having the smallest weight) is a consequence of this rarity of
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FIG. 26. (Color online) Size dependence of the columnar
anisotropy weight, defined in Eq. (A1), of the VBS order parameter
distribution in the Q3 model.
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FIG. 27. (Color online) VBS order parameter distribution
P (Dx,Dy) in the Q2 model on periodic L × L lattices with L = 64
(left) and L = 128 (right). The size of both squares corresponds to
10% of the maximum value Dmax/10 of the components, Dx,Dy ∈
[−Dmax,Dmax], where Dmax = 3/8 (for a perfect columnar VBS).

“instanton” events between the peaks (i.e., the simulations “get
stuck” in one quarter of the configuration space). It should be
noted that this very slow simulation dynamics of the VBS order
parameter does not affect the estimate of the total squared order
parameter ⟨D2⟩ and most other physical quantities of interest.

The degree of Z4 symmetry of the order parameter can be
quantified by the function

W4 =
∑

Dx

∑

Dy

P (Dx,Dy) cos(4φxy), (A1)

where φxy is the angle corresponding to the point (Dx,Dy).
While this function (and the underlying probability distri-
bution) is not a physical observable, in the sense that it
is not a bona fide quantum mechanical expectation value,
it, nevertheless, reflects the fluctuations of the VBS order
parameter and can be used to characterize the the U(1)-Z4
crossover.

Results as a function of L for the Q3 model are shown
in Fig. 26. Here, the convergence W4 → 1 when L → ∞ is
apparent, as would be expected for a columnar VBS in the
thermodynamic limit. In principle, the curve W4(L) could be
used to define the length ", e.g., using W4(") = 1/2, but there
is clearly an arbitrariness in choosing the particular number.
For studying the scaling of " when some parameter of the
Hamiltonian is changed (e.g., J/Q3) this ambiguity does not
matter. In Ref. 40, curves W4(L) for different coupling rations
were analyzed using standard finite-size scaling techniques,
with the results that " grows slightly faster than the correlation
length " ∼ ξ 1+a with a ≈ 0.2.

Comparing with the behavior of the squared order parame-
ters in Fig. 4, it can be noted that ⟨D2

x⟩ approaches 0 (and ⟨D2
y⟩

tends to a nonzero value) very quickly above L ≈ 20, which
is approximately where W4(L) = 1/2 in Fig. 26. On the other
hand, the decay of the edge-induced y component of the order
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FIG. 28. (Color online) Angular distribution of the VBS order
parameter of the Q2 model for system sizes L = 32, 64, and 128. To
improve the statistics, these results were obtained by symmetrizing
the distributions using the expected 90◦ rotational symmetry. The
jaggedness of the curves (especially for L = 32) is due to the
discreteness of the allowed (Dx,Dy) values (with N possible values
for each component).

parameter in Figs. 17 and 18 (where the system far from
theedge has only x order) gives a length ≈6.5, which could also
be taken as a practical definition of ". This length corresponds
to W4 ≈ 0.1 in Fig. 26.

In contrast to the Q3 model, in the Q2 model no clear
Z4 symmetry is visible in P (Dx,Dy) up to systems as large
as L = 64 and 128, as shown in Fig. 27. These histograms
are ring-shaped, although for L = 128 the weight is not
evenly distributed because of lack of sufficient QMC statistics.
The VBS angle fluctuates very slowly in simulations of
large systems and very long runs are required in order to
obtain symmetric distributions. The data shown are based
on ≈3.5 × 108 Monte Carlo sweeps for L = 64 and 8 × 107

for L = 128 (which required more than 104 CPU hours in
both cases). By symmetrizing the distributions using 90◦

rotations, one can still detect small deviations from perfect
U(1) symmetry, as shown in Fig. 28. The peak positions again
correspond to a columnar state.

Note that in Fig. 27 the ring for L = 128 is considerably
thinner than for L = 64, with the radius (the location of the
maximum or average weight) remaining almost unchanged.
This reflects an expected reduction of the fluctuations of the
magnitude of the VBS order parameter with increasing system
size. Based on these results, the crossover length scale " for the
Q2 model should be ≫128, which explains why both order-
parameter components are essentially equal for the largest
systems in Fig. 8.
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Lou, Sandvik, Kawashima, PRB (2009), 
Sandvik, PRB (2012)

3

i j

Jx
i

j

Jy

i

j

k

l

m

n

Qx

i j

k l

m n

Qy

FIG. 1. Illustration of the terms of the J-Q model used in
this work. The circles are sites on the square lattice, labeled
in accordance with the Hamiltonian, Eq. (1). The red bars
connecting two sites are the singlet projectors, with connected
bars in the Q terms indicating products.

associated with an IRFP fixed point.

B. Random singlet state in the 2D J-Q model

In this paper we report an unambiguous identifica-
tion and characterization of a 2D RS state with finite
dynamic exponent in a system without geometric frus-
tration. We study a square-lattice Heisenberg antifer-
romagnet with nearest-neighbor exchange J augmented
with certain multi-spin interactions of strength Q (the
J-Q model). The unadulterated translationally invari-
ant model is defined by the Hamiltonian [41, 42]

H = �J
X

hiji

P
ij

�Q
X

hijklmni

P
ij

P
kl

P
mn

, (1)

where P
ij

is the singlet projector for two S = 1/2 spins,

P
ij

=
1

4
� S

i

· S
j

, (2)

hiji indicates nearest-neighbor sites, and the index pairs
ij, kl, and mn in hijklmni are neighbors forming a
horizontal or vertical column, as illustrated in Fig. 1.
The summations are over all pairs and and columns,
and the Hamiltonian respects all the symmetries of the
square lattice, including the 90� rotation symmetry when
J
x

= J
y

= J and Q
x

= Q
y

= Q as we have assumed in
Eq. (1). We will introduce various forms of disorder in
the model, including site dilution and random J and Q
couplings drawn from suitable distributions; detailed def-
initions of the di↵erent cases are presented in Sec. IV.

In the uniform system the Q interactions compete
against the exchange terms J , disfavoring the strong an-
tiferromagnetic (AFM) order present for Q = 0 (the stan-
dard 2D Heisenberg model [46]) by producing correlated
local singlets. The interactions are not frustrated in the
standard (geometric) sense, however, and the model is
amenable to large-scale QMC simulations for all positive
values of the ratio g = Q/J (with J � 0, Q � 0 being
of primary interest) [45]. The ground state has AFM or-
der for g < g

c

, with g
c

⇡ 0.666, and is a spontaneously
dimerized valence-bond solid (VBS) for g > g

c

. In the
VBS phase the Z4 symmetry of four degenerate columnar
dimer patterns is broken.

A columnar VBS state and an AFM–VBS transition is
also realized if the Q-interaction in Eq. (1) is replaced by

a simpler one with only two singlet projectors [43]. How-
ever, the critical coupling ratio g

c

is then much larger,
g ⇡ 22, and the VBS order is much weaker throughout
the phase. Disorder e↵ects on the VBS state are easier to
study with the more extended Q term in Eq. (1), and we
will here demonstrate RS behavior for a significant range
of coupling mean coupling ratios g when either the J or
the Q interactions are random. We expect these disorder
e↵ects to be generic for VBS phases on bipartite lattices.

Before the advent of the J-Q model, VBS physics was
normally associated with geometric frustration, in mod-
els such as the J-J 0 Heisenberg model with nearest- (J)
and next-nearest-neighbor (J 0) couplings. These systems
are not amenable to large-scale QMC studies because of
mixed-sign sampling weigths (the sign problem), except
at the variational level in sampling and optimizing wave
functions [49, 50]. While great progress has been made
in the last several years on density matrix renormaliza-
tion group (DMRG) and Tensor Product State (TNS)
techniques for studying frustrated models (see e.g., the
recent papers [51–53] for applications to the J-J 0 Heisen-
berg model), various convergence issues or limited system
sizes still make it impossible to carry out calculations as
reliable as QMC simulations of sign-problem free models.

The J-Q models exhibit many of the phenomena of
long-standing interest in the context of frustrated quan-
tum magnetism, in particular the AFM-VBS transi-
tion [48], which appears to realize the exotic deconfined
quantum-critical point (DQC) scenario [47]. While it is
presently not clear whether exactly this transition is also
realized in the J-J 0 Heisenberg model [51–53], the phe-
nomenon has attracted a great deal of interest as it is
a prominent example of a quantum phase transition be-
yond the standard Landau-Ginzburg-Wilson framework.
The J-Q models o↵er opportunities to study the emer-
gent degrees of freedom—spinons and gauge fields—that
are the ingredients of the field-theory description of the
DQC point. A very interesting question is how these de-
grees of freedom respond to to quenched disorder, and
this is the topic of the present paper.

By the Imry-Ma argument [57], in the presence of even
an infinitesimal degree of randomness in the local interac-
tions, the VBS can no longer exist as a long-range ordered
state, due to di↵erent columnar dimerization patterns be-
ing energetically favored in di↵erent parts of the lattice.
Thus, the uniform VBS breaks up into domains of dif-
ferent VBS patterns. One such disordered dimer state
has been termed a valence-bond glass (VBG) [58]. It
essentially consists of a random arrangement of short va-
lence bonds and it has been discussed in the experimental
context of the kagome-lattice material herbertshmithites
[8, 9], and also in 3D frustrated spin systems [59, 60]. The
kagome spin S = 1/2 lattice of the herbertshmithites is to
some degree diluted with non-magnetic impurities, and
these also liberate spinons from the singlet ground state
[12]. It was argued that these spinons interact and form a
gapless critical RS state. In this case the spinons can be
regarded as a byproduct of the dilution, and in the orig-

J-Q3 model
Jx=Jy, Qx=Qy

Realize stronger VBS order with J-Q3 model



Analogy: Emergent U(1) in classical 3D XY model

Cross-over from XY ordering to Zq ordering at length scale 𝝃’q

H = �J
X

hiji

cos(⇥i �⇥j)� h
X
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A Scaling Relation for Dangerously Irrelevant Symmetry-Breaking Fields

Tsuyoshi Okubo,∗ Kosei Oshikawa, Hiroshi Watanabe, and Naoki Kawashima
Institute for Solid State Physics, University of Tokyo, Kashiwa 5-1-5, Kashiwa, Japan 277-8581
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We propose a scaling relation for critical phenomena in which a symmetry-breaking field is denger-
ously irrelevant. We confirm its validity on the 6-state clock model in three and four dimensions by
numerical simulation. In doing so, we point out the problem in the previously-used order parameter,
and present an alternative evidence based on the mass-dependent fluctuation.

PACS numbers: 75.40.Cx, 05.70.Fh, 75.10.Hk, 75.40.Mg

Irrelevant scaling fields are ubiquitous. While they
play minor roles in most cases, some of them are quite
relevant in the usual sense of the word. A text-book ex-
ample is the φ4 term in the φ4 theory above the upper
critical dimension [1]. In the present Letter, we discuss
cases where such a dangerously-irrelevant scaling field re-
duces the symmetry of the system, and demonstrate that
it yields a new scaling relation.
Consider a renormalization-group flow diagram includ-

ing two fixed points; one describing the critical point
and the other the ordered phase. In principle it is possi-
ble that some irrelevant perturbative field at the critical
fixed point contains some scaling field that is relevant
at the one of the two. In particular, when the perturba-
tion is symmetry-reducing, it can happen that both fixed
points lie on the same manifold characterized by zero of
the perturbative field as illustrated in Fig. 1. In such
cases, even if the perturbation almost dies out at some
length scale, say ξ, it may recover its amplitude at larger
length scale, say ξ′. When the system size is between the
two scaling lengths, ξ ≪ L ≪ ξ′, the system may look
ordered but still no effect of the symmetry breaking is
visible. It may then appear that an intermediate phase
exists where the system acquires an emergent symmetry.
A classical example of this type of renormalization group
flow is the q-state clock model in three dimensions [2],
and its continuous-spin counterpart.
In fact, such an intermediate phase really exists in

two dimensions [3]. However, based on the Monte Carlo
simulation results, Miyashita [4] suggested a simpler sce-
nario for the three dimensional case. Furthermore, Os-
hikawa [2] pointed out that the existence of the interme-
diate phase is very unlikely because the low-temperature
phase is already ordered in the pure model in three di-
mensions, and that the whole low-temperature phase is
controlled by the zero-temperature fixed point, in con-
trast to the two-dimensional case. The two-dimensional
quantum SU(N) Heisenberg model may offer a quantum-
mechanical example. While the ground state of this
model is the Neèl state upto N = 4, the valence bond
solid state takes over for N ≥ 5 [5]. When described
in terms of effective spins representing the direction of
the ordered valence bond pattern, the system can be re-
garded as a model analogous to the clock model. It was

FIG. 1. The generic renormarization flow diagram with four
fixed points: P, Q, X, and Y.

discovered that the order parameter distribution function
is almost circular symmetric, indicating the extremely
small effect of the anisotropy. Later, an additional term
was introduced [6–8] to control the quantum fluctuation
and drive the system to the true transition point.
It is now widely accepted that in three dimensions

there is no partially ordered phase with the emergent
symmetry. However, disagreement still persists concern-
ing the scaling relation that relates the scaling exponent
ν′ that characterizes the longer correlation length and ν
characterizing the shorter correlation length. In this Let-
ter, we propose a new general scaling relation and verify
its validity by Monte Carlo simulation of the XY model
with the Zq scaling field. To verify the validity of the new
scaling relation, below we first present the numerical re-
sults of the anisotropy order parameter, often referred to
as φ6, suggesting that previously-proposed scaling rela-
tions do not actually hold. We further argue that, unlike
the conventional finite-size scaling, the scaling plot of φ6

is not fully supported by renormalization group picture;
we present a more complete scaling argument supported
by Monte Carlo simulation.
Previously, a scaling relation was proposed by Ueno et

al. [9] and by Oshikawa [2]. Their argument is based
on the basic assumption that there is a well defined do-
main wall splitting the whole system and the excess free-
energy caused by the domain walls is the scaling vari-
able. The excess free-energy density per area of the

Clock models
Fixed points:
P = paramagnet
X = 3D XY critical point
Y = XY symmetry breaking
Q = Zq symmetry breaking

Okubo et al, PRB 2015

RG flows can be observed in MC simulations 
“phenomenological renormalization”

Dangerously irrelevant perturbation
- irrelevant at Tc, relevant for T<Tc 
- correlation length                        and emergent U(1) length  ⇠ / (g � gc)

�⌫ ⇠0 / (g � gc)
�⌫0

⌫0 > ⌫



MC simulations of classical 3D clock model

q = 6
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1

N

NX

i=1

sin(⇥i)

Standard order parameter (mx,my)

Probability distribution P(mx,my) shows cross-over from U(1) to Zq for T<Tc

very significantly below Tc, whereas there are 8 prominent
peaks for L ! 32. Thus, in this case the U(1) length scale
4<!< 32. For the Z4 system T is much closer to Tc but
still some anisotropy is seen for L ! 4; it becomes much
more pronounced for L ! 32.

It is instructive to examine a spin configuration with
mx " my, i.e., ! " "=4. Figure 2 shows one layer of a Z4

system with L ! 10 below Tc. The spins align predomi-
nantly along ! ! 0 and ! ! "=2, with only a few spins in
the other two directions. Clearly there is some clustering of
spins pointing in the same direction—the system consists
of two interpenetrating clusters. Essentially, the configura-
tion corresponds to a size-limited domain wall between
! ! 0 and ! ! "=4 magnetized states.

Hove and Sudbø studied the q-state critical clock model
[13]. Upon course graining, they found that the structure in
the angular distribution diminished with the size of the
block spins for q # 5, as is expected for an irrelevant
anisotropy. Here we want to quantify the length scale !
at which the anisotropy becomes relevant for T < Tc.
Consider first what would happen in a course-graining
procedure for a single-spin configuration of an infinite
system in the ordered state very close to Tc. With individ-
ual spins having q preferred directions, as seen clearly in
Fig. 2, there would be q peaks in the probability distribu-
tion of angles !i. Averaging over blocks of l3 spins, we

would expect the angular dependence to become less pro-
nounced because of the averaging over spins pointing in
different directions (again, as is seen in Fig. 2). Sufficiently
close to Tc we would expect the distribution to approach
flatness. However, since we are in an ordered state, at some
l " ! one of the q preferred angles will become predomi-
nant and one peak in the histogram will start to grow. We
cannot simulate the infinite system and instead carry out an
analogous procedure versus the lattice size L, sampling a
large number of configurations. We calculate the order
parameters hmi and hmqi, defined in Eqs. (3) and (4), and
analyze them using

 hmi ! L$#f%tL1=$&; (5)

 hmqi ! L$#g%tL1=$q&: (6)

Here (5) is the standard finite-size ansatz with # ! %=$,
and the XY exponents are % " 0:348 and $ " 0:672 [16].
Equation (6) is an intuitive generalization of (5), which was
proposed and used also in Ref. [9], but we can actually also
derive the scaling function g%X& exactly.

Consider the scaling behavior of the order-parameter
distribution P% ~m&. It depends on the system size L and
the size of scaling operators perturbing the critical theory,
the temperature deviation t ! Tc $ T, and the presumed
irrelevant q-fold anisotropy strength h. By conventional
scaling arguments, we expect

 P% ~m;L; t; h& ! L#=2P̂%L# ~m; tL1=$; H ! hL3$"q&; (7)

where "q > 3 is the scaling dimension of the irrelevant
anisotropy. The prefactor above is determined from nor-
malization of the probability distribution. In the scaling
regime, jtj' 1, L( 1, so H is small. When the first two
arguments are O%1&, P̂ can be well approximated by taking
H ! 0 [with ‘‘corrections to scaling’’ of O%H&, i.e., sup-
pressed by L3$"q for a large system]. At H ! 0, the
distribution is fully XY symmetric, and the integral in
Eq. (4) vanishes. Thus, in this regime hmqi is small,
O%H&, and should be considered as arising from corrections

FIG. 2 (color online). Spins in one layer of the Z4 model with
L ! 10 at h=J ! 1, T=J ! 1:9< Tc. Here mx " my, corre-
sponding to ! " "=4 in P%r; !&. Arrows are color-coded accord-
ing to the closest Z4 angle; n"=2, n ! 0, 1, 2, 3.

FIG. 1 (color online). P%mx;my& at h=J ! 1 for q ! 4, 8, L !
4, 32. The temperature T=J ! 2:17 for Z4 and 1.15 for Z8, both
less than Tc=J " 2:20. The size of the histograms corresponds to
mx;y 2 )$1; 1*. Angular distributions P%!& with ! 2 )0; 2"* are
shown above each histogram.
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Can be quantified with
“angular order parameter”:

𝝋q > 0 only if q-fold anisotropy
Finite-size scaling of 𝝋q can be
used to extract length scale 𝜉’ > 𝜉
and associated scaling dimension yq
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Relevant field accessed through the Binder cumulant: Um = 2� hm4i
hm2i2

Angular order parameter 𝝋q reflects the dangerously irrelevant field
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FIG. 1. The generic renormalization flow diagram with four fixed
points: P, Q, X, and Y.

scaling flow takes us to the critical fixed point “X,” where
g = gX and λ = 0. If we start from a point with t = tA > 0
and λ = λA > 0, the scaling flow goes through the points
“C” (|gC − gX| = O(1), λC ≪ 1), “D” (|gD − gY| = O(1),
λD ≪ 1), and approaches the second fixed point “Y” around
which renormalization group flow is characterized by scaling
exponents y ′

g < 0 for the variable g and y ′
λ > 0 for the variable

λ. Because of the presence of λ, the flow deviates from Y, goes
through the point “E” (λE = O(1)), and eventually reaches
some other fixed point. The shorter correlation length ξ equals
#AC, i.e., the length scale that has to be renormalized to go
from A to C, whereas the longer correlation length ξ ′ equals
#AE. The critical intervals are BC and DE. For the interval
BC we have λC ∼ ξ yλ . For DE, 1 ∼ λE ∼ λD(#DE)y

′
λ , which

yields #DE ∼ (λD)−1/y ′
λ ∝ (λC)−1/y ′

λ ∼ ξ−yλ/y
′
λ . Therefore,

ξ ′ ∝ #BC#DE ∼ ξ
1+ −yλ

y′
λ .

Thus we have arrived at
ν ′

ν
= 1 + −yλ

y ′
λ

. (3)

In order to determine which scaling relation should apply,
we need independent estimates of the scaling indices ν, ν ′,
yλ, and y ′

λ in (3). Here we consider the XY model in three
dimensions with the Zq anisotropy field:

H = −J
∑

(r,r ′)

cos[θ (r) − θ (r ′)] − λq

∑

r

cos[qθ (r)].

As for ν, previous estimates of the pure XY universality class is
available, ν = 0.6717(1) [11]. As for yλ, previous calculation
according to the first-order ε expansion [2] leads,

yλ = 4 − q + ε

(
q

2
− 1 − q(q − 1)

10

)
,

e.g., yλ = −0.2 for q = 4 and = −3.0 for q = 6. In addition
to this ε expansion, Monte Carlo estimates of the yλ up to
q = 4 are available [12]. In Fig. 2 we plot the estimated
scaling eigenvalues and their extrapolation by the second-order
polynomial along with the result of the first-order ε expansion.
The Monte Carlo estimation of yλ reveals a surprisingly good
agreement with the first-order ε expansion, while the second-
order polynomial fitting slightly deviates from the ε expansion

-3

-2

-1

 0

 1

 2

 3

 1  2  3  4  5  6

Hasenbusch et al.
Extrapolation

FIG. 2. (Color online) The estimated scaling eigenvalues from
Ref. [12] (symbols), the second-order polynomial fitting to them
(dashed curve), and the result of the first-order ε expansion (solid
curve).

at q = 6. From this figure we estimate yλ = −2.5(2) for
q = 6. As for y ′

λ, an argument [2] suggests that the quadratic
fluctuation around the ordered configuration is essential at
the Nambu-Goldstone (NG) fixed point, leading to y ′

λ = 2,
analogous to the scaling eigenvalue of the φ2 field in the
Gaussian field theory. Finally, we consider ν ′. In order to
estimate ν ′ we need a proper scaling variable which obeys
a finite size scaling with ν ′.

In the previous studies, an order parameter that character-
izes the symmetry reduction from U (1) to Z6,

φ6 ≡ ⟨cos(6θ0)⟩

was analyzed by assuming φ6 ∼ f (tL1/ν ′
) [2,10]. Here θ0 is

the angle of the average magnetization, i.e.,

(m0 cos θ0,m0 sin θ0) ≡ 1
N

∑

r
( cos θ (r), sin θ (r)),

and ⟨· · · ⟩ represents a thermal average. In Fig. 3(a) we show the
finite size scaling of φ6 against (Tc − T )L1/ν ′

with ν ′ = 1.45
which is estimated from the Bayesian method [13]. Estimated
ν ′ considerably deviated from Ueno’s scaling relation (1) and
Lou’s scaling relation (2); they give ν ′ ≃ 0.84 and ν ′ ≃ 1.23
from known exponents ν and yλ, respectively. Indeed, when

-0.1
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(a) 3D, q=6
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FIG. 3. (Color online) The finite size scaling of φ6 for the Z6-
anisotropic XY model with λ6/J = 5 in three dimensions. (a)
ν ′ = 1.45, (b) ν ′ = 1.23. For the scaling we used the data set of
(Tc − T )/J ! 0.4.
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The exponent 𝜈’ can be directly
extracted from 𝜑q when it is large
- follows from scaling function

L = 2, 3, . . .

MC RG flows in the plane (Um,𝜑q)
[Shao, Guo, Sandvik, arXiv:1905.13640]
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FIG. 1. MC RG flows for the q = 6 model. Each set of
connected dots represents a fixed T and sizes L = 2, 3, 4, . . .
(moving toward the edges of the diagram with increasing L).
The flows at the highest and lowest T and T = Tc are shown
with bigger dots in black, red and blue respectively, while the
smaller dots represent temperatures in between. The inset
shows detailed flows in the critical region.

from the same DIP and there is a relationship between
⌫, ⌫0, and y, which has been the subject of controversy
[8–11]. Here we will derive the relationship from Eq. (1)
and show how the complex MC RG flow in the space of
two observables can be explained and used to extract the
exponents y = d�� and ⌫0.

Models and observables.—We study three-dimensional
(3D) classical clock models on the simple cubic lattice,

H = �
X

hi,ji

cos(✓
i

� ✓
j

)� h
X

i

cos(q✓
i

), (2)

with ✓ 2 [0, 2⇡). Based on previous studies [8–14], for
q � 4 the phase transition for fixed h at T = T

c

belongs
to the 3D U(1) universality class, i.e., the clock field h
is irrelevant. However, for T < T

c

the field is relevant,
bringing the U(1) symmetry of the order parameter down
to a q-fold cyclic permutation symmetry Z

q

when consid-
ered above the DIP length scale ⇠0

q

.
In our MC simulations [15], for a given spin con-

figuration we compute the magnetization components
M

x

=
P

i

cos(✓
i

), M
y

=
P

i

sin(✓
i

), and then M =
(M2

x

+M2
y

)1/2 and the global angle ⇥ = arccos(M
x

/M).
The angular order parameter can now be defined as

�
q

= hcos(q⇥)i, (3)

which becomes non-zero in response to the Z
q

field. This
quantity was used to study the length scale ⇠0

q

[9, 10, 12]
(with a slightly di↵erent definition in Refs. [9, 12]), but
here we will use it in a di↵erent way. For T � T

c

, �
q

!
0 when L ! 1, while �

q

! 1 for T < T
c

. We will
use �

q

in combination with the Binder cumulant U =
2 � hM4i/hM2i2, which takes the limiting forms U ! 0
(T > T

c

), U ! 1 (T < T
c

) and U ! UXY = 0.757 (at
T = T

c

with 3D XY universality [17]).

10 100
L
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φ q

q=4, h=1
q=5, hard
q=5, h=5
q=5, h=2
q=6, hard

FIG. 2. Log-log plot of the critical angular order parameter
�q vs the linear system size L for several q and h values. The
fitting lines correspond to the power-law form �q / L

�|yq |

and the resulting exponents are summarized in Table. I.

MC RG Flows.—Fig. 1 shows flows of (U,�
q

)
L

for
the q = 6 model with hard constraints, i.e., h ! 1
in Eq. (2). Results for q = 4, 5 are discussed in Sup-
plemental Material (SM) [16], where we also determine
T
c

(h) for q = 4, 5, 6. The coarse-graining process is man-
ifested as the changes in the two observables for fixed T
with increasing L. The high-T Gaussian fixed point (G)
is located at (U,�

q

) = (0, 0); the critical 3D XY point
at (UXY, 0), the low-T U(1) symmetry breaking Nambu-
Goldstone (NG) fixed point at (1, 0), and the fixed point
with Z

q

symmetry breaking is at (1, 1). For T � T
c

,
we observe uncomplicated flows to the respective fixed
points, while for T < T

c

we observe clearly two stages in
the flow away from the XY point, first toward the NG
point and then followed by an NG to Z

q

crossover. While
qualitatively this is expected, a complete understanding
of the di↵erent stages of RG is still lacking.

Scaling dimensions.—We first study the scaling dimen-
sion y

q

of the Z
q

field, following the red curve that tends
to the XY fixed point in Fig. 1. Previous MC estimates
used Z

q

anisotropy correlators in the pure XY model for
q = 4 [14]. Since the Z

q

field is irrelevant for q � 4, the
decay power 2�

q

of the correlation function is larger than
6, which makes it di�cult to determine �

q

accurately
(see SM [16] for some results). The decay of the induced
�
q

is analyzed in Fig. 2 for q = 4, 5, 6 at selected h values.
Here it is important to note that ⇥ in Eq. (3) is a global
angle, implicitly not normalized by the system volume,
and �

q

therefore corresponds to that of M = Nm in the
general discussion above, thus, �

q

/ L��q+d = L�|yq|.
We summarize the scaling results for y

q

in Table. I.

For q = 4 the Z
q

field may only be irrelevant for rel-
atively small h values; for the hard case (h = 1) the
system is equivalent to two decoupled Ising models, and
for h = 2 the phase transition already seems to not be in
the XY universality class [12]. Here we use h = 1. Our

Entire RG flow can be explained by
phenomenological scaling function with
two relevant arguments:

3

TABLE I. Scaling dimensions yq of the Zq field for q = 4, 5, 6.
The numbers within parenthesis indicate the statistical errors
(one standard deviation) of the preceding digit.

yq

q

4 5 6

Ref. [8] -0.2 -1.5 -3.0
Ref. [11] -0.114 -1.16 -2.29
Refs. [10, 14] -0.108(6) -1.25 -2.5
This work -0.114(2) -1.27(1) -2.55(6)

MC simulations extend up to L = 120, and to eliminate
e↵ects of scaling corrections we have excluded small sys-
tems until a good fit obtains. Our result y4 = �0.114(2)
agrees well with the best previous numerical result [14],
but the error bar is three times smaller. It also matches
very well a high-order nonperturbative expansion [11].

For q = 5, we have used several h values and a joint fit
to all data was applied with a common exponent but h
dependent prefactors. Our result y5 = �1.27(1) is close
to an extrapolated value from simulations for smaller q
[10] but di↵ers significantly from the field-theory expan-
sions [8, 11]. For q = 6 we obtain y6 = �2.55(6), which
again agrees well with the extrapolated value [10] but
di↵ers from those in Refs. [8, 11]. For all the q values
studied, our results show that the first-order ✏-expansion
[8] overestimates y6, while the nonperturbative expansion
[11] underestimates it for q > 4.

Having determined the scaling dimensions, the Z
q

or-
der parameter in the ordered phase takes the form

�
q

= Lyq�(tL1/⌫ , tL1/⌫0
q ), (4)

where we neglect the irrelevant arguments in Eq. (1) as
they merely produce corrections here. We will consider
q = 6 specifically but keep the general-q notation.

Scaling near the XY point.—To quantify the flow for
T < T

c

near the XY critical fixed point (U,�
q

) =
(UXY, 0), we consider the minimum distances of the fixed-
t curves to this point in Fig. 1. Here both arguments in
Eq. (4) are small, and we can use a first-order expansion.

Since tL1/⌫0
q ⌧ tL1/⌫ , the former can be neglected;

�
q

/ Lyq (1 + tL1/⌫), (5)

where we do not include unimportant factors for simplic-
ity. The Binder cumulant scales as

U = U(tL1/⌫) = U
XY

+ tL1/⌫ + L�!, (6)

where ! is the smallest correction exponent a↵ecting U .
The distance d1 to the XY fixed point is

d1 /
q

(tL1/⌫ + L�!)2 + L2yq (1 + tL1/⌫)2. (7)

Since ! ⌧ |y6|, d1 is dominated by the first term in
Eq. (7); d1 / tL1/⌫ + L�!. Minimizing for fixed t gives
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FIG. 3. (a) The distance d1(L) to the XY fixed point. The
black and blue solid circles correspond to 2.193 and T = 2.201,
respectively, with the open circles showing temperatures in
between. (b) Power law behaviors in t of the minimum dis-
tance D1 and corresponding size L1 [red dots in (a)].

the distance D1 and the corresponding system size L1

D1 / t
!

1/⌫+! = t0.39(2), L1 / t�
1

1/⌫+! = t�0.412(4), (8)

where we have used the known value ⌫ = 0.6717(1). For
the correction, we use ! = 0.94(3), which is the e↵ective
value of this exponent for the XY model for the range of
system sizes we have reached [16]. In Fig. 3(a), we show
d1 for several temperatures versus L. We find the min-
imums by third-order polynomial fits. Fig. 3(b) shows
power-law fits to D1(t) and L1(t), where the exponents
are 0.372(1) and �0.404(4) respectively, consistent with
the expected values in Eq. (8). Using the true asymp-
totic exponent ! = 0.785(20) [17] leads to a worse, but
still reasonable agreement.
Another characteristic of the T < T

c

curves in Fig. 1
is the minimum distance to the horizontal axis. This
RG stage between the XY and NG fixed points is still
governed by the XY criticality because tL1/⌫ and tL1/⌫0

q

are both small. Since tL1/⌫0
q ⌧ tL1/⌫ , �

q

is given by
Eq. (5) and the minimum value D2 and corresponding
system size therefore scale with t as (for q = 6)

D2 / ty6⌫ = t1.71(4), L2 / t�⌫ = t�0.6717(1). (9)

The expected exponents indicated above agree reason-
ably well with our fits in Fig. 4, where the exponents are
1.88(2) and �0.60(3), respectively. The mismatch of 2�4
error bars is likely due to neglected scaling corrections.
Cross-over exponent ⌫0

q

.—When tL1/⌫ � 1 but tL1/⌫0
q

is arbitrary, Eq. (4) must reduce to

�
q

= Lyq (tL1/⌫)ag(tL1/⌫0
q ), (10)

where the exponent a follows from the physics of the
clock model. Specifically, we can ask how �

q

depends on
L at fixed t when the U(1) symmetry is barely broken
down to Z

q

, i.e., when �
q

⌧ 1. This is a subtle issue
at the heart of the long-standing controversy regarding
the symmetry cross-over [8–11, 18]. Instead of invoking
physical arguments, we will here simply posit that �

q

/
Lp in the regime where tL1/⌫ is large but tL1/⌫0

q remains



DQCP: In the field theory the VBS corresponds to condensation of topological
defects (quadrupoled monopoles on square lattice)
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Analogy with 3D clock models: The topological
defects should be dangerously irrelevant Renormalization Group (RG) Picture:
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0
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FIG. 27. (Color online) VBS order parameter distribution
P (Dx,Dy) in the Q2 model on periodic L × L lattices with L = 64
(left) and L = 128 (right). The size of both squares corresponds to
10% of the maximum value Dmax/10 of the components, Dx,Dy ∈
[−Dmax,Dmax], where Dmax = 3/8 (for a perfect columnar VBS).

“instanton” events between the peaks (i.e., the simulations “get
stuck” in one quarter of the configuration space). It should be
noted that this very slow simulation dynamics of the VBS order
parameter does not affect the estimate of the total squared order
parameter ⟨D2⟩ and most other physical quantities of interest.

The degree of Z4 symmetry of the order parameter can be
quantified by the function

W4 =
∑

Dx

∑

Dy

P (Dx,Dy) cos(4φxy), (A1)

where φxy is the angle corresponding to the point (Dx,Dy).
While this function (and the underlying probability distri-
bution) is not a physical observable, in the sense that it
is not a bona fide quantum mechanical expectation value,
it, nevertheless, reflects the fluctuations of the VBS order
parameter and can be used to characterize the the U(1)-Z4
crossover.

Results as a function of L for the Q3 model are shown
in Fig. 26. Here, the convergence W4 → 1 when L → ∞ is
apparent, as would be expected for a columnar VBS in the
thermodynamic limit. In principle, the curve W4(L) could be
used to define the length ", e.g., using W4(") = 1/2, but there
is clearly an arbitrariness in choosing the particular number.
For studying the scaling of " when some parameter of the
Hamiltonian is changed (e.g., J/Q3) this ambiguity does not
matter. In Ref. 40, curves W4(L) for different coupling rations
were analyzed using standard finite-size scaling techniques,
with the results that " grows slightly faster than the correlation
length " ∼ ξ 1+a with a ≈ 0.2.

Comparing with the behavior of the squared order parame-
ters in Fig. 4, it can be noted that ⟨D2

x⟩ approaches 0 (and ⟨D2
y⟩

tends to a nonzero value) very quickly above L ≈ 20, which
is approximately where W4(L) = 1/2 in Fig. 26. On the other
hand, the decay of the edge-induced y component of the order
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FIG. 28. (Color online) Angular distribution of the VBS order
parameter of the Q2 model for system sizes L = 32, 64, and 128. To
improve the statistics, these results were obtained by symmetrizing
the distributions using the expected 90◦ rotational symmetry. The
jaggedness of the curves (especially for L = 32) is due to the
discreteness of the allowed (Dx,Dy) values (with N possible values
for each component).

parameter in Figs. 17 and 18 (where the system far from
theedge has only x order) gives a length ≈6.5, which could also
be taken as a practical definition of ". This length corresponds
to W4 ≈ 0.1 in Fig. 26.

In contrast to the Q3 model, in the Q2 model no clear
Z4 symmetry is visible in P (Dx,Dy) up to systems as large
as L = 64 and 128, as shown in Fig. 27. These histograms
are ring-shaped, although for L = 128 the weight is not
evenly distributed because of lack of sufficient QMC statistics.
The VBS angle fluctuates very slowly in simulations of
large systems and very long runs are required in order to
obtain symmetric distributions. The data shown are based
on ≈3.5 × 108 Monte Carlo sweeps for L = 64 and 8 × 107

for L = 128 (which required more than 104 CPU hours in
both cases). By symmetrizing the distributions using 90◦

rotations, one can still detect small deviations from perfect
U(1) symmetry, as shown in Fig. 28. The peak positions again
correspond to a columnar state.

Note that in Fig. 27 the ring for L = 128 is considerably
thinner than for L = 64, with the radius (the location of the
maximum or average weight) remaining almost unchanged.
This reflects an expected reduction of the fluctuations of the
magnitude of the VBS order parameter with increasing system
size. Based on these results, the crossover length scale " for the
Q2 model should be ≫128, which explains why both order-
parameter components are essentially equal for the largest
systems in Fig. 8.
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may work, but some interaction similar to the multispin Q
terms discussed here could be even better suited for inducing
the desired type of VBS.

Spin liquid states have recently also been claimed to exist
in electronic Hubbard models and frustrated spin models on
the honeycomb lattice.105–107 For the Hubbard model, 2D
lattices with up to hundreds of sites were used.105 The VBS
correlations in this case decay very rapidly with distance, and
the system does not seem to exhibit the kind of problematic
scaling issues pointed out in this paper. On the other hand, work
on effective spin models constructed to capture the putative
spin-liquid state have not so far been conclusive.62,107–109 Also
here it would be useful to extend the models in such a way that
a VBS phase transition can be studied. The VBS should then
be the one to which the “bare” honeycomb model is the most
susceptible (which may in itself not be easy to determine in
this case).

D. Bench-mark challenge

Finally, as a challenge to DMRG, tensor-product, and
MERA techniques, it would be very interesting and useful to
see these methods applied to J -Q models as well. Comparing
with the known phase diagram and critical behavior extracted
on the basis of unbiased QMC simulations would be a very
good test of the capabilities of these methods to capture
nontrivial ground states and quantum phase transitions. If the
outcome is positive, it may be very useful to systematically
investigate the behavior when frustration is added to this
model, as was recently done in an exact diagonalization study
of a 2D model combining the Q2 interaction with the frustrated
J1-J2 Heisenberg model.110
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APPENDIX: U(1)-Z4 CROSSOVER OF THE VBS
SYMMETRY IN PERIODIC SYSTEMS

The emergent U(1) symmetry of a columnar VBS in the
neighborhood of a critical point can be characterized by
the probability distribution P (Dx,Dy) generated in QMC
simulations on periodic L × L lattices. A systematic study
aimed at extracting the scaling of the U(1)-Z4 crossover length
! was presented in Ref. 40. Here, additional results for the
pure Q2 and Q3 models will be presented in order to facilitate
comparisons with the boundary effects discussed in the main
text. Specifically, it will be shown that the lack of Dx-Dy

symmetry on 2L × L lattices, as seen in Fig. 4 for the Q3 model
for all system sizes, is matched by a clear Z4 symmetric order
parameter on all L × L lattices. Conversely, the symmetry
seen for the Q2 model on large lattices in Fig. 4 is consistent

L = 12 L = 24

0

max

FIG. 25. (Color online) VBS order parameter distribution
P (Dx,Dy) in the Q3 model on periodic L × L lattices with L = 12
(left) and L = 24 (right). The size of both squares corresponds
to the full space of possible values of the components Dx,Dy ∈
[−Dmax,Dmax], where Dmax = 3/8 (for a perfect columnar VBS).

with only very small deviations (barely detectable) from U(1)
symmetry on L × L lattices with L as large as 128.

In the projector QMC simulations, each generated config-
uration is associated with a pair of order parameters (Dx,Dy),
which are matrix elements of the corresponding operators
defined in Eqs. (12) and (13) computed in the valence bond
basis. These matrix elements are of the form 3n/4N , where
n is an integer in the range [−N/2,N/2], with the extremal
values corresponding to both the bra and ket state (making up
the transition graph) having the same perfect columnar pattern
of valence bonds of length one lattice constant. The histogram
P (Dx,Dy) is constructed based on these matrix elements.

Figure 25 shows results for the Q3 model for L = 12
and 24. In this model, the histogram P (Dx,Dy) exhibits a
distinct fourfold symmetry even for the smallest systems (also
smaller than L = 12, not shown here, where the discreteness
of the distribution function also becomes apparent). The four
peaks sharpen with increasing lattice size, and above some
size the suppression of the weight between the peaks severely
impedes QMC fluctuations between the peaks. In Fig. 25, the
visibly different weight in the four peaks (with the right peak
having the smallest weight) is a consequence of this rarity of
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FIG. 26. (Color online) Size dependence of the columnar
anisotropy weight, defined in Eq. (A1), of the VBS order parameter
distribution in the Q3 model.
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Conventional first-order transition
Staircase J-Q3 model [Sen, Sandvik, PRB 2010]

fashion on the square lattice, as illustrated in Fig. 1!a". This
interaction induces a staggered VBS pattern in which reso-
nating valence bonds leading locally to a different !degener-
ate" VBS pattern are not favored. If such fluctuations are
present they can effectively rotate the coarse-grained angle
of the VBS order parameter !as explained further in the cap-
tion of Fig. 1", which has been explicitly observed in the J-Q
models studied previously.9,10,14 In the DQC scenario, they
are directly responsible for the emergent U!1" symmetry of
the VBS order parameter in the neighborhood of the
transition.2 The absence of this feature in the model studied
here brings it clearly outside the framework of DQC points,
and a numerical confirmation of a different type of transition
is then, indirectly, an additional piece of evidence in favor of
a consistent DQC scenario in which emergent U!1" symme-
try and spinon deconfinement should go hand-in-hand with a
continuous transition.

We here use the stochastic series expansion !SSE" QMC
method with operator-loop updates18 to study the nature of
the Néel-VBS transition in the staggered J-Q3 model. We
perform simulations at a fixed aspect ratio of inverse tem-
perature !J=L, as done previously for the standard J-Q2
model in Refs. 13–15. We study the finite-size scaling prop-
erties of various physical quantities and contrast them with
what is observed at the previously studied putative continu-
ous DQCs.

The rest of the paper is organized in the following way: in
Sec II, we define the model more precisely and present the
results for the staggered magnetization, the corresponding
Binder cumulant, the spin stiffness, and the VBS order pa-

rameter. We also consider the probability distribution of the
VBS order parameter and use it to explicitly demonstrate
phase coexistence. In Sec III, we determine the location of
the critical point by using the crossing of the energies of the
Néel and the VBS phases in the metastable region near the
transition. We state our conclusions and discuss future pros-
pects in Sec IV.

II. MODEL AND ORDER PARAMETERS

We consider the following Hamiltonian:

H = J#
$ij%

Si · S j − Q3 #
$ijklmn%

CijCklCmn, !1"

where Si refers to a S=1 /2 spin at site i on the 2D square
lattice and Cij denotes the singlet pair projection operator,

Cij =
1
4

− Si · S j , !2"

between two nearest neighbors i and j. The Q3 term !where,
in the notation of Ref. 10, the subscript on Q refers to the
number of singlet projectors in the product" is chosen in the
particular manner illustrated in Fig. 1!a", to favor the forma-
tion of the kind of staggered VBS illustrated in Fig. 1!b".
Like the columnar and plaquette VBS, the broken symmetry
of the staggered VBS is Z4. However, this type of VBS is
very different from its columnar or plaquette counterparts
since no local ring exchange of singlets on closed loops &e.g.,
as illustrated in Fig. 1!c" for a simple two-bond resonance' is
possible in the ideal staggered VBS. This makes it highly
unlikely for the existing fluctuations of this kind of VBS to
be associated with an emergent U!1" symmetry, which is a
key characteristic of the DQC transition.2 We will confirm
this with simulation results below.

We have also studied an interaction similar to the six-spin
Q3 term but with only two singlet projectors, on two pairs of
sites separated by one lattice spacing and shifted one step
with respect to each other as in Fig. 1!a". This interaction is
not sufficient for destroying the Néel order, however, unlike
the original J-Q model with the two singlet projectors inside
2"2 plaquettes. In the latter case the resulting VBS in the
extreme case of J=0 is also quite weak9 while adding one
more singlet projector !with the sets of three projectors ar-
ranged in columns" gives a much more robust VBS order.10

To study the Néel-VBS phase transition in the staggered
J-Q3 model, Eq. !1", we measure quantities that are sensitive
to the Néel order and the VBS order, respectively. At a con-
tinuous quantum phase transition, these quantities should
scale with the system size L according to nontrivial critical
exponents while at a first-order transition one would expect
very different exponents related to the dimensionality of the
system as well as particular signatures of coexisting phases
at the transition point. These signatures should apply when
the linear dimension of the system L#$, where $ is the finite
correlation length at the transition.

A. Néel order

The magnetically ordered Néel phase breaks the SU!2"
rotational symmetry of the interaction Hamiltonian H and

i j

k l

m n
a)

c) d)

b)

FIG. 1. !Color online" !a" The interaction term Q3 involving
three bond-singlet projection operators !shown with thicker lines"
on the square lattice. All terms related by lattice translations and
rotations of the shown instance of a product of singlet projectors are
included in the Hamiltonian. Examples of VBS patterns: !b" stag-
gered, !c" columnar, and !d" plaquette. The singlets preferentially
form on the thicker !red" bonds. The arrows in !c" indicate how a
local resonance of a pair of bonds between horizontal and vertical
orientations corresponds to a plaquette in !d". Such resonances cor-
respond to fluctuations of the VBS angle, which is %=n& /2 !n
=0,1 ,2 ,3" for the columnar state and %n& /2+& /4 for the
plaquette state. In the DQC scenario !Ref. 2" they lead to an emer-
gent U!1" symmetry, i.e., a continuous circular-symmetric % as the
transition into the Néel state is approached. The Q3 term favors the
staggered-type VBS !b", where such angular fluctuations should al-
ways be small.
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Q3 VBS

can be characterized by measuring !"ms
z#2$, where ms

z denotes
the z component of staggered magnetization of the system,

ms
z =

1
N%

r
Sz"r#cos"Q · r# "3#

with Q= "! ,!# the wave vector corresponding to the Néel
phase and N=L2. This quantity is diagonal in the Sz basis
used and can be easily measured in the SSE simulations. We
measure the squared quantity !"ms

z#2$, which, due to the spin-
rotational symmetry of the Hamiltonian, is 1/3 of the full
squared staggered magnetization !ms

2$. We show the data for
different system sizes at "J=L near the phase transition in
Fig. 2. As the system size is increased, we observe a jump
developing in !"ms

z#2$ that becomes more abrupt and rapidly
approaches the infinite-volume estimate of the critical point
"Q3 /J#c=1.1933"1# for this model "indicated by the vertical
line in Fig. 2 and other figures#. The value of "Q3 /J#c was
obtained from the crossing of metastable energies of the Néel
and VBS phases of larger systems; see Fig. 7 and later dis-
cussion in Sec. III. This kind of behavior of the Néel order
parameter is already very suggestive of a first-order transi-
tion. Data for systems larger than L=14 are not shown here
because of the extremely long tunneling times between the
coexisting "as we will show below in Sec. II B# Néel and
VBS phases for such sizes in our simulations close to the
phase transition, which makes it very difficult to obtain reli-
able expectation values.

A quantity that is very useful for distinguishing between
first-order and continuous phase transitions is the Binder cu-
mulant U2, defined for an O"3# order parameter as19

U2 =
5
2
&1 −

!"ms
z#4$

3!"ms
z#2$2' . "4#

With the factors used here, U2→1 in the Néel phase and
U2→0 in the magnetically disordered phase "VBS in this
case# when L→#. For a continuous phase transition, the U2

curves for different system sizes intersect at the critical point
"for sufficiently large L# and the value of U2 at the intercept
normally lies in the interval "0,1#.19 This property of the
Binder cumulant is often used to accurately determine the
location of the critical point for continuous phase transitions.
However, for a first-order transition, the Binder cumulant
behaves in a completely different manner that was explained
phenomenologically for classical transitions by Vollmayr et
al.20 For systems exceeding a certain length Lmin($, the
curves show a minimum which becomes more pronounced
as the system size increases. The minimum value of U2→
−# as L→# because of phase coexistence, and the position
of the minimum approaches the transition point in the ther-
modynamic limit. This behavior has been observed in previ-
ous studies of classical first-order phase transitions )for ex-
ample, see Refs. 20 and 21*. Indeed, the Binder cumulant for
the J-Q3 model, graphed in Fig. 3, behaves in a similar man-
ner and strongly points to a first-order phase transition. The
negative minimum is present in the U2 curves for L=6 and
above and becomes deeper and sharper as L increases. Its
location approaches the estimated "Q3 /J#c. The fact that a
minimum in U2 is not at all present for L=4 and is barely
negative for L=6 allows us to estimate that the typical length
scale "the spin-correlation length# at the first-order transition
is approximately in the range $=4–6. We also measure the
second moment spin-correlation length $a defined as

$a =
L

2!+ S"!,!#

S&! +
2!

L
,!' − 1, "5#

where S"q# refers to the spin structure factor at the corre-
sponding wave vector q. We obtain $a(2 close to the critical
point in the magnetically disordered VBS phase. However,
when the spin-correlation length is small, $a can differ from
the true correlation length $ based on the asymptotic decay
of the spin correlations in real space "which is difficult to
extract reliably#.
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FIG. 2. "Color online# The squared staggered magnetization
!"ms

z#2$ shown for different system sizes at inverse temperature "J
=L. The vertical line at "Q3 /J#c=1.1933 is the estimated L→#
transition point from crossings of metastable energy branches "Fig.
7#.

1.2 1.4 1.6
Q3/J

-1.5

-1.0

-0.5

0.0

0.5

1.0

U
2

L=14
L=12
L=10
L=8
L=6

FIG. 3. "Color online# The Binder cumulant of the staggered
magnetization shown for different system sizes at inverse tempera-
ture "J=L. Note that the minimum of the Binder cumulant is nega-
tive for L%8 and diverges to −# as L→# based on these sizes.

EXAMPLE OF A FIRST-ORDER NÉEL TO VALENCE-… PHYSICAL REVIEW B 82, 174428 "2010#

174428-3

Binder cumulant of AFM order parameter

Negative Cumulant peak is a sign of
phase coexistence; first-order transition

using the VBS order parameter. Consider the joint probabil-
ity distribution function P!Dx ,Dy". In the Neel phase, this
function is peaked at !0,0". In the VBS phase, P!Dx ,Dy" is
peaked at !0, !D" and !!D ,0", where D is finite, reflecting
the Z4 degeneracy of the VBS state in a finite lattice. Note
that !Dx ,Dy" is here defined as a single point obtained on the
basis of an equal-time simultaneous measurement of Dx and
Dy, i.e., these operators are not averaged over the imaginary-
time dimension in the simulations. The full distribution can
still of course be accumulated over several imaginary times.

In Fig. 6, we show P!Dx ,Dy" for L=12 and Q3 /J
=1.22,1.23,1.24 for "J=L. The coexistence of the Neel and
the VBS phase is evident from the presence of peaks at both
!0,0" and !!D ,0" , !0, !D" at Q3 /J=1.23 while at Q3 /J
=1.22 !Q3 /J=1.24", the Néel !VBS" phase dominates. Also
note the absence of any U!1" ringlike feature in the distribu-
tion shown in Fig. 6. This should be contrasted with similar
measures of the distribution function in the J-Q models with
columnar VBS states close to the critical point, where the

enlarged U!1" symmetry is very evident.9,10,14 In the original
J-Q model with two singlet projectors, the VBS does not
seem to get pinned to the four Z4 symmetric angles even at
J=0 for the system sizes accessible.9 In the modified J-Q
model with three singlet projectors forming columns,10 the
change in the shape of the VBS order-parameter distribution
from U!1" close to the transition to Z4 deep in the VBS phase
can be clearly observed, however. The enlarged U!1" sym-
metry arises in DQC theory due to the !dangerously" irrel-
evant Z4 symmetry-breaking term at the critical point.2 Away
from the critical point, the symmetry is only approximate but
large system sizes are needed to observe that !i.e., L has to
exceed the length scale # which is larger than the standard
correlation length and determined by the dangerously irrel-
evant operator".

Within the DQC framework, the approximate U!1" sym-
metry near the critical point can be thought of in the follow-
ing manner:2 the dangerously irrelevant Z4 perturbation only
produces a small energy difference between the columnar
and plaquette VBS, which vanishes at the critical point and
gives rise to a corresponding large length scale slightly away
from it within which the magnitude of the VBS order param-
eter is formed but its angle !which can be defined exactly as
we did above in terms of Dx and Dy" is not pinned in any
particular direction. This feature has also been observed in
U!1" symmetric spin models where either a very weak first-
order transition24 or transition with unusual finite-size
scaling25 takes place. However, when the VBS is staggered,
there is no competing solid that is energetically close be-
cause of the absence of local ring exchange moves of the
singlets !or dimers" in the ideal staggered solid. This does
not allow the emergence of an approximate U!1" symmetry
near the transition, for which local fluctuations of the VBS
order parameter are necessary, and puts it outside the frame-
work of DQC points even though the phases have the same
broken symmetries. Note that the value of D2 in the VBS
phase after the discontinuous jump !Fig. 5" is close !
#74%" to that of an ideal staggered solid !D2=0.015625",
which motivates us to classify it as a strongly first-order
transition.

We should point out here that the order-parameter distri-
bution P!ms

z" of the Néel order parameter does not show a
clear peak structure at coexistence because of the spin-
rotational averaging when measuring just one of the three
components of the staggered magnetization. The distribution
is not sharply peaked in the Néel state. In principle one could
measure deviations from the rotationally averaged distribu-
tion expected26 for a single phase but this signal is not as
clear as the one seen above for the VBS order parameter. In
the Binder cumulant this problem is avoided because only
even powers of ms are used and they can be trivially related
to the corresponding powers of ms

z. In principle one could
also measure the x and y components of the staggered struc-
ture factor, and compute the distribution P!$ms$", but since
these are off-diagonal operators in the basis used there are
ambiguities in how to define ms

x and ms
y for a given configu-

ration in which mz
s is also measured.

III. DETERMINATION OF THE TRANSITION POINT

The location of a phase transition in the thermodynamic
limit may be determined by using finite-size scaling argu-
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I. INTRODUCTION

The deconfined quantum critical point (DQCP), which
separates the Néel antiferromagnetic (AFM) and sponta-
neously dimerized valence bond solid (VBS) phases in
(2+1)D quantum magnets, was proposed as an example of
a continuous quantum phase transition outside the conven-
tional Landau-Ginzburg-Wilson (LGW) paradigm [1,2]. The
AFM and VBS order parameters both vanish continuously
and simultaneously at the DQCP. This scenario is gener-
ically not expected within the standard LGW description,
where such a case should be realizable only by fine tun-
ing two separate transitions to coincide at special multicrit-
ical points. Multiple field-theory descriptions [1–15] have
been proposed for the DQCP, which are believed to be
equivalent (or dual) to each other at low energy, including
the noncompact CP1 (NCCP1) theory [1,2] and some ver-
sions of the quantum electrodynamics (QED) and quantum
chromodynamics (QCD) theories [13,16]. In contrast to the
LGW description, which formulates the critical theory in
terms of the order parameters directly, these gauge theory
descriptions of the DQCP are formulated in terms of de-
confined degrees of freedom (fractionalized particles and
emergent gauge fields). The order parameters on either side
of the DQCP can be expressed as different compositions of
the fractionalized particles or gauge fluctuations within the
same theoretical framework. This mechanism captures the

intertwinement of the AFM and VBS orders and provides a
natural route beyond the LGW paradigm to a non-fine-tuned
quantum critical point between the two distinct symmetry-
breaking phases.

With the increasing understanding of the nature of the
DQCP ground-state phase transition, the time is now ripe to
address direct connections to experiments, where the most
detailed signatures of deconfinement can be expected in dy-
namical properties. Based on the physical picture of decon-
finement of the experimentally accessible spin excitation into
two spinons at the DQCP, a broad continuum is expected in the
spectral function. This is in sharp contrast to an LGW transi-
tion of the AFM state into a nondegenerate (trivial) quantum
paramagnet, where the spin wave (magnon) picture remains
approximately valid at the critical point (as a very sharp edge
of the critical continuum, albeit the magnon quasiparticle
weight is highly damped to zero) [17]. The aim of this paper
is to present a comprehensive numerical study of the signature
of magnon fractionalization in the dynamic spin-structure
factor S(q,ω) of a (2+1)D square-lattice spin model hosting
a DQCP, accompanied with a detailed field theory analysis of
every low-energy continuum that appears in the spectrum.

Following the DQCP proposal, intensive theoretical and
numerical efforts have been invested in the possibility of
unambiguously observing such critical points in lattice mod-
els. In the traditional frustrated quantum spin models that
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The deconfined quantum critical point (DQCP), which
separates the Néel antiferromagnetic (AFM) and sponta-
neously dimerized valence bond solid (VBS) phases in
(2+1)D quantum magnets, was proposed as an example of
a continuous quantum phase transition outside the conven-
tional Landau-Ginzburg-Wilson (LGW) paradigm [1,2]. The
AFM and VBS order parameters both vanish continuously
and simultaneously at the DQCP. This scenario is gener-
ically not expected within the standard LGW description,
where such a case should be realizable only by fine tun-
ing two separate transitions to coincide at special multicrit-
ical points. Multiple field-theory descriptions [1–15] have
been proposed for the DQCP, which are believed to be
equivalent (or dual) to each other at low energy, including
the noncompact CP1 (NCCP1) theory [1,2] and some ver-
sions of the quantum electrodynamics (QED) and quantum
chromodynamics (QCD) theories [13,16]. In contrast to the
LGW description, which formulates the critical theory in
terms of the order parameters directly, these gauge theory
descriptions of the DQCP are formulated in terms of de-
confined degrees of freedom (fractionalized particles and
emergent gauge fields). The order parameters on either side
of the DQCP can be expressed as different compositions of
the fractionalized particles or gauge fluctuations within the
same theoretical framework. This mechanism captures the

intertwinement of the AFM and VBS orders and provides a
natural route beyond the LGW paradigm to a non-fine-tuned
quantum critical point between the two distinct symmetry-
breaking phases.

With the increasing understanding of the nature of the
DQCP ground-state phase transition, the time is now ripe to
address direct connections to experiments, where the most
detailed signatures of deconfinement can be expected in dy-
namical properties. Based on the physical picture of decon-
finement of the experimentally accessible spin excitation into
two spinons at the DQCP, a broad continuum is expected in the
spectral function. This is in sharp contrast to an LGW transi-
tion of the AFM state into a nondegenerate (trivial) quantum
paramagnet, where the spin wave (magnon) picture remains
approximately valid at the critical point (as a very sharp edge
of the critical continuum, albeit the magnon quasiparticle
weight is highly damped to zero) [17]. The aim of this paper
is to present a comprehensive numerical study of the signature
of magnon fractionalization in the dynamic spin-structure
factor S(q,ω) of a (2+1)D square-lattice spin model hosting
a DQCP, accompanied with a detailed field theory analysis of
every low-energy continuum that appears in the spectrum.

Following the DQCP proposal, intensive theoretical and
numerical efforts have been invested in the possibility of
unambiguously observing such critical points in lattice mod-
els. In the traditional frustrated quantum spin models that
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exhibit VBS phases, sign problems in quantum Monte Carlo
(QMC) simulations and other technical difficulties in methods
such as the density matrix renormalization group and tensor
product states prohibit studies of the large system sizes needed
to reliably characterize critical points. However, for generic
and universal properties, other “designer hamiltonians” [18]
can be constructed that do not suffer from QMC sign problems
but still host the desired phases. Many such studies have
pointed to the existence of the DQCP in both two-dimensional
(2D) quantum magnets [19–28] and related (through the
path integral) three-dimensional (3D) classical models
[29–32]. In these studies it has been observed, e.g., that
the order parameters have unusually large anomalous dimen-
sions [21,24,25,27,28,31], which is an important deviation
from the common 3D Wilson-Fisher fixed point. More con-
crete evidence of deconfinement has been found by directly
probing the length scale associated with the fractionalization
process [25,33] and from thermodynamics [34]. However, the
experimentally most direct signatures of a DQCP, the dynamic
spin structure factor S(q,ω), have so far not been calculated
in the case of electronic spins (while there are already some
intriguing results for an SU(3) symmetric model [35]). His-
torically, in quasi-1D systems, the experimentally observed
spinon continuum, which agrees with calculations for the
spin-1/2 Heisenberg chain, was crucial in establishing spinon
deconfinement. Indications of fractionalized magnetic exci-
tations in 2D quantum spin liquids have also been similarly
observed [36–42]. Given that S(q,ω) is detectable by multiple
experimental techniques, including inelastic neutron scatter-
ing (INS), resonant inelastic x-ray scattering (RIXS), and
nuclear magnetic resonance (NMR), identifying the distinct
signatures of fractionalization in S(q,ω) at the DQCP will
provide a useful guide to experimental searches for DQCPs in
magnetic materials. Since the qualitative features of S(q,ω)
remain the same in the entire critical “fan” extending from the
critical point to finite temperature, the dynamical signatures
proposed in our study should be robustly observed even if
the experimental parameter is slightly off the critical point.
Moreover, due to a recently investigated duality relation be-
tween the DQCP and a certain bosonic topological transitions
(BTTs) in fermion systems [13,27,28], similar dynamical
signature of fractionalization is also expected in interaction-
driven topological phase transitions. Therefore, our work also
can impact the ongoing efforts in finding experimentally ac-
cessible signatures of topological phase transitions in strongly
correlated electron systems.

In this paper, we will investigate a U(1) version of the
DQCP on the square lattice, with the easy-plane J -Q (EPJQ)
model defined by the Hamiltonian

HJQ = −J
∑

⟨ij⟩

(
Pij + !Sz

i S
z
j

)
− Q

∑

⟨ijklmn⟩
PijPklPmn, (1)

where Si denotes the spin-1/2 operator on each site i and
Pij = 1

4 − Si · Sj is the singlet-projection operator on the link
ij (between nearest-neighbor sites). The two- and six-spin
terms are both illustrated in Fig. 1(a). For ! = 0, this is the
previously studied SU(2)spin J -Q3 model [21,22,43], which
is an extension of the original J -Q model (or J -Q2 model)
[20], with two instead of three singlet projectors in the Q

AFXY DQCP VBS

EPJQ

J
i j
k l

m n
Q

q = Q
J+Q

(a)

AFXY 3D XY Columnar

EPJ1 J2

J1

J2

g = J2
J1

(b)

= 1

2
−

FIG. 1. The two lattice models considered in this paper and their
schematic phase diagrams. (a) The EPJQ model with two-spin (J )
and six-spin (Q) couplings preserve all symmetries of the square
lattice. We define the tuning parameter chosen as q = Q/(J + Q).
The antiferromagnetic XY (AFXY) phase is separated by the DQCP
at q = qc from the columnar VBS phase, which spontaneously
breaks lattice symmetries but which has significant fluctuations of
the fourfold degenerate dimer pattern close to qc, as indicated. (b)
The EPJ1J2 model, with the tuning parameter g = J2/J1. The J2 term
explicitly pins a columnar dimer pattern and drives the AFXY phase
to the spin-disordered trivial (nondegenerate) columnar singlet phase
(without spontaneous lattice symmetry breaking) through the 3DXY
transition at g = gc.

terms. With three singlet projectors, we can go further into the
VBS state while still keeping J > 0 in sign-free QMC simu-
lations. The term !Sz

i S
z
j with ! ∈ (0, 1] introduces the easy-

plane anisotropy that breaks the SU(2)spin symmetry down to
U(1)spin explicitly. It has been shown [27] that when ! = 1/2
(which is the value we will use here), the EPJQ model exhibits
a direct and continuous quantum phase transition between the
antiferromagnetic XY (AFXY) and VBS phases, as illustrated
in Fig. 1(a), realizing the easy-plane DQCP (while for larger
anisotropy, such as ! = 1, the transition becomes first-order).
The XY order parameter has a U(1)spin rotational symmetry
and the VBS order parameter exhibits an emergent U(1)VBS
symmetry as the DQCP is approached, and, as argued based
on dualities [13], the two U(1) symmetries combine to form
an emergent higher O(4) symmetry exactly at the DQCP.

To make a comparison with the EPJQ model, we will also
study an easy-plane J1-J2 (EPJ1J2) model,

HJ1J2 = J1

∑

⟨i,j⟩′
Dij + J2

∑

⟨i,j⟩′′
Dij , (2)

where Dij = Sx
i Sx

j + S
y
i S

y
j + !Sz

i S
z
j . The J1 bonds ⟨i, j ⟩′ and

the J2 bonds ⟨i, j ⟩′′ correspond to the thin black and the thick
blue bonds in Fig. 1(b), respectively. Since the Hamiltonian
explicitly breaks the lattice symmetry, with the J2 terms pin-
ning a columnar pattern of bonds with higher singlet density,
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FIG. 6. The (bare) dynamic spin structure factor S0(q, ω) of the
free fermion π -flux state.

fermionic partons fi = (fi↑, fi↓)ᵀ at each site i as

Si = 1
2
f

†
i σfi. (12)

An SU(2) gauge structure emerges in association with the
above fractionalization scheme, but at the mean-field treat-
ment we will ignore the SU(2) gauge fluctuation completely
and place the fermionic parton in the square-lattice π -
flux state [4,5,60]. Thus, we use the following mean-field
Hamiltonian

HMF =
∑

i

i(f †
i+x̂fi + (−)xf †

i+ŷfi ) + H.c., (13)

such that each plaquette hosts a π -flux for the fermionic
parton. Four Dirac fermions are obtained at low energy. The
fermionic parton dispersion is simply given by

ϵk = 2(sin2(kx ) + sin2(ky ))1/2. (14)

It is interesting to find that the lower edge of the DQCP
spectra follows this simple dispersion relation quite nicely
without any adjustable parameters beyond an overall velocity,
as shown in Figs. 5(a) and 5(c), which justifies the π -flux
state as our starting point. The upper edge of the two-parton
continuum can also be obtained from ϵk by adding up single-
parton energies. This gives a rough estimate for the energy
range of the parton continuum, which is also consistent with
the numerical observation in Figs. 5(a) and 5(c).

Given Eqs. (12) and (13), it is straightforward to calculate
the spin-spin correlation function,

Ga
0 (r i − rj , t ) =

〈
MF

∣∣eiHMFt Sa
i e−iHMFt Sb

j

∣∣MF
〉
, (15)

on the free fermion ground state |MF⟩ of the mean-field
Hamiltonian HMF. Then we can obtain the dynamic spin
susceptibility,

χa
0 (q,ω) =

∫
dt

∑

i

Ga
0 (r i , t )eiωt−iq·r i , (16)

from which we obtain the dynamic spin-structure factor,

Sa
0 (q,ω) = Imχa

0 (q,ω + i0+), (17)

graphed in Fig. 6. This spectral function was also calculated
in Ref. [35] previously. One can see that S0 already captures
the gapless continua at momenta (0, 0), (π, 0), (0,π ), and
(π,π ) in all spin channels. Because the mean-field Hamilto-
nian HMF is symmetric under SU(2)spin, there is no difference
between Sx

0 (q,ω) and Sz
0 (q,ω). The easy-plane anisotropy

only enters the parton theory starting from four-fermion in-
teractions, since it is expressed in the SO(5) symmetric tensor
representation that cannot be written down at the quadratic
level. Therefore, the anisotropy is not manifest in the mean-
field approximation, where the interaction effects are ignored.
This observation provides a natural explanation for the strik-
ingly similar spectra of Sx (q,ω) and Sz(q,ω) seen in the
numerical results in Sec. III at the DQCP, despite of the
presence of a rather large anisotropy ! = 1/2 in the EPJQ
model.

The gauge fluctuations are expected to further renormalize
the spectrum and enhance the critical fluctuations around
(π,π ), which are not taken into account in the simple mean-
field theory presented in Fig. 6. While including the gauge
interactions in the calculation is highly nontrivial and beyond
the scope of this work, we next discuss a phenomenological
model that captures the spectral weight enhancement, and
leave more extensive calculations to future work. Let us
consider modeling the interaction effect phenomenologically
by a random phase approximation (RPA) correction,

χa (q,ω) = χa
0 (q,ω)

1 + Jaχ
a
0 (q,ω)

, (18)

where a = x, y, z. The coupling Ja parametrize the strength
of the spin-spin interaction in the Sa channel. We can intro-
duce the easy-plane anisotropy simply by considering Jx =
Jy > Jz. We found that the (π,π ) fluctuation is indeed en-
hanced by the interaction Ja . The resulting RPA corrected
spectral functions are already shown in Figs. 5(b) and 5(d),
with Jx tuned to the magnetic ordering critical point and
Jz = Jx/2.1 Compared to Fig. 6, the spin spectra in Figs. 5(b)
and 5(d) are much improved by the interaction effect. Our
phenomenological study combined with the QMC-SAC result
demonstrates that the π -flux state fermionic parton with in-
teraction accounts well for the overall features of the DQCP
spectra in both Sx and Sz channels, which is consistent with
the expectations from the Nf = 2 QCD or Nf = 4 QED
theories. An interesting open problem is a systematic route to
incorporating the effects of gauge fluctuations in calculating
the spin-excitation spectrum.

V. DISCUSSION

In this work, we have demonstrated dynamical signatures
of fractionalization at the DQCP in a planar, U(1), quan-
tum magnet by computing both the in-plane and out-of-
plane dynamic spin structure factors at low temperature. By
contrasting with analogous results for a conventional LGW
critical point, we explicitly observe how fractionalization of
the critical magnon into two spinons is manifested by a
large continuum, in sharp contrast to a much less prominent
continuum due to conventional critical quantum fluctuations
at the ordinary 3DXY transition. We also discovered several

1Although such a Grose-Neveu critical point is different from the
DQCP, we only use it to provide a rough estimate of the spectral
features close to a magnetic ordered phase. We do not claim that the
criticality of DQCP can be correctly understood by our mean field +
RPA approach.
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FIG. 6. The (bare) dynamic spin structure factor S0(q, ω) of the
free fermion π -flux state.

fermionic partons fi = (fi↑, fi↓)ᵀ at each site i as

Si = 1
2
f

†
i σfi. (12)

An SU(2) gauge structure emerges in association with the
above fractionalization scheme, but at the mean-field treat-
ment we will ignore the SU(2) gauge fluctuation completely
and place the fermionic parton in the square-lattice π -
flux state [4,5,60]. Thus, we use the following mean-field
Hamiltonian

HMF =
∑

i

i(f †
i+x̂fi + (−)xf †

i+ŷfi ) + H.c., (13)

such that each plaquette hosts a π -flux for the fermionic
parton. Four Dirac fermions are obtained at low energy. The
fermionic parton dispersion is simply given by

ϵk = 2(sin2(kx ) + sin2(ky ))1/2. (14)

It is interesting to find that the lower edge of the DQCP
spectra follows this simple dispersion relation quite nicely
without any adjustable parameters beyond an overall velocity,
as shown in Figs. 5(a) and 5(c), which justifies the π -flux
state as our starting point. The upper edge of the two-parton
continuum can also be obtained from ϵk by adding up single-
parton energies. This gives a rough estimate for the energy
range of the parton continuum, which is also consistent with
the numerical observation in Figs. 5(a) and 5(c).

Given Eqs. (12) and (13), it is straightforward to calculate
the spin-spin correlation function,

Ga
0 (r i − rj , t ) =

〈
MF

∣∣eiHMFt Sa
i e−iHMFt Sb

j

∣∣MF
〉
, (15)

on the free fermion ground state |MF⟩ of the mean-field
Hamiltonian HMF. Then we can obtain the dynamic spin
susceptibility,

χa
0 (q,ω) =

∫
dt

∑

i

Ga
0 (r i , t )eiωt−iq·r i , (16)

from which we obtain the dynamic spin-structure factor,

Sa
0 (q,ω) = Imχa

0 (q,ω + i0+), (17)

graphed in Fig. 6. This spectral function was also calculated
in Ref. [35] previously. One can see that S0 already captures
the gapless continua at momenta (0, 0), (π, 0), (0,π ), and
(π,π ) in all spin channels. Because the mean-field Hamilto-
nian HMF is symmetric under SU(2)spin, there is no difference
between Sx

0 (q,ω) and Sz
0 (q,ω). The easy-plane anisotropy

only enters the parton theory starting from four-fermion in-
teractions, since it is expressed in the SO(5) symmetric tensor
representation that cannot be written down at the quadratic
level. Therefore, the anisotropy is not manifest in the mean-
field approximation, where the interaction effects are ignored.
This observation provides a natural explanation for the strik-
ingly similar spectra of Sx (q,ω) and Sz(q,ω) seen in the
numerical results in Sec. III at the DQCP, despite of the
presence of a rather large anisotropy ! = 1/2 in the EPJQ
model.

The gauge fluctuations are expected to further renormalize
the spectrum and enhance the critical fluctuations around
(π,π ), which are not taken into account in the simple mean-
field theory presented in Fig. 6. While including the gauge
interactions in the calculation is highly nontrivial and beyond
the scope of this work, we next discuss a phenomenological
model that captures the spectral weight enhancement, and
leave more extensive calculations to future work. Let us
consider modeling the interaction effect phenomenologically
by a random phase approximation (RPA) correction,

χa (q,ω) = χa
0 (q,ω)

1 + Jaχ
a
0 (q,ω)

, (18)

where a = x, y, z. The coupling Ja parametrize the strength
of the spin-spin interaction in the Sa channel. We can intro-
duce the easy-plane anisotropy simply by considering Jx =
Jy > Jz. We found that the (π,π ) fluctuation is indeed en-
hanced by the interaction Ja . The resulting RPA corrected
spectral functions are already shown in Figs. 5(b) and 5(d),
with Jx tuned to the magnetic ordering critical point and
Jz = Jx/2.1 Compared to Fig. 6, the spin spectra in Figs. 5(b)
and 5(d) are much improved by the interaction effect. Our
phenomenological study combined with the QMC-SAC result
demonstrates that the π -flux state fermionic parton with in-
teraction accounts well for the overall features of the DQCP
spectra in both Sx and Sz channels, which is consistent with
the expectations from the Nf = 2 QCD or Nf = 4 QED
theories. An interesting open problem is a systematic route to
incorporating the effects of gauge fluctuations in calculating
the spin-excitation spectrum.

V. DISCUSSION

In this work, we have demonstrated dynamical signatures
of fractionalization at the DQCP in a planar, U(1), quan-
tum magnet by computing both the in-plane and out-of-
plane dynamic spin structure factors at low temperature. By
contrasting with analogous results for a conventional LGW
critical point, we explicitly observe how fractionalization of
the critical magnon into two spinons is manifested by a
large continuum, in sharp contrast to a much less prominent
continuum due to conventional critical quantum fluctuations
at the ordinary 3DXY transition. We also discovered several

1Although such a Grose-Neveu critical point is different from the
DQCP, we only use it to provide a rough estimate of the spectral
features close to a magnetic ordered phase. We do not claim that the
criticality of DQCP can be correctly understood by our mean field +
RPA approach.
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of the conserved current nx∂yvy − vy∂ynx associated with the
emergent O(4) symmetry (in the XY-VBS rotation channel),
which is a unique feature of the easy-plane DQCP. The gap-
less point (π, 0) also follows naturally, because the XY-VBS
current can decay into the nx continuum at (π,π ) and the
vy continuum at (0,π ), such that the momenta add up to
(π, 0). A similar interpretation applies to the Sz channel as
well. The only difference is that the spin-VBS current there
is not conserved, but is nevertheless still critical. The (π, 0)
continua exhibit a remarkable spatial anisotropy. On the edge
of the continua, the spectral weight is always larger along
(π, 0)-(π,π ) line and smaller along (π, 0)-(0, 0) line. This
spatial anisotropy is a signature of current-current correlation,
which originates from the nontrivial ω2 − q2

x form factor on
the numerator as given in Eqs. (8) and (9). The (0,π ) continua
will also exhibit the spatial anisotropy but with the form
factor rotated by π/2 to ω2 − q2

y . These “shadow” continua
allow us to probe the critical VBS fluctuation in the spin
excitation spectrum, which is another remarkable hallmark of
the DQCP.

As discussed in Sec. I, the spectral features uncovered here
are relatively easy to probe in INS or RIXS experiments,
hence paving way for observation of the seeming ephemeral
DQCP in real materials. These features are also robust even
if the parameter is slightly off the critical point. Our simu-
lation itself serves as a “numerical proof” of this statement.
As we measure the DQCP spectra at q = 0.6 of the EPJQ
model [not exactly at its critical point qc = 0.6197(2)], we
still observe all the low-energy spectral features consistent
with the field theory qualitatively. This demonstrates that the
dynamical signatures do not require fine-tuning and should
be easier to measure in experiments. Whereas the previous
studies of DQCP mainly focused on the critical scaling and
exponents from the theoretical perspective, these quantities
require more fine-tuning and are rather difficult to measure
in experiments. Even if the DQCP turns out to be first order
(as expected if the anisotropy is strong) or becomes unsta-
ble against other intermediate phases at low temperature, its
distinct spectral features over a large range of frequencies
can still be robustly observed above the low-energy scale
at which the potentially other transitions of phases become
manifest.

Finally, the spectra of the EPJQ model in the VBS phase
is shown in Figs. 3(c) and 3(f). Their EPJ1J2 counterpart
in the columnar singlet phase is shown in Figs. 4(c) and
4(f). All spin excitations are gapped in both Sx (q,ω) and
Sz(q,ω) for both models. For the EPJQ model, the spectra
in the VBS phase still maintain broad continua above the gap,
in contrast to the much sharper spectra of gapped magnons
in the EPJ1J2 columnar phase. This might be related to the
two-length-scale phenomena, which is inherent to the DQCP,
persisting in the VBS phase of the standard JQ model [25],
namely, the domain wall size of the VBS order may still
remain large while the spin correlation length is small. The
domain wall size of the VBS order is directly related to the
confinement length scale of the spinons [2]. This implies that,
although the spin-correlation length is finite, the confinement
length scale of the spinon can still be large, which leads to
the large continuum above the spin gap in the spin-excitation
spectrum.

FIG. 5. Comparison of the DQCP dynamic spin structure factors
between numerics [(a) Sx channel and (c) Sz channel] and theory [(b)
Sx channel and (d) Sz channel]. The color map is the same as that
in Fig. 3. The dashed curves trace out the upper and low edges of
the two-parton continuum, assuming free fermionic partons with the
π -flux state dispersion ϵk in Eq. (14). The lower edge simply follows
ϵk and the upper edge is given by the maximal two-parton excitation
energy Eq = maxk∈BZ |ϵk + ϵq−k|. The suppressed spectral weight
near (0,0) can be captured by matrix element effects.

IV. PARTON MEAN FIELD THEORY FOR
THE DQCP SPECTRA

In this section, we provide theoretical account for the over-
all shape of the dynamic spin structure factors Sx (q,ω) and
Sz(q,ω) observed at the DQCP. The easy-plane DQCP admits
several candidate field theory descriptions, including the easy-
plane NCCP1 theory [1–3], the Nf = 2 noncompact QED3
theory [6,7,9–13], and the Nf = 2 QCD3 theory [5,13] (or
its Higgs descendent Nf = 4 compact QED3 [4,6,13,15,16])
with additional anisotropy in the SO(5) symmetric tensor
representation. Although all theories are believed to provide
equivalent descriptions of the low-energy physics under pro-
posed duality relations [13], some of them are more conve-
nient to handle by mean-field treatment than others. Among
these theories, we found that the Nf = 2 QCD (or Nf = 4
QED) theory gives the best account for the overall spectral
features at the mean-field level. Because, in these theories,
both the AFM and VBS order parameters are treated on equal
footing as fermionic parton bilinears, it is already possible
to approximately capture both spin and dimer fluctuations at
the free fermion level (ignoring gauge fluctuations and local
interactions). Figure 5 shows the comparison of the dynamics
spin-structure factors between numerics and theory, based on
the parton mean-field theory. The overall features match quite
nicely. However, if similar mean-field treatment were applied
to other dual field theories such as the NCCP1 or the Nf = 2
noncompact QED3 theories, some low-energy continua that
involve gauge monopole excitations will be missing, as the
gauge fluctuation can not be captured at the mean-field level.

Let us start with the parton construction on the square
lattice [60], where the spin operator Si is fractionalized into
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FIG. 6. The (bare) dynamic spin structure factor S0(q, ω) of the
free fermion π -flux state.

fermionic partons fi = (fi↑, fi↓)ᵀ at each site i as

Si = 1
2
f

†
i σfi. (12)

An SU(2) gauge structure emerges in association with the
above fractionalization scheme, but at the mean-field treat-
ment we will ignore the SU(2) gauge fluctuation completely
and place the fermionic parton in the square-lattice π -
flux state [4,5,60]. Thus, we use the following mean-field
Hamiltonian

HMF =
∑

i

i(f †
i+x̂fi + (−)xf †

i+ŷfi ) + H.c., (13)

such that each plaquette hosts a π -flux for the fermionic
parton. Four Dirac fermions are obtained at low energy. The
fermionic parton dispersion is simply given by

ϵk = 2(sin2(kx ) + sin2(ky ))1/2. (14)

It is interesting to find that the lower edge of the DQCP
spectra follows this simple dispersion relation quite nicely
without any adjustable parameters beyond an overall velocity,
as shown in Figs. 5(a) and 5(c), which justifies the π -flux
state as our starting point. The upper edge of the two-parton
continuum can also be obtained from ϵk by adding up single-
parton energies. This gives a rough estimate for the energy
range of the parton continuum, which is also consistent with
the numerical observation in Figs. 5(a) and 5(c).

Given Eqs. (12) and (13), it is straightforward to calculate
the spin-spin correlation function,

Ga
0 (r i − rj , t ) =

〈
MF

∣∣eiHMFt Sa
i e−iHMFt Sb

j

∣∣MF
〉
, (15)

on the free fermion ground state |MF⟩ of the mean-field
Hamiltonian HMF. Then we can obtain the dynamic spin
susceptibility,

χa
0 (q,ω) =

∫
dt

∑

i

Ga
0 (r i , t )eiωt−iq·r i , (16)

from which we obtain the dynamic spin-structure factor,

Sa
0 (q,ω) = Imχa

0 (q,ω + i0+), (17)

graphed in Fig. 6. This spectral function was also calculated
in Ref. [35] previously. One can see that S0 already captures
the gapless continua at momenta (0, 0), (π, 0), (0,π ), and
(π,π ) in all spin channels. Because the mean-field Hamilto-
nian HMF is symmetric under SU(2)spin, there is no difference
between Sx

0 (q,ω) and Sz
0 (q,ω). The easy-plane anisotropy

only enters the parton theory starting from four-fermion in-
teractions, since it is expressed in the SO(5) symmetric tensor
representation that cannot be written down at the quadratic
level. Therefore, the anisotropy is not manifest in the mean-
field approximation, where the interaction effects are ignored.
This observation provides a natural explanation for the strik-
ingly similar spectra of Sx (q,ω) and Sz(q,ω) seen in the
numerical results in Sec. III at the DQCP, despite of the
presence of a rather large anisotropy ! = 1/2 in the EPJQ
model.

The gauge fluctuations are expected to further renormalize
the spectrum and enhance the critical fluctuations around
(π,π ), which are not taken into account in the simple mean-
field theory presented in Fig. 6. While including the gauge
interactions in the calculation is highly nontrivial and beyond
the scope of this work, we next discuss a phenomenological
model that captures the spectral weight enhancement, and
leave more extensive calculations to future work. Let us
consider modeling the interaction effect phenomenologically
by a random phase approximation (RPA) correction,

χa (q,ω) = χa
0 (q,ω)

1 + Jaχ
a
0 (q,ω)

, (18)

where a = x, y, z. The coupling Ja parametrize the strength
of the spin-spin interaction in the Sa channel. We can intro-
duce the easy-plane anisotropy simply by considering Jx =
Jy > Jz. We found that the (π,π ) fluctuation is indeed en-
hanced by the interaction Ja . The resulting RPA corrected
spectral functions are already shown in Figs. 5(b) and 5(d),
with Jx tuned to the magnetic ordering critical point and
Jz = Jx/2.1 Compared to Fig. 6, the spin spectra in Figs. 5(b)
and 5(d) are much improved by the interaction effect. Our
phenomenological study combined with the QMC-SAC result
demonstrates that the π -flux state fermionic parton with in-
teraction accounts well for the overall features of the DQCP
spectra in both Sx and Sz channels, which is consistent with
the expectations from the Nf = 2 QCD or Nf = 4 QED
theories. An interesting open problem is a systematic route to
incorporating the effects of gauge fluctuations in calculating
the spin-excitation spectrum.

V. DISCUSSION

In this work, we have demonstrated dynamical signatures
of fractionalization at the DQCP in a planar, U(1), quan-
tum magnet by computing both the in-plane and out-of-
plane dynamic spin structure factors at low temperature. By
contrasting with analogous results for a conventional LGW
critical point, we explicitly observe how fractionalization of
the critical magnon into two spinons is manifested by a
large continuum, in sharp contrast to a much less prominent
continuum due to conventional critical quantum fluctuations
at the ordinary 3DXY transition. We also discovered several

1Although such a Grose-Neveu critical point is different from the
DQCP, we only use it to provide a rough estimate of the spectral
features close to a magnetic ordered phase. We do not claim that the
criticality of DQCP can be correctly understood by our mean field +
RPA approach.
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Figure 1 | Phase diagram of SrCu2(BO3)2 as a function of pressure and temperature, including excitation energies. The blue region is the dimer phase, the
red region the newly identified plaquette phase, and the green region is the antiferromagnetic phase where Q= (1, 0, 0) magnetic Bragg peaks, indicated by
green squares, are observed only above 40 kbar. Circles are the triplet gap energy � at Q= (2, 0,L), diamonds are the corresponding two-triplet bound
state (BT) energy EBT and the star is a new low-energy excitation (LE) observed at Q= (1, 0, 1). The magenta line shows the tetragonal to monoclinic
structural transition. The procedure used to obtain it and its error bars is described in ref. 28. The corresponding monoclinic space groups are
indicated29,30. The dashed line in the plaquette phase is the extrapolated energy gap using ref. 9. The insets depict the corresponding ground states. All of
the experimental points are from this study.

it directly modifies the atomic distances and bridging angles,
such as Cu–O–Cu and thus the magnetic exchange integrals.
Quantum phase transitions were successfully discovered in dimer
magnets following application of pressure22. However high-
pressure measurements remain technically challenging. In the
case of SrCu2(BO3)2, magnetic susceptibility23 and electron spin
resonance24 tomoderate pressures (p12 kbar) indicate a softening
of the gap, while the combined e�ect of pressure and field was
measured by susceptibility and NMR25. In the latter case, magnetic
order occurring at 24 kbar and 7 T on a fraction of the dimers was
proposed. In an X-ray di�raction investigation, the temperature
dependence of the lattice parameters was analysed as an indirect
proxy for the singlet–triplet gap leading to the suggestion that it
closes at 20 kbar26. At even higher pressures, neutron and X-ray
di�raction experiments observed a transition above 45 kbar from
the ambient I4̄2M tetragonal space group to monoclinic27–30.

Here we present neutron spectroscopy results, which directly
determine the pressure dependence of the gap and through
the dynamic structure factor allow us to address the nature
of the correlations. Figure 1 summarizes the phase diagram
of SrCu2(BO3)2, which we determined in this study. The exact
dimer phase survives up to 16 kbar. The gap decreases from
3meV to 2meV, but does not vanish. At 21.5 kbar, we discover
experimentally a new, intermediate phase. We identify it by its
inelastic neutron scattering spectrum as the formation of 4-spin
plaquette singlets. Above 40 kbar and below 117K we find by
neutron di�raction that AFM order appears (Supplementary Fig. 6)
while the compound probably still has tetragonal symmetry with
orthogonal dimers. Above ⇠45 kbar, a structural distortion takes
place and the symmetry becomes monoclinic, implying non-
orthogonal dimers28,29. SrCu2(BO3)2 is magnetically ordered after
the distortion, but can no longer be described appropriately by
the original Shastry–Sutherland model. The transition from 2-spin
dimer to 4-spin plaquette singlets appears to be of first order,
whereas the transition from the plaquette to the AFM phase could
be of second order and concomitant with the continuous closure of
the plaquette gap as sketched in Fig. 1 or of first order9,20.

To allow a quantitative comparison to theoretical predictions,
we establish the pressure dependence of the exchange parameters
J� (p), J 0

�
(p) and ↵(p) by measuring magnetic susceptibility �(p,T )

and fitting it using 20-site exact diagonalization. The peak in
susceptibility shifts to lower temperature as pressure increases up
to 10 kbar (Fig. 2a). This suggests a reduction of the spin gap.
We parametrize the pressure dependence of J and J 0 by linear fits
(Fig. 2b). J has the larger slope so that ↵ increases with pressure.
Having established ↵(p) we see that the critical pressure lying
between 16 kbar and 21.5 kbar corresponds to 0.66< ↵c < 0.68, in
good agreement with theoretical predictions4,12,20.

A selection from the neutron spectra leading to the phase
diagram is presented in Fig. 3; additional spectra at various
momenta transfer Q are shown in the Supplementary Information.
Up to 16 kbar an essentially Q-independent linear decrease of the
gap energy is observed (Figs 1 and 3a). The measurement of the
dispersion and of the structure factor in that pressure range shows
that the spin system is still in its original ‘exact dimer’ phase.
The gap value and the integrated intensity decrease linearly with
pressure. The dispersion increases slightly with pressure, which
can be understood by the increase of ↵ (ref. 6). Interestingly, the
bound triplet energy EBT softens twice as fast, implying that the
triplet binding energy, �=2��EBT =1.19(2)meV, remains quasi
pressure independent. This results in the unusual situation that
extrapolating the softenings, the bound triplet would reach zero
energy before the single triplet, and hence that, before that point,
exciting a bound state of two triplets would cost less energy than
exciting one triplet.

SrCu2(BO3)2 enters a new quantum phase between 16 and
21.5 kbar, where a discontinuity in the gap softening occurs. The
inelastic neutron scattering peaks corresponding to the gap energy,
�'2meV, at these two pressures remain unchanged (Fig. 3b). The
discontinuity is also visible in the intensities (Fig. 3d), where the
linear decrease with pressure exhibits an abrupt halt above 16 kbar.

The transition to a new quantum phase is further asserted by a
new type of excitation suddenly appearing at the higher pressure
(Fig. 3b,c). We label this new low-energy excitation LE. LE is clearly
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M. Boehm13, M. Jiménez–Ruiz13, A. Schneidewind14, E. Pomjakushina15, M. Stingaciu15, K. Conder15

and H. M. Rønnow1

The study of interacting spin systems is of fundamental
importance for modern condensed-matter physics. On frus-
trated lattices, magnetic exchange interactions cannot be
simultaneously satisfied, and often give rise to compet-
ing exotic ground states1. The frustrated two-dimensional
Shastry–Sutherland lattice2 realized by SrCu2(BO3)2 (refs 3,4)
is an important test case for our understanding of quantum
magnetism. It was constructed to have an exactly solvable
2-spin dimer singlet ground state within a certain range of
exchange parameters and frustration. While the exact dimer
state and the antiferromagnetic order at both ends of thephase
diagram arewell known, the ground state and spin correlations
in the intermediate frustration range have been widely de-
bated2,4–14. We report here the first experimental identification
of the conjectured plaquette singlet intermediate phase in
SrCu2(BO3)2. It isobservedby inelasticneutronscatteringafter
pressure tuning to 21.5 kbar. This gapped singlet state leads
to a transition to long-range antiferromagnetic order above
40 kbar, consistentwith the existenceof a deconfinedquantum
critical point.

In the field of quantum magnetism, geometrically frustrated
lattices generally imply major di�culties in analytical and
numerical studies. For very few particular topologies, however, it
has been shown that the ground state, at least, can be calculated
exactly as for the Majumdar–Ghosh model15 that solves the J1 � J2
zigzag chain when J1 = 2J2. In two dimensions, the Shastry–
Sutherland model2 consisting of an orthogonal dimer network of
spin S= 1/2 was developed to be exactly solvable. For an inter-
dimer J 0 to intra-dimer J exchange ratio ↵ ⌘ J 0/J 0.5 the ground
state is a product of singlets on the strong bond J . Numerical
calculations have further shown that this remains valid up to
↵⇠0.7 and for small values of three-dimensional (3D) couplings
J 00 between dimer layers. At the other end, for ⇠0.9  ↵  1
the system approaches the well-known 2D square lattice, which

is antiferromagnetically (AFM) ordered, albeit with significant
quantum fluctuations that are believed to include resonating
singlet correlations resulting in fractional excitations16. The phase
diagram of the Shastry–Sutherland model, both with and without
applied magnetic field, has been intensively studied by numerous
theoretical and numerical approaches4. In the presence of magnetic
field, magnetization plateaus at fractional values of the saturation
magnetization corresponding to Mott insulator phases of dimer
states, as well as possible superfluid and supersolid phases have been
extensively studied7,17–19. At zero field, themain unsolved issue is the
existence and nature of an intermediate phase for⇠0.7↵⇠0.9.
A variety of quantum phases and transitions between them have
been predicted depending on the theoretical technique used: a
direct transition from dimer singlet phase to AFM order2,6,7, or an
intermediate phase with helical order5, columnar dimers11, valence
bond crystal12 or resonating valence bond plaquettes9,10. Recent
results indicate that a plaquette singlet phase is favoured4,20. From
such a phase, which would have an additional Ising-type order
parameter, a subsequent transition to AFM order could provide a
realization of the so far elusive deconfined quantum critical point21.

The compound strontium copper borate SrCu2(BO3)2 is the only
known realization of the Shastry–Sutherland model with S= 1/2
spins4 and has thus triggered considerable attention in the field
of quantum magnetism. The spectrum of SrCu2(BO3)2 exhibits
an almost dispersionless � = 3meV gap, and a bound state of
two triplets (BT) forms at EBT ' 5meV. The unusual size and
dispersionless nature of the gap is an e�ect of the frustration that
prevents triplets from hopping up to sixth order4. The estimated
exchange parameters in the material J ⇠85K and ↵=0.635 (ref. 4)
or J ⇠ 71K and ↵ = 0.603 (ref. 8) place the compound close
to an interesting regime ↵ ⇠ 0.7 where correlations may change
dramatically at a critical point.

A precious means to tune a quantum magnet across a quantum
phase transition is the application of hydrostatic pressure as
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4-spin plaquette singlet state in the
Shastry–Sutherland compound SrCu2(BO3)2
M. E. Zayed1,2,3*, Ch. Rüegg2,4,5, J. Larrea J.1,6, A. M. Läuchli7, C. Panagopoulos8,9, S. S. Saxena8,
M. Ellerby5, D. F. McMorrow5, Th. Strässle2, S. Klotz10, G. Hamel10, R. A. Sadykov11,12, V. Pomjakushin2,
M. Boehm13, M. Jiménez–Ruiz13, A. Schneidewind14, E. Pomjakushina15, M. Stingaciu15, K. Conder15

and H. M. Rønnow1

The study of interacting spin systems is of fundamental
importance for modern condensed-matter physics. On frus-
trated lattices, magnetic exchange interactions cannot be
simultaneously satisfied, and often give rise to compet-
ing exotic ground states1. The frustrated two-dimensional
Shastry–Sutherland lattice2 realized by SrCu2(BO3)2 (refs 3,4)
is an important test case for our understanding of quantum
magnetism. It was constructed to have an exactly solvable
2-spin dimer singlet ground state within a certain range of
exchange parameters and frustration. While the exact dimer
state and the antiferromagnetic order at both ends of thephase
diagram arewell known, the ground state and spin correlations
in the intermediate frustration range have been widely de-
bated2,4–14. We report here the first experimental identification
of the conjectured plaquette singlet intermediate phase in
SrCu2(BO3)2. It isobservedby inelasticneutronscatteringafter
pressure tuning to 21.5 kbar. This gapped singlet state leads
to a transition to long-range antiferromagnetic order above
40 kbar, consistentwith the existenceof a deconfinedquantum
critical point.

In the field of quantum magnetism, geometrically frustrated
lattices generally imply major di�culties in analytical and
numerical studies. For very few particular topologies, however, it
has been shown that the ground state, at least, can be calculated
exactly as for the Majumdar–Ghosh model15 that solves the J1 � J2
zigzag chain when J1 = 2J2. In two dimensions, the Shastry–
Sutherland model2 consisting of an orthogonal dimer network of
spin S= 1/2 was developed to be exactly solvable. For an inter-
dimer J 0 to intra-dimer J exchange ratio ↵ ⌘ J 0/J 0.5 the ground
state is a product of singlets on the strong bond J . Numerical
calculations have further shown that this remains valid up to
↵⇠0.7 and for small values of three-dimensional (3D) couplings
J 00 between dimer layers. At the other end, for ⇠0.9  ↵  1
the system approaches the well-known 2D square lattice, which

is antiferromagnetically (AFM) ordered, albeit with significant
quantum fluctuations that are believed to include resonating
singlet correlations resulting in fractional excitations16. The phase
diagram of the Shastry–Sutherland model, both with and without
applied magnetic field, has been intensively studied by numerous
theoretical and numerical approaches4. In the presence of magnetic
field, magnetization plateaus at fractional values of the saturation
magnetization corresponding to Mott insulator phases of dimer
states, as well as possible superfluid and supersolid phases have been
extensively studied7,17–19. At zero field, themain unsolved issue is the
existence and nature of an intermediate phase for⇠0.7↵⇠0.9.
A variety of quantum phases and transitions between them have
been predicted depending on the theoretical technique used: a
direct transition from dimer singlet phase to AFM order2,6,7, or an
intermediate phase with helical order5, columnar dimers11, valence
bond crystal12 or resonating valence bond plaquettes9,10. Recent
results indicate that a plaquette singlet phase is favoured4,20. From
such a phase, which would have an additional Ising-type order
parameter, a subsequent transition to AFM order could provide a
realization of the so far elusive deconfined quantum critical point21.

The compound strontium copper borate SrCu2(BO3)2 is the only
known realization of the Shastry–Sutherland model with S= 1/2
spins4 and has thus triggered considerable attention in the field
of quantum magnetism. The spectrum of SrCu2(BO3)2 exhibits
an almost dispersionless � = 3meV gap, and a bound state of
two triplets (BT) forms at EBT ' 5meV. The unusual size and
dispersionless nature of the gap is an e�ect of the frustration that
prevents triplets from hopping up to sixth order4. The estimated
exchange parameters in the material J ⇠85K and ↵=0.635 (ref. 4)
or J ⇠ 71K and ↵ = 0.603 (ref. 8) place the compound close
to an interesting regime ↵ ⇠ 0.7 where correlations may change
dramatically at a critical point.

A precious means to tune a quantum magnet across a quantum
phase transition is the application of hydrostatic pressure as
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Is the PSS-AFM
transition a deconfined
quantum critical point?

Connection to experiments: Checker-board J-Q model
Plaquette-singlet 
solid (PSS) state 
- 2-fold degenerate

2
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Figure 1. In the SS model (a), AFM Heisenberg interactions of
strength J between nearest neighbors compete with interactions of
strength J

0 on the subset of next-nearest neighbors indicated by di-
agonal lines. In the CBJQ model (b) the J

0 interactions are replaced
by four-spin Q interactions defined in Eq. (1).

where singlets form on the J 0 bonds. However, for elucidating
the nature of the AFM–PSS transition, we can invoke symme-
tries and universality to propose that the two models, as well
as SrCu2(BO3)2, contain the same physics.

We use two different QMC methods to study the CPJQ
model: ground-state projection in the basis of valence bonds
[28] and the stochastic series expansion (SSE) method [29]
running at a temperature T / 1/L. Both techniques deliver
exact results to within statistical errors. The projector method
is very useful for studying spin-rotationally averaged quan-
tities, while the SSE method is more efficient for finite-size
scaling if, as is the case here, the ground state for finite L
does not have to be fully reached. We refer to the papers cited
above for technical details.

To demonstrate the PSS ground state for large g, we first
study a conventional dimer order parameter

D
µ

=
1

N

X

r

(�1)rµSz(r)Sz(r+ µ̂), µ = x, y, (2)

where the sum is over all lattice coordinates r = (r
x

, r
y

). In a
columnar symmetry-broken VBS, we have hD

x

i 6= 0, hD
y

i =
0 for x-oriented bond order and the same with x $ y for y
oriented bonds. Since a singlet plaquette can be regarded as a
resonance between two horizontal and two vertical bond pairs,
a two-fold degenerate PSS should have |hD

x

i| = |hD
y

i| 6= 0,
which on the lattice in Fig. 1 would correspond to alternat-
ing higher and lower singlet density on the plaquette rows and
columns. On a finite lattice the symmetry is not broken, and
the system fluctuates between the two possible states. We
use the SSE method to generate the probability distribution
P (D

x

, D
y

). While strictly speaking not a bona fide quantum
mechanical observable, this distribution nevertheless properly
reflects the fluctuations and symmetry properties of the sys-
tem. Results on either side of the AFM–PSS transition (the
exact location of which will be discussed below) are shown in
Fig. 2. We can clearly see the two-fold symmetry expected for
a PSS, instead of a four-fold symmetry of the columnar VBS
[9, 30] that also is compatible with the lattice.

If the Q terms are included for all plaquettes we arrive back
to the original J-Q model, whose AFM–VBS transition ap-
pears to be continuous [16]. In accord with the DQCP theory,

Figure 2. Dimer order distribution P (D
x

, D

y

) in the ground state
of the L = 96 CBJQ model at g = 0.20 (in the PSS phase) and
at g = 0.24 (in the AFM phase). The different intensities in the
two maximums at g = 0.20 reflect slow migration between the two
symmetry-broken states in the QMC simulations.

an emergent U(1) symmetry of its microscopically Z4 invari-
ant VBS order parameter has been confirmed [5, 7, 30]. The
proposed field theory description with spinons coupled to an
U(1) gauge field, the non-compact CP1 model [3, 4], there-
fore seems viable. Unusual finite-size scaling behaviors not
contained within this theory (but not contradicted by the the-
ory) have also been observed [10, 15, 16] (and interpreted by
some as a weak first-order transition [7, 8, 11]). A very in-
teresting proposal is that the O(3) symmetry of the AFM and
the emergent U(1) symmetry of the VBS may combine into
an SO(5) symmetry exactly at the critical point [20, 31]. This
would be analogous to the case of the critical S = 1/2 Heisen-
berg spin chain, which is described by a Wess-Zumino-Witten
conformal field with SO(4) symmetry [32, 33], reflecting an
emergent symmetry between the low-energy spin and bond
degrees of freedom. In a spin-planar J-Q model, it has instead
been demonstrated that the U(1) AFM order parameter and the
emergent U(1) VBS symmetry combine into a emergent O(4)
symmetry [26]. In yet another example, it was proposed that
a system with O(3) AFM order and Z2 Kekule VBS state ex-
hibits a DQCP with emergent SO(4) symmetry [27]. These
symmetries correspond exactly to those of the CBJQ model,
and we therefore pay special attention to a potential SO(4)
symmetry when analyzing the AFM–PSS transition.

Finite-size scaling.—To analyze the AFM–PSS transition,
we perform SSE calculations at T = 1/L. This way of taking
the limit T ! 0, L ! 1 is appropriate for a z = 1 quan-
tum phase transition, and also will produce the correct scaling
behavior expected at a first-order transition. We use order pa-
rameters defined solely with the Sz spin components,
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�(r)Sz(r), m
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=
2
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X

q

✓(q)P z(q), (3)

where the subscripts s (spin) and p (plaquette) mark the AFM
and PSS order parameters, respectively. In m

s

, r runs over all
N sites on the lattice and �(r) = ±1 is the staggered AFM
sign. In m

p

, we have defined an operator

P z(q) = Sz(q)Sz(q+ x̂)Sz(q+ ŷ)Sz(q+ x̂+ ŷ), (4)
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FIG. 1. (Color online) The phase diagram of the Shastry-
Sutherland model as a function of nearest-neighbor coupling J

(J ′ = 1), obtained with iPEPS. The width of a bond is proportional
to the magnitude of the bond energy, where full (dashed) lines
correspond to negative (positive) energies. The arrows in the right
panel illustrate the Néel order. In between the well-established dimer
and Néel phase we find a phase with plaquette long-range order.

The paper is organized as follows: In Sec. II we provide
a brief introduction to the iPEPS method and explain the
different simulation setups used in this work. In Sec. III
we present our simulation results, first for values of J deep
in the individual phases, followed by a detailed study of
the phase transitions. Finally, in Sec. IV we summarize our
findings. In the Appendix the scheme to treat next-nearest-
neighbor interactions in iPEPS is explained.

II. METHOD

A. Infinite projected entangled-pair states

In this section we provide a short overview of iPEPS. For
a more detailed introduction to iPEPS and tensor networks in
general we refer to Refs. 14 and 25–27.

The main idea of a tensor network ansatz is to represent
(approximate) the coefficients ci1i2...iN of a wave function,

|!⟩ =
∑

i1i2...iN

ci1i2i3...iN |i1⟩ ⊗ |i2⟩ ⊗ · · · ⊗ |iN ⟩, (2)

by a trace over a product of tensors. Here each index ik
runs over the d local basis states of a lattice site. The most
famous example is matrix product states (MPS) which form
the class of variational states underlying the density-matrix
renormalization group (DMRG) method.15 In an MPS the
coefficients are given by a trace over the product of 3-index
tensors T lr

i (with 2-index tensors at the boundaries), as for
example for a 6-site system

ci1i2i3i4i5i6 ≈
∑

j1j2j3j4j5

A
j1
i1
B

j1j2
i2

C
j2j3
i3

D
j3j4
i4

E
j4j5
i5

F
j5
i6

. (3)

Thus, each coefficient ci1i2i3i4i5i6 is given by a product of
matrices (with vectors at the open boundaries), hence the name
matrix product state. Tensor networks are most conveniently
represented graphically, as shown in Fig. 2(a) for this particular
example. Each tensor is represented by a shape with lines (legs)
attached to it, which correspond to the indices of the tensor.
A connection between two tensors implies a sum over the
corresponding index, and an open leg of a tensor corresponds
to the physical index for the local Hilbert space of a site. Each
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FIG. 2. (Color online) Graphical representation of an infinite
projected entangled-pair state (iPEPS) made of a 4 × 2 unit cell
of tensors (surrounded by thick dashed lines) which is periodically
repeated. Each sphere corresponds to a rank-5 tensor and the lines
(legs) attached to the sphere represent the indices of the tensor, as
shown on the right-hand side.

auxiliary index jk runs over D elements, which is called the
bond dimension. Thus, D controls the size of the tensors (or
matrices), i.e., the number of variational parameters of the
ansatz.

A projected entangled-pair state (PEPS)13 is a natural
generalization of a matrix product state to two dimensions.
Instead of a three-index tensor, a five-index tensor T ldru

i

is introduced for each lattice site on a two-dimensional
(square) lattice, where each tensor is connected with its four
neighboring tensors via the auxiliary indices l, d, r , u, each
having a bond dimension D. Thus, the number of variational
parameters per tensor is dD4. An infinite PEPS (iPEPS) is an
ansatz for a wave function in the thermodynamic limit.14 It is
made of a unit cell of tensors which is periodically repeated on
the infinite lattice, as depicted in Fig. 2(b). If the wave function
is translational invariant, the same tensor can be used on each
lattice site. If the state breaks translational symmetry, a larger
unit cell may be required.17 In practice, different unit cell sizes
are tested to check, which size leads to the state with lowest
variational energy.

An iPEPS with D = 1 is nothing but a site-vectorized wave
function (a product state), parametrized by vectors Ti on each
site. With increasing D the iPEPS can represent more and more
entangled states, with a scaling of the entanglement with block
size which obeys the area law of the entanglement entropy.25,28

Or in other words, with increasing D the iPEPS can take
into account more of the quantum fluctuations of the true
ground state. These quantum fluctuations may select, e.g., one
of infinitely many degenerate states in the classical D = 1
case. Thus, iPEPS provides a way to systematically study a
state as a function of D, where D controls the amount of
quantum fluctuations (or entanglement) in the system.

In order to obtain an approximate representation of the
ground state for a given Hamiltonian, the tensors need to
be optimized; i.e., the best variational parameters have to be
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Figure 1. In the SS model (a), AFM Heisenberg interactions of
strength J between nearest neighbors compete with interactions of
strength J

0 on the subset of next-nearest neighbors indicated by di-
agonal lines. In the CBJQ model (b) the J

0 interactions are replaced
by four-spin Q interactions defined in Eq. (1).

where singlets form on the J 0 bonds. However, for elucidating
the nature of the AFM–PSS transition, we can invoke symme-
tries and universality to propose that the two models, as well
as SrCu2(BO3)2, contain the same physics.

We use two different QMC methods to study the CPJQ
model: ground-state projection in the basis of valence bonds
[28] and the stochastic series expansion (SSE) method [29]
running at a temperature T / 1/L. Both techniques deliver
exact results to within statistical errors. The projector method
is very useful for studying spin-rotationally averaged quan-
tities, while the SSE method is more efficient for finite-size
scaling if, as is the case here, the ground state for finite L
does not have to be fully reached. We refer to the papers cited
above for technical details.

To demonstrate the PSS ground state for large g, we first
study a conventional dimer order parameter
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i =
0 for x-oriented bond order and the same with x $ y for y
oriented bonds. Since a singlet plaquette can be regarded as a
resonance between two horizontal and two vertical bond pairs,
a two-fold degenerate PSS should have |hD

x

i| = |hD
y

i| 6= 0,
which on the lattice in Fig. 1 would correspond to alternat-
ing higher and lower singlet density on the plaquette rows and
columns. On a finite lattice the symmetry is not broken, and
the system fluctuates between the two possible states. We
use the SSE method to generate the probability distribution
P (D

x

, D
y

). While strictly speaking not a bona fide quantum
mechanical observable, this distribution nevertheless properly
reflects the fluctuations and symmetry properties of the sys-
tem. Results on either side of the AFM–PSS transition (the
exact location of which will be discussed below) are shown in
Fig. 2. We can clearly see the two-fold symmetry expected for
a PSS, instead of a four-fold symmetry of the columnar VBS
[9, 30] that also is compatible with the lattice.

If the Q terms are included for all plaquettes we arrive back
to the original J-Q model, whose AFM–VBS transition ap-
pears to be continuous [16]. In accord with the DQCP theory,

Figure 2. Dimer order distribution P (D
x

, D

y

) in the ground state
of the L = 96 CBJQ model at g = 0.20 (in the PSS phase) and
at g = 0.24 (in the AFM phase). The different intensities in the
two maximums at g = 0.20 reflect slow migration between the two
symmetry-broken states in the QMC simulations.

an emergent U(1) symmetry of its microscopically Z4 invari-
ant VBS order parameter has been confirmed [5, 7, 30]. The
proposed field theory description with spinons coupled to an
U(1) gauge field, the non-compact CP1 model [3, 4], there-
fore seems viable. Unusual finite-size scaling behaviors not
contained within this theory (but not contradicted by the the-
ory) have also been observed [10, 15, 16] (and interpreted by
some as a weak first-order transition [7, 8, 11]). A very in-
teresting proposal is that the O(3) symmetry of the AFM and
the emergent U(1) symmetry of the VBS may combine into
an SO(5) symmetry exactly at the critical point [20, 31]. This
would be analogous to the case of the critical S = 1/2 Heisen-
berg spin chain, which is described by a Wess-Zumino-Witten
conformal field with SO(4) symmetry [32, 33], reflecting an
emergent symmetry between the low-energy spin and bond
degrees of freedom. In a spin-planar J-Q model, it has instead
been demonstrated that the U(1) AFM order parameter and the
emergent U(1) VBS symmetry combine into a emergent O(4)
symmetry [26]. In yet another example, it was proposed that
a system with O(3) AFM order and Z2 Kekule VBS state ex-
hibits a DQCP with emergent SO(4) symmetry [27]. These
symmetries correspond exactly to those of the CBJQ model,
and we therefore pay special attention to a potential SO(4)
symmetry when analyzing the AFM–PSS transition.

Finite-size scaling.—To analyze the AFM–PSS transition,
we perform SSE calculations at T = 1/L. This way of taking
the limit T ! 0, L ! 1 is appropriate for a z = 1 quan-
tum phase transition, and also will produce the correct scaling
behavior expected at a first-order transition. We use order pa-
rameters defined solely with the Sz spin components,
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where the subscripts s (spin) and p (plaquette) mark the AFM
and PSS order parameters, respectively. In m

s

, r runs over all
N sites on the lattice and �(r) = ±1 is the staggered AFM
sign. In m

p

, we have defined an operator

P z(q) = Sz(q)Sz(q+ x̂)Sz(q+ ŷ)Sz(q+ x̂+ ŷ), (4)

To study AFM-PSS transition in detail with QMC
- replace frustrated bonds by 4-spin Q terms
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Theoretical descriptions of quantum phase transitions have indicated the existence of critical points with
higher symmetry than those of the underlying Hamiltonian. Points of emergent symmetry have not been ex-
pected at discontinuous (first-order) transitions, however. Here we present such an example, where phase coex-
istence at a first-order transition takes the form of an enhanced rotational symmetry in a space of two order pa-
rameters. Using quantum Monte Carlo simulations to study a two-dimensional (2D) S = 1/2 quantum magnet
hosting the antiferromagnetic (AFM) and plaquette-singlet solid (PSS) states recently detected in SrCu2(BO3)2,
we observe that the O(3) symmetric AFM order and the Z2 symmetric PSS order form an SO(4) vector at the
transition. The control parameter (a coupling ratio) rotates the vector from the AFM sector to the PSS sector,
with the length of the combined order parameter vector always remaining non-zero. This phenomenon should
be observable in neutron scattering experiments on SrCu2(BO3)2.

Introduction.—Theoretical studies of exotic quantum states
of matter and the transitions between them can provide new
perspectives on quantum many-body physics and stimulate
experimental investigations. One example is the quantum
phase transition between Néel antiferromagnetic (AFM) and
spontaneously dimerized valence-bond solid (VBS) states in
two-dimensional (2D) quantum magnets [1, 2]. The theory of
deconfined quantum critical points (DQCPs) suggests that this
transition represents a breakdown of the Landau-Ginzburg-
Wilson (LGW) mechanism of phase transitions, as a conse-
quence of quasi-particle fractionalization [3, 4]. Over the past
decade, likely DQCPs have been identified in lattice models,
using “designer hamiltonians” constructed for their amenabil-
ity to large-scale quantum Monte Carlo (QMC) simulations
of VBS physics and the AFM–VBS transition [5–16]. How-
ever, only very recently was a potential experimental realiza-
tion of this type of DQCP reported—in the quasi-2D Shastry-
Sutherland (SS) compound SrCu2(BO3)2 under pressure [17].
Though the SS model Hamiltonian [18] is difficult to study
numerically, due to its geometrical frustration (which causes
sign problems in QMC simulations), a specific type of VBS—
a two-fold degenerate plaquette-singlet solid (PSS)—between
the known AFM and bond-singlet phases was nevertheless
demonstrated rather convincingly using a calculation with
tensor-network states [19]. Zayed et al. [17] showed that a
PSS also exists in SrCu2(BO3)2 and suggested that the AFM–
PSS transition may be a DQCP. The phase transition was not
studied in the experiment, however, and it is not immediately
clear if the two-fold degenerate PSS can support spinon de-
confinement in the same way as a four-fold degenerate VBS.
QMC studies of rectangular lattices with two-fold degenerate
VBS states point to a first-order transition [13].

Here we propose and study a sign-problem-free model that
mimics the SS compound, in the sense that it shares the same
kinds of AFM and PSS ground states. The Hamiltonian, illus-
trated in Fig. 1 along with the SS model, is a new member in
the “J-Q” family of Hamiltonians [5], with standard antifer-
romagnetic Heisenberg exchange of strength J supplemented
by four-spin interactions of strength Q that weaken and even-

tually destroy the AFM order. Our QMC simulations demon-
strate a quantum phase transition of a new kind, where the
O(3) symmetry of the AFM order parameter and the Z2 sym-
metry of the PSS order combine into an SO(4) (pseudo)vector,
even though no such large symmetry is apparent in the Hamil-
tonian. Non-LGW transitions with emergent higher symme-
tries have been intensely investigated during the past few years
[20–27], but, to our knowledge, always in the context of criti-
cal points, where the magnitude of the order parameter(s) van-
ishes. In the case discussed here, the order parameters exhibit
discontinuities, but the transition is not a conventional first-
order one. We show that the AFM order is rotated by the con-
trol parameter into PSS order, and that coexistence of the two
phases at the transition is in the form of an SO(4) symmet-
ric vector order parameter. The transition mechanism is, thus,
similar to that in an ordered system tuned through a point of
explicitly higher symmetry that separates ordered phases with
symmetries that are subgroups of the higher symmetry. A well
known case is the XXZ spin model tuned from the O(2) sym-
metric XX phase through the O(3) symmetric XXX (Heisen-
berg) point into the Z2 (Ising) phase. However, in our system
the different components of the SO(4) vector are physically
distinct order parameters, not just different components of a
magnetic order, and the higher symmetry is emergent instead
of explicit and trivial.

Ground states.—Our Hamiltonian can be defined using sin-
glet projection operators P
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where hiji denotes nearest neighbors on a periodic 2D square
lattice with N = L2 sites and ⇤0 are the 2 ⇥ 2-site plaque-
ttes with J 0 bonds in the SS model (Fig. 1), with ijkl corre-
sponding to consecutive sites around a plaquette. We define
the coupling ratio g = J/Q. For g ! 1, this checker-board
J-Q (CBJQ) model reduces to the usual AFM ordered (at tem-
perature T = 0) Heisenberg model, and for g ! 0 we will
demonstrate a two-fold degenerate PSS. The model does not
have any phase corresponding the SS model for large J 0/J ,

Pij =
1
4 � Si · Sj

Do we get a PSS phase, and what kind of phase transition?

Checker-board J-Q (CBJQ) model2

JJ’ JQ
(a) (b)

Figure 1. In the SS model (a), AFM Heisenberg interactions of
strength J between nearest neighbors compete with interactions of
strength J

0 on the subset of next-nearest neighbors indicated by di-
agonal lines. In the CBJQ model (b) the J

0 interactions are replaced
by four-spin Q interactions defined in Eq. (1).

where singlets form on the J 0 bonds. However, for elucidating
the nature of the AFM–PSS transition, we can invoke symme-
tries and universality to propose that the two models, as well
as SrCu2(BO3)2, contain the same physics.

We use two different QMC methods to study the CPJQ
model: ground-state projection in the basis of valence bonds
[28] and the stochastic series expansion (SSE) method [29]
running at a temperature T / 1/L. Both techniques deliver
exact results to within statistical errors. The projector method
is very useful for studying spin-rotationally averaged quan-
tities, while the SSE method is more efficient for finite-size
scaling if, as is the case here, the ground state for finite L
does not have to be fully reached. We refer to the papers cited
above for technical details.

To demonstrate the PSS ground state for large g, we first
study a conventional dimer order parameter

D
µ

=
1

N

X

r

(�1)rµSz(r)Sz(r+ µ̂), µ = x, y, (2)

where the sum is over all lattice coordinates r = (r
x

, r
y

). In a
columnar symmetry-broken VBS, we have hD

x

i 6= 0, hD
y

i =
0 for x-oriented bond order and the same with x $ y for y
oriented bonds. Since a singlet plaquette can be regarded as a
resonance between two horizontal and two vertical bond pairs,
a two-fold degenerate PSS should have |hD

x

i| = |hD
y

i| 6= 0,
which on the lattice in Fig. 1 would correspond to alternat-
ing higher and lower singlet density on the plaquette rows and
columns. On a finite lattice the symmetry is not broken, and
the system fluctuates between the two possible states. We
use the SSE method to generate the probability distribution
P (D

x

, D
y

). While strictly speaking not a bona fide quantum
mechanical observable, this distribution nevertheless properly
reflects the fluctuations and symmetry properties of the sys-
tem. Results on either side of the AFM–PSS transition (the
exact location of which will be discussed below) are shown in
Fig. 2. We can clearly see the two-fold symmetry expected for
a PSS, instead of a four-fold symmetry of the columnar VBS
[9, 30] that also is compatible with the lattice.

If the Q terms are included for all plaquettes we arrive back
to the original J-Q model, whose AFM–VBS transition ap-
pears to be continuous [16]. In accord with the DQCP theory,

Figure 2. Dimer order distribution P (D
x

, D

y

) in the ground state
of the L = 96 CBJQ model at g = 0.20 (in the PSS phase) and
at g = 0.24 (in the AFM phase). The different intensities in the
two maximums at g = 0.20 reflect slow migration between the two
symmetry-broken states in the QMC simulations.

an emergent U(1) symmetry of its microscopically Z4 invari-
ant VBS order parameter has been confirmed [5, 7, 30]. The
proposed field theory description with spinons coupled to an
U(1) gauge field, the non-compact CP1 model [3, 4], there-
fore seems viable. Unusual finite-size scaling behaviors not
contained within this theory (but not contradicted by the the-
ory) have also been observed [10, 15, 16] (and interpreted by
some as a weak first-order transition [7, 8, 11]). A very in-
teresting proposal is that the O(3) symmetry of the AFM and
the emergent U(1) symmetry of the VBS may combine into
an SO(5) symmetry exactly at the critical point [20, 31]. This
would be analogous to the case of the critical S = 1/2 Heisen-
berg spin chain, which is described by a Wess-Zumino-Witten
conformal field with SO(4) symmetry [32, 33], reflecting an
emergent symmetry between the low-energy spin and bond
degrees of freedom. In a spin-planar J-Q model, it has instead
been demonstrated that the U(1) AFM order parameter and the
emergent U(1) VBS symmetry combine into a emergent O(4)
symmetry [26]. In yet another example, it was proposed that
a system with O(3) AFM order and Z2 Kekule VBS state ex-
hibits a DQCP with emergent SO(4) symmetry [27]. These
symmetries correspond exactly to those of the CBJQ model,
and we therefore pay special attention to a potential SO(4)
symmetry when analyzing the AFM–PSS transition.

Finite-size scaling.—To analyze the AFM–PSS transition,
we perform SSE calculations at T = 1/L. This way of taking
the limit T ! 0, L ! 1 is appropriate for a z = 1 quan-
tum phase transition, and also will produce the correct scaling
behavior expected at a first-order transition. We use order pa-
rameters defined solely with the Sz spin components,

m
s

=
1

N

X

r

�(r)Sz(r), m
p

=
2

N

X

q

✓(q)P z(q), (3)

where the subscripts s (spin) and p (plaquette) mark the AFM
and PSS order parameters, respectively. In m

s

, r runs over all
N sites on the lattice and �(r) = ±1 is the staggered AFM
sign. In m

p

, we have defined an operator

P z(q) = Sz(q)Sz(q+ x̂)Sz(q+ ŷ)Sz(q+ x̂+ ŷ), (4)
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strength J
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proposed field theory description with spinons coupled to an
U(1) gauge field, the non-compact CP1 model [3, 4], there-
fore seems viable. Unusual finite-size scaling behaviors not
contained within this theory (but not contradicted by the the-
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the emergent U(1) symmetry of the VBS may combine into
an SO(5) symmetry exactly at the critical point [20, 31]. This
would be analogous to the case of the critical S = 1/2 Heisen-
berg spin chain, which is described by a Wess-Zumino-Witten
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symmetry [26]. In yet another example, it was proposed that
a system with O(3) AFM order and Z2 Kekule VBS state ex-
hibits a DQCP with emergent SO(4) symmetry [27]. These
symmetries correspond exactly to those of the CBJQ model,
and we therefore pay special attention to a potential SO(4)
symmetry when analyzing the AFM–PSS transition.

Finite-size scaling.—To analyze the AFM–PSS transition,
we perform SSE calculations at T = 1/L. This way of taking
the limit T ! 0, L ! 1 is appropriate for a z = 1 quan-
tum phase transition, and also will produce the correct scaling
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The lattice and interactions are compatible with
- 4 fold degenerate columnar VBS
- 2-fold degenerate PSS state

With valence-bond QMC, collect P(Dx,Dy)

Both can be detected using the dimer order parameter
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zation
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and we evaluate the expectation of its square; hm2i. The
VBS order can form with horizontal or vertical bonds,
and these are captured by the bond order parameters
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(�1)xS
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· S
x+1,y, (5a)
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(�1)yS
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· S
x,y+1, (5b)

where for convenience we have switched to a notation
where the double subscripts on S

x,y

refer to the integer
coordinates on the square lattice. In this case as well
we need the squared order parameter, hD2i = hD2

x

i =
hD2

y

i, which has a reasonably simple direct transition-
graph loop estimator [? ].

With the above order parameters we can also define
the corresponding Binder cumulants. In the case of the
O(3) symmetric AFM order the proper definition of the
cumulant is

U
m

=
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✓
1� 1

3

hm4i
hm2i2

◆
, (6)

where the coe�cients are chosen such that with increas-
ing system size U

m

! 1 in the AFM phase and U
m

! 0
if there is no AFM order. For hm4i rangle as well there is
a simple direct loop expression [? ]. In the case of VBS
order, the coe�cients of the cumulant should be chosen
as those for a 2-component vector order parameter, thus

U
D

= 2� hD4i
hD2i2 . (7)

Here hD4i involves eight-spin correlation functions that
in practice are too di�cult to compute e�ciently [? ]. We
therefore invoke an approximation that does not impact
the scaling properties; we simply evaluate (D

x

, D
y

) using
the loop estimator for the two-point operators (5a) and
(5b), and then use this vector of c-numbers to D2 and
D4. While the expectation values entering (7) are then
not strictly the correct quantum-mechanical expectation
values, they still reflect perfectly the absence or presence
of VBS order in the system.

In addition to the squared order parameters hm2i and
hD2i evaluated on the full lattice, we will also consider
the distance dependent spin and dimer correlation func-
tions,
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where we spaitially average over the reference coordinates
x, y for each disorder sample. The spin correlations have
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FIG. 5. Sublattice magnetization versus inverse system size
for di↵erent values of the coupling ratio of the random-Q
model. The curves show fits to the expected forms; low-order
polynomials (here third-order) including linear terms in the
AFM phase and excluding linear terms in the RS phase.

a staggered sign (�1)rx+r

y , while the sign of the dimer
correlator with x oriented bond as above is (�1)rx (and
we take the proper average with the y-oriented ones).

B. Site Diluted J1-J2 static-dimer model

C. Site Diluted J-Q model

In the site-diluted model spins are removed (vacancies
are introduced) at random locations at some fixed con-
centration p. Any J or Q term in Eq. (1) that acting on
one or more vanacies are excluded from the sums. In the
AFM phase, as long as p is below the percolation thresh-
old p

c

above which the system (in the thermodynamic
limit) breaks up into finite decoupled clusters, the va-
cancies do not destroy the long-range AFM order, only
weaken it. If Q = 0 (the pure Heisenberg model), the
percolation point is the standard percolation point of the
square lattice, p

c

⇡ 0.407, while with Q > 0 the perco-
lation point will clearly increase further. Here we will
be interested in low concentrations, far below the perco-
lation point. In the gapped VBS host, when Q > Q

c

,
wth Q

c

/J ⇡ 0.667, the vacancies are expected to lo-
calize magnetic spin-1/2 moments around them. These
moments interact weakly with each other through the
gapped host, and since these interactions are, by sim-
ple arguments for a bipartite lattice, not frustrated, they
will develop a subsystem with AFM long-range-order at
T = 0. Thus, one would expect the sharp AFM–VBS
transition to be ruined.
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moments interact weakly with each other through the
gapped host, and since these interactions are, by sim-
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Figure 1. In the SS model (a), AFM Heisenberg interactions of
strength J between nearest neighbors compete with interactions of
strength J

0 on the subset of next-nearest neighbors indicated by di-
agonal lines. In the CBJQ model (b) the J

0 interactions are replaced
by four-spin Q interactions defined in Eq. (1).

where singlets form on the J 0 bonds. However, for elucidating
the nature of the AFM–PSS transition, we can invoke symme-
tries and universality to propose that the two models, as well
as SrCu2(BO3)2, contain the same physics.

We use two different QMC methods to study the CPJQ
model: ground-state projection in the basis of valence bonds
[28] and the stochastic series expansion (SSE) method [29]
running at a temperature T / 1/L. Both techniques deliver
exact results to within statistical errors. The projector method
is very useful for studying spin-rotationally averaged quan-
tities, while the SSE method is more efficient for finite-size
scaling if, as is the case here, the ground state for finite L
does not have to be fully reached. We refer to the papers cited
above for technical details.

To demonstrate the PSS ground state for large g, we first
study a conventional dimer order parameter
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). While strictly speaking not a bona fide quantum
mechanical observable, this distribution nevertheless properly
reflects the fluctuations and symmetry properties of the sys-
tem. Results on either side of the AFM–PSS transition (the
exact location of which will be discussed below) are shown in
Fig. 2. We can clearly see the two-fold symmetry expected for
a PSS, instead of a four-fold symmetry of the columnar VBS
[9, 30] that also is compatible with the lattice.

If the Q terms are included for all plaquettes we arrive back
to the original J-Q model, whose AFM–VBS transition ap-
pears to be continuous [16]. In accord with the DQCP theory,

Figure 2. Dimer order distribution P (D
x

, D

y

) in the ground state
of the L = 96 CBJQ model at g = 0.20 (in the PSS phase) and
at g = 0.24 (in the AFM phase). The different intensities in the
two maximums at g = 0.20 reflect slow migration between the two
symmetry-broken states in the QMC simulations.

an emergent U(1) symmetry of its microscopically Z4 invari-
ant VBS order parameter has been confirmed [5, 7, 30]. The
proposed field theory description with spinons coupled to an
U(1) gauge field, the non-compact CP1 model [3, 4], there-
fore seems viable. Unusual finite-size scaling behaviors not
contained within this theory (but not contradicted by the the-
ory) have also been observed [10, 15, 16] (and interpreted by
some as a weak first-order transition [7, 8, 11]). A very in-
teresting proposal is that the O(3) symmetry of the AFM and
the emergent U(1) symmetry of the VBS may combine into
an SO(5) symmetry exactly at the critical point [20, 31]. This
would be analogous to the case of the critical S = 1/2 Heisen-
berg spin chain, which is described by a Wess-Zumino-Witten
conformal field with SO(4) symmetry [32, 33], reflecting an
emergent symmetry between the low-energy spin and bond
degrees of freedom. In a spin-planar J-Q model, it has instead
been demonstrated that the U(1) AFM order parameter and the
emergent U(1) VBS symmetry combine into a emergent O(4)
symmetry [26]. In yet another example, it was proposed that
a system with O(3) AFM order and Z2 Kekule VBS state ex-
hibits a DQCP with emergent SO(4) symmetry [27]. These
symmetries correspond exactly to those of the CBJQ model,
and we therefore pay special attention to a potential SO(4)
symmetry when analyzing the AFM–PSS transition.

Finite-size scaling.—To analyze the AFM–PSS transition,
we perform SSE calculations at T = 1/L. This way of taking
the limit T ! 0, L ! 1 is appropriate for a z = 1 quan-
tum phase transition, and also will produce the correct scaling
behavior expected at a first-order transition. We use order pa-
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where singlets form on the J 0 bonds. However, for elucidating
the nature of the AFM–PSS transition, we can invoke symme-
tries and universality to propose that the two models, as well
as SrCu2(BO3)2, contain the same physics.

We use two different QMC methods to study the CPJQ
model: ground-state projection in the basis of valence bonds
[28] and the stochastic series expansion (SSE) method [29]
running at a temperature T / 1/L. Both techniques deliver
exact results to within statistical errors. The projector method
is very useful for studying spin-rotationally averaged quan-
tities, while the SSE method is more efficient for finite-size
scaling if, as is the case here, the ground state for finite L
does not have to be fully reached. We refer to the papers cited
above for technical details.

To demonstrate the PSS ground state for large g, we first
study a conventional dimer order parameter
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X

r

(�1)rµSz(r)Sz(r+ µ̂), µ = x, y, (2)

where the sum is over all lattice coordinates r = (r
x

, r
y

). In a
columnar symmetry-broken VBS, we have hD

x

i 6= 0, hD
y

i =
0 for x-oriented bond order and the same with x $ y for y
oriented bonds. Since a singlet plaquette can be regarded as a
resonance between two horizontal and two vertical bond pairs,
a two-fold degenerate PSS should have |hD

x

i| = |hD
y

i| 6= 0,
which on the lattice in Fig. 1 would correspond to alternat-
ing higher and lower singlet density on the plaquette rows and
columns. On a finite lattice the symmetry is not broken, and
the system fluctuates between the two possible states. We
use the SSE method to generate the probability distribution
P (D

x

, D
y

). While strictly speaking not a bona fide quantum
mechanical observable, this distribution nevertheless properly
reflects the fluctuations and symmetry properties of the sys-
tem. Results on either side of the AFM–PSS transition (the
exact location of which will be discussed below) are shown in
Fig. 2. We can clearly see the two-fold symmetry expected for
a PSS, instead of a four-fold symmetry of the columnar VBS
[9, 30] that also is compatible with the lattice.

If the Q terms are included for all plaquettes we arrive back
to the original J-Q model, whose AFM–VBS transition ap-
pears to be continuous [16]. In accord with the DQCP theory,

Figure 2. Dimer order distribution P (D
x

, D

y

) in the ground state
of the L = 96 CBJQ model at g = 0.20 (in the PSS phase) and
at g = 0.24 (in the AFM phase). The different intensities in the
two maximums at g = 0.20 reflect slow migration between the two
symmetry-broken states in the QMC simulations.

an emergent U(1) symmetry of its microscopically Z4 invari-
ant VBS order parameter has been confirmed [5, 7, 30]. The
proposed field theory description with spinons coupled to an
U(1) gauge field, the non-compact CP1 model [3, 4], there-
fore seems viable. Unusual finite-size scaling behaviors not
contained within this theory (but not contradicted by the the-
ory) have also been observed [10, 15, 16] (and interpreted by
some as a weak first-order transition [7, 8, 11]). A very in-
teresting proposal is that the O(3) symmetry of the AFM and
the emergent U(1) symmetry of the VBS may combine into
an SO(5) symmetry exactly at the critical point [20, 31]. This
would be analogous to the case of the critical S = 1/2 Heisen-
berg spin chain, which is described by a Wess-Zumino-Witten
conformal field with SO(4) symmetry [32, 33], reflecting an
emergent symmetry between the low-energy spin and bond
degrees of freedom. In a spin-planar J-Q model, it has instead
been demonstrated that the U(1) AFM order parameter and the
emergent U(1) VBS symmetry combine into a emergent O(4)
symmetry [26]. In yet another example, it was proposed that
a system with O(3) AFM order and Z2 Kekule VBS state ex-
hibits a DQCP with emergent SO(4) symmetry [27]. These
symmetries correspond exactly to those of the CBJQ model,
and we therefore pay special attention to a potential SO(4)
symmetry when analyzing the AFM–PSS transition.

Finite-size scaling.—To analyze the AFM–PSS transition,
we perform SSE calculations at T = 1/L. This way of taking
the limit T ! 0, L ! 1 is appropriate for a z = 1 quan-
tum phase transition, and also will produce the correct scaling
behavior expected at a first-order transition. We use order pa-
rameters defined solely with the Sz spin components,
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�(r)Sz(r), m
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=
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X

q

✓(q)P z(q), (3)

where the subscripts s (spin) and p (plaquette) mark the AFM
and PSS order parameters, respectively. In m

s

, r runs over all
N sites on the lattice and �(r) = ±1 is the staggered AFM
sign. In m

p

, we have defined an operator

P z(q) = Sz(q)Sz(q+ x̂)Sz(q+ ŷ)Sz(q+ x̂+ ŷ), (4)

Define order parameters with z-spin components in SSE QMC

Expectation:
Us → 1, Up → 0 in AFM phase
Us → 0, Up → 1 in PSS phase
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Figure 3. Finite-size scaling results for the CPJQ model from SSE simulations at T = 1/L. (a) Spin (solid symbols) and dimer (open symbols)
Binder cumulants versus g for L = 24 (black), 48 (blue) and 96 (red). Interpolations within these data sets (and results for other system sizes)
underlie the analysis presented in the other panels. In (b) the crossing g-values of U

s

and U

d

are shown vs 1/L along with cross-points of the
same quantity (U

s

or U
d

) for system sizes L and 2L. The points approach the infinite-size transition point g
c

= 0.2175± 0.0001. The curves
are fits including a single power-law correction / L

�! , where ! is taken as an effective exponent. In (c) the squared order parameters at the
Binder (L, 2L) cross-points are graphed versus 1/L along with polynomial fits. The estimator of the correlation-length exponent, Eq. (6), is
shown in (d) for both order parameters, along with line fits. In all panels, error bars are not shown and are typically much smaller than the
symbol size. In all fits, small system sizes were excluded until acceptable agreement with the functional forms were obtained.

Figure 4. Results for the classical 3D Heisenberg model graphed as in Fig. 3. Here T

�1 = 0.7 > T

�1
c

for all values of �. The system sizes
in (a) are L = 8 (black), 16 (blue) and 32 (red). In the other panels the analysis is presented as in Fig. 3, with U
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s

and U

z

$ U

d

.

For a point on an O(4) sphere of radius R we have |m
p

| =
(R2 �m2

s

)1/2, and to mimic a finite CPJQ system we include
fluctuations of R. With mean hRi = 1 we take Gaussian fluc-
tuations of standard deviation � and generate the probability
distribution P (m

s

, |m
p

|) using the algorithm in Ref. [39]. Ex-
amples are shown Fig. 5(a). We can see that the projection
from four down to two dimensions leads to an arc shaped dis-
tribution with strongly varying height. We further generate
points on a deformed O(4) sphere, where the fourth compo-
nent (m

p

) is multiplied by a parameter � before normalizing
the vector. Thus, � = 1 is the isotropic O(4) coexistence
point and � < 1 and � > 1 correspond to the AFM and PSS
cases, respectively. Effects of the deformation are shown in
Fig. 5(b), where we have chosen values of both � and � to

closely reproduce the features observed in the CBJQ model
in Fig. 5(c) at selected points as we move across its phase
transition. We take this similarity as further evidence of the
enlarged symmetry. We expect � to decrease with increasing
L, as we do observe in our results for L  96.

Discussion.—We have demonstrated a new kind of symme-
try enhanced quantum phase transition at which AFM and PSS
orders coexist and form the components of an emergent SO(4)
(pseudo)vector. While in principle it cannot be excluded that
the symmetry is only approximate, the fact that the Binder
cumulants of the two order parameters never exhibit any neg-
ative values—the hallmarks of conventional first-order tran-
sitions (including previously studied first-order AFM–VBS
transitions [36])—shows that the length scale at which the
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|) using the algorithm in Ref. [39]. Ex-
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nent (m
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) is multiplied by a parameter � before normalizing
the vector. Thus, � = 1 is the isotropic O(4) coexistence
point and � < 1 and � > 1 correspond to the AFM and PSS
cases, respectively. Effects of the deformation are shown in
Fig. 5(b), where we have chosen values of both � and � to

closely reproduce the features observed in the CBJQ model
in Fig. 5(c) at selected points as we move across its phase
transition. We take this similarity as further evidence of the
enlarged symmetry. We expect � to decrease with increasing
L, as we do observe in our results for L  96.

Discussion.—We have demonstrated a new kind of symme-
try enhanced quantum phase transition at which AFM and PSS
orders coexist and form the components of an emergent SO(4)
(pseudo)vector. While in principle it cannot be excluded that
the symmetry is only approximate, the fact that the Binder
cumulants of the two order parameters never exhibit any neg-
ative values—the hallmarks of conventional first-order tran-
sitions (including previously studied first-order AFM–VBS
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Figure 1. In the SS model (a), AFM Heisenberg interactions of
strength J between nearest neighbors compete with interactions of
strength J

0 on the subset of next-nearest neighbors indicated by di-
agonal lines. In the CBJQ model (b) the J

0 interactions are replaced
by four-spin Q interactions defined in Eq. (1).

where singlets form on the J 0 bonds. However, for elucidating
the nature of the AFM–PSS transition, we can invoke symme-
tries and universality to propose that the two models, as well
as SrCu2(BO3)2, contain the same physics.

We use two different QMC methods to study the CPJQ
model: ground-state projection in the basis of valence bonds
[28] and the stochastic series expansion (SSE) method [29]
running at a temperature T / 1/L. Both techniques deliver
exact results to within statistical errors. The projector method
is very useful for studying spin-rotationally averaged quan-
tities, while the SSE method is more efficient for finite-size
scaling if, as is the case here, the ground state for finite L
does not have to be fully reached. We refer to the papers cited
above for technical details.

To demonstrate the PSS ground state for large g, we first
study a conventional dimer order parameter
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columnar symmetry-broken VBS, we have hD
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i =
0 for x-oriented bond order and the same with x $ y for y
oriented bonds. Since a singlet plaquette can be regarded as a
resonance between two horizontal and two vertical bond pairs,
a two-fold degenerate PSS should have |hD
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i| = |hD
y

i| 6= 0,
which on the lattice in Fig. 1 would correspond to alternat-
ing higher and lower singlet density on the plaquette rows and
columns. On a finite lattice the symmetry is not broken, and
the system fluctuates between the two possible states. We
use the SSE method to generate the probability distribution
P (D

x

, D
y

). While strictly speaking not a bona fide quantum
mechanical observable, this distribution nevertheless properly
reflects the fluctuations and symmetry properties of the sys-
tem. Results on either side of the AFM–PSS transition (the
exact location of which will be discussed below) are shown in
Fig. 2. We can clearly see the two-fold symmetry expected for
a PSS, instead of a four-fold symmetry of the columnar VBS
[9, 30] that also is compatible with the lattice.

If the Q terms are included for all plaquettes we arrive back
to the original J-Q model, whose AFM–VBS transition ap-
pears to be continuous [16]. In accord with the DQCP theory,

Figure 2. Dimer order distribution P (D
x

, D

y

) in the ground state
of the L = 96 CBJQ model at g = 0.20 (in the PSS phase) and
at g = 0.24 (in the AFM phase). The different intensities in the
two maximums at g = 0.20 reflect slow migration between the two
symmetry-broken states in the QMC simulations.

an emergent U(1) symmetry of its microscopically Z4 invari-
ant VBS order parameter has been confirmed [5, 7, 30]. The
proposed field theory description with spinons coupled to an
U(1) gauge field, the non-compact CP1 model [3, 4], there-
fore seems viable. Unusual finite-size scaling behaviors not
contained within this theory (but not contradicted by the the-
ory) have also been observed [10, 15, 16] (and interpreted by
some as a weak first-order transition [7, 8, 11]). A very in-
teresting proposal is that the O(3) symmetry of the AFM and
the emergent U(1) symmetry of the VBS may combine into
an SO(5) symmetry exactly at the critical point [20, 31]. This
would be analogous to the case of the critical S = 1/2 Heisen-
berg spin chain, which is described by a Wess-Zumino-Witten
conformal field with SO(4) symmetry [32, 33], reflecting an
emergent symmetry between the low-energy spin and bond
degrees of freedom. In a spin-planar J-Q model, it has instead
been demonstrated that the U(1) AFM order parameter and the
emergent U(1) VBS symmetry combine into a emergent O(4)
symmetry [26]. In yet another example, it was proposed that
a system with O(3) AFM order and Z2 Kekule VBS state ex-
hibits a DQCP with emergent SO(4) symmetry [27]. These
symmetries correspond exactly to those of the CBJQ model,
and we therefore pay special attention to a potential SO(4)
symmetry when analyzing the AFM–PSS transition.

Finite-size scaling.—To analyze the AFM–PSS transition,
we perform SSE calculations at T = 1/L. This way of taking
the limit T ! 0, L ! 1 is appropriate for a z = 1 quan-
tum phase transition, and also will produce the correct scaling
behavior expected at a first-order transition. We use order pa-
rameters defined solely with the Sz spin components,
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where the subscripts s (spin) and p (plaquette) mark the AFM
and PSS order parameters, respectively. In m

s

, r runs over all
N sites on the lattice and �(r) = ±1 is the staggered AFM
sign. In m

p

, we have defined an operator

P z(q) = Sz(q)Sz(q+ x̂)Sz(q+ ŷ)Sz(q+ x̂+ ŷ), (4)

Binder cumulants:
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for detecting plaquette modulation, and the index q runs over
the low-left corners of the Q plaquettes in Fig. 1. The signs
✓(q) = ±1 corresponds to even or odd plaquette rows.
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where the coefficients have been chosen according to the rel-
evant symmetries so that U

s

! 1, U
p

! 0 in the AFM phase
while U

s

! 0, U
p

! 1 in the PSS. If there is a single tran-
sition, we can use the point at which U

s

(L) = U
p

(L) (where
the two curves graphed versus g cross each other) to define
a finite-size critical point. We can also take the more com-
monly used crossing points of curves for two different system
sizes, L and bL (where we use b = 2 below), locating the g
value where U

s

(L) = U
s

(bL) or U
p

(L) = U
p

(bL). The three
definitions will differ for finite L but should flow to the same
point g

c

in the thermodynamic limit.
The slopes of the cumulants at g

c

can be used to extract the
correlation length exponents ⌫

s

and ⌫
p

, using the following
definition based on two system sizes, L and bL [16, 34]:
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ln(b)
ln
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(g, bL)/dg

dU
sp

(g, L)/dg
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g=gc(L)

, (6)

where g
c

(L) is the relevant (L, bL) cross-point. The deriva-
tives can be evaluated directly in the QMC simulations, and
we interpolate to obtain the cross-points and slopes from data
on a dense g-grid in the neighborhood of g

c

.
The analysis is presented and explained in Fig. 3. We find

a single transition with g
c

= 0.2175 ± 0.0001 based on all
three cross-point estimators in Fig. 3(b). Most notably, as seen
in Fig. 3(c), the order parameters at their respective Binder
crossing points do not vanish as L ! 1. This coexistence
of AFM and PSS order is a decisive indicator of a first-order
transition. Another first-order indicator is the fact that 1/⌫

s

and 1/⌫
p

both grow to values larger than 3 with increasing
L. At a classical first-order transition, 1/⌫ ! d, where d
is the spatial dimensionality. Here we are in 2+1 (two space
and one time) dimensions and would expect 1/⌫

sp

! 3, but in
Fig. 3(d) we see larger values. It is likely that the highly space-
time anisotropic system (with z 6= 1 because of the long-range
order) is responsible for this anomaly. In any case, the large
values do not support the already ruled-out (from the order
parameter) continuous transition. Then one would normally
also expect divergent negative peaks in the Binder cumulants
[35–37], which are not seen in Fig. 3(a).

The lack of negative Binder peaks leads us to consider other
mechanisms that could cause discontinuities in the order pa-
rameters (as follows from the phase coexistence in combina-
tion with the step-function behavior of the Binder cumulants).
A well known case is a system with long-range order driven
through a point at which the Hamiltonian has a higher sym-
metry. As an example, we discuss the 3D classical Heisenberg

O(3) model in the ordered phase, including a deformation pa-
rameter �;

H = �
X
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). (7)

Here �
i

is a vector of length 1 residing on a simple cubic lat-
tice. Alternatively, we could also consider the 2D S = 1/2
quantum Heisenberg antiferromagnet at T = 0 with a simi-
lar deformation. When � < 1, the order parameter is in the
xy plane, hence is U(1) symmetric, while for � > 1 it is
an Ising order parameter with Z2 symmetry. The O(3) point
� = 1 is not normally regarded as the location of a first-order
phase transition, as there is no latent heat released when the
magnetization flips its direction, and it is certainly not a crit-
ical point. However, the elementary excitations do change,
as the Goldstone modes of the U(1) phase and O(3) point are
gapped out for � > 1. In this sense we can still consider the
system as going through a phase transition, which has both
first-order and continuous characteristics. We will analyze the
xy and z magnetizations individually, using standard classical
Monte Carlo simulations at T�1 = 0.7, which is below but
very close to T�1

c

at �
c

= 1 (where T�1
c

= 0.6930).
As shown in Fig. 4, behaviors very similar to those in the

CPJQ model are observed if we make an analogy between
the xy magnetization and the AFM order parameter on the
one hand and the Ising magnetization and the PSS order pa-
rameter on the other hand. The Binder cumulants and their
slopes are defined in ways completely analogous to Eqs. (5)
and (6). Since T is barely below T

c

, the coexistence values
of the magnetizations m2

x

= m2
y

= m2
z

at � = 1 [Fig. 4(c)]
are small, similar to the AFM and PSS order parameters in
Fig. 3(c). In the O(3) case we can also see clearly how 1/⌫

xy

and 1/⌫
z

approach the expected value 3 in Fig. 4(d). Thus,
in most respects this transition looks in finite-size scaling as a
first-order transition, with the glaring exception of the lack of
negative Binder peaks. Indeed, with phase coexistence in the
form of a higher symmetry, the arguments behind the negative
peaks [35, 37] do not apply.

Emergent SO(4) symmetry.—The CBJQ model does not
have any obvious point of enhanced symmetry between its
order parameters, but the above results suggest that the sys-
tem possesses an emergent symmetry at g

c

. The most natural
scenario is that the O(3) AFM and the Z2 PSS combine to
form SO(4) rotational symmetry [38]. To test this, we use the
valence-bond QMC method [28], where a transition graph is
associated with values m2
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= m2
x

+m2
y

+m2
z

and m
p

. In the
latter we now use the rotationally invariant operator
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+S(q) · S(q+ ŷ) + S(q+ x̂) · S(q+ x̂+ ŷ) (8)

in place of P z(q) in Eq. (3). In a state with both AFM and
PSS order, the commutator [m2
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] / 1/N2, and we can
therefore treat m2
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and m
p

as c-numbers. For the putative
SO(4) symmetry to be manifest, we further divide m2
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from each transition graph by hm2
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is a vector of length 1 residing on a simple cubic lat-
tice. Alternatively, we could also consider the 2D S = 1/2
quantum Heisenberg antiferromagnet at T = 0 with a simi-
lar deformation. When � < 1, the order parameter is in the
xy plane, hence is U(1) symmetric, while for � > 1 it is
an Ising order parameter with Z2 symmetry. The O(3) point
� = 1 is not normally regarded as the location of a first-order
phase transition, as there is no latent heat released when the
magnetization flips its direction, and it is certainly not a crit-
ical point. However, the elementary excitations do change,
as the Goldstone modes of the U(1) phase and O(3) point are
gapped out for � > 1. In this sense we can still consider the
system as going through a phase transition, which has both
first-order and continuous characteristics. We will analyze the
xy and z magnetizations individually, using standard classical
Monte Carlo simulations at T�1 = 0.7, which is below but
very close to T�1

c

at �
c

= 1 (where T�1
c

= 0.6930).
As shown in Fig. 4, behaviors very similar to those in the

CPJQ model are observed if we make an analogy between
the xy magnetization and the AFM order parameter on the
one hand and the Ising magnetization and the PSS order pa-
rameter on the other hand. The Binder cumulants and their
slopes are defined in ways completely analogous to Eqs. (5)
and (6). Since T is barely below T

c

, the coexistence values
of the magnetizations m2

x

= m2
y

= m2
z

at � = 1 [Fig. 4(c)]
are small, similar to the AFM and PSS order parameters in
Fig. 3(c). In the O(3) case we can also see clearly how 1/⌫

xy

and 1/⌫
z

approach the expected value 3 in Fig. 4(d). Thus,
in most respects this transition looks in finite-size scaling as a
first-order transition, with the glaring exception of the lack of
negative Binder peaks. Indeed, with phase coexistence in the
form of a higher symmetry, the arguments behind the negative
peaks [35, 37] do not apply.

Emergent SO(4) symmetry.—The CBJQ model does not
have any obvious point of enhanced symmetry between its
order parameters, but the above results suggest that the sys-
tem possesses an emergent symmetry at g

c

. The most natural
scenario is that the O(3) AFM and the Z2 PSS combine to
form SO(4) rotational symmetry [38]. To test this, we use the
valence-bond QMC method [28], where a transition graph is
associated with values m2

s

= m2
x

+m2
y

+m2
z

and m
p

. In the
latter we now use the rotationally invariant operator

P (q) = S(q) · S(q+ x̂) + S(q+ ŷ) · S(q+ ŷ + x̂)

+S(q) · S(q+ ŷ) + S(q+ x̂) · S(q+ x̂+ ŷ) (8)

in place of P z(q) in Eq. (3). In a state with both AFM and
PSS order, the commutator [m2

s

,m
p

] / 1/N2, and we can
therefore treat m2

s

and m
p

as c-numbers. For the putative
SO(4) symmetry to be manifest, we further divide m2

s

and m2
p

from each transition graph by hm2
s

i and hm2
p

i, respectively.

Analysis of slopes of U gives correlation-length exponent

Both exponent extrapolate to values > d+1 = 3; first-order behavior

Why are there no negative Binder peaks?

3
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Figure 3. Finite-size scaling of CBJQ results from SSE simulations at T = 1/L. (a) Spin (open symbols) and plaquette (solid symbols) Binder
cumulants versus g for L = 24 (black), 48 (blue) and 96 (red). Interpolations within these data sets (and results for other system sizes) underlie
the analysis presented in the other panels. In (b) the crossing g-values of U

z

and U

p

are shown vs 1/L along with the (L, 2L) same-quantity
crossing points from U

z

and U

p

. The points approach the infinite-size transition point g
c

= 0.2175 ± 0.0001. The curves are fits including
a single power-law correction / L

�! . In (c) the squared order parameters at the Binder (L, 2L) cross points are graphed versus 1/L along
with polynomial fits. The estimator of the correlation-length exponent, Eq. (6), is shown in (d) for both order parameters, along with line fits.
In all fits, small system sizes were excluded until acceptable agreement with the functional forms were obtained.

Figure 4. Results for the classical 3D Heisenberg model with anisotropy � graphed as in Fig. 3. Here T

�1 = 0.7 > T

�1
c

for all values of �.
The system sizes in (a) are L = 8 (black), 16 (blue) and 32 (red), with open and solid symbols used for U

xy

and U

z

, respectively. In the other
panels the analysis is presented as in Fig. 3.

The slopes of the cumulants at g
c

can be used to extract
the correlation length exponents ⌫

z

and ⌫
p

, using two system
sizes, L and bL [16, 36]:

1

⌫
zp

=

1

ln(b)
ln


dU

zp

(g, bL)/dg

dU
zp

(g, L)/dg

�

g=gc(L)

, (6)

where g
c

(L) is the relevant (L, bL) cross point. The deriva-
tives can be evaluated directly in the QMC simulations, and
we interpolate to obtain the cross points and slopes from data
on a dense g-grid in the neighborhood of g

c

.
The analysis is presented and explained in Fig. 3. We find a

single transition with g
c

= 0.2175±0.0001 based on all three
cross point estimators in Fig. 3(b). Most notably, in Fig. 3(c)
the order parameters at their respective Binder crossing points
do not vanish as L ! 1. This coexistence of AFM and PSS

order is a decisive indicator of a first-order transition. Another
first-order indicator is 1/⌫

z

and 1/⌫
p

growing to values larger
than 3 with increasing L. At a classical first-order transition,
1/⌫ ! d, where d is the spatial dimensionality. Here, in 2+1
dimensions we might expect 1/⌫

zp

! 3, but in Fig. 3(d) we
see larger values, perhaps related to the Anderson-Goldstone
rotor spectrum of the coexistence state. In any case, the large
values do not support the already ruled-out continuous transi-
tion. Then one would normally also expect divergent negative
peaks in the Binder cumulants [37, 38], which are not seen in
Fig. 3(a) but are present at the first-order transition in a J-Q
model with staggered Z4 VBS [39].

The lack of negative Binder peak at the first-order transition
leads us to consider alternative scenarios for coexisting order
parameters. A well known case is a system with long-range



Do we know any phase transition with similar characteristics?
Yes: 3D O(N) models with N=3,4,5,… in their ordered states (T < Tc)
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for detecting plaquette modulation, and the index q runs over
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where the coefficients have been chosen according to the rel-
evant symmetries so that U

s

! 1, U
p

! 0 in the AFM phase
while U

s

! 0, U
p

! 1 in the PSS. If there is a single tran-
sition, we can use the point at which U

s

(L) = U
p

(L) (where
the two curves graphed versus g cross each other) to define
a finite-size critical point. We can also take the more com-
monly used crossing points of curves for two different system
sizes, L and bL (where we use b = 2 below), locating the g
value where U

s

(L) = U
s

(bL) or U
p

(L) = U
p

(bL). The three
definitions will differ for finite L but should flow to the same
point g

c

in the thermodynamic limit.
The slopes of the cumulants at g

c

can be used to extract the
correlation length exponents ⌫

s

and ⌫
p

, using the following
definition based on two system sizes, L and bL [16, 34]:

1

⌫
sp

=
1

ln(b)
ln


dU

sp

(g, bL)/dg

dU
sp

(g, L)/dg

�

g=gc(L)

, (6)

where g
c

(L) is the relevant (L, bL) cross-point. The deriva-
tives can be evaluated directly in the QMC simulations, and
we interpolate to obtain the cross-points and slopes from data
on a dense g-grid in the neighborhood of g

c

.
The analysis is presented and explained in Fig. 3. We find

a single transition with g
c

= 0.2175 ± 0.0001 based on all
three cross-point estimators in Fig. 3(b). Most notably, as seen
in Fig. 3(c), the order parameters at their respective Binder
crossing points do not vanish as L ! 1. This coexistence
of AFM and PSS order is a decisive indicator of a first-order
transition. Another first-order indicator is the fact that 1/⌫

s

and 1/⌫
p

both grow to values larger than 3 with increasing
L. At a classical first-order transition, 1/⌫ ! d, where d
is the spatial dimensionality. Here we are in 2+1 (two space
and one time) dimensions and would expect 1/⌫

sp

! 3, but in
Fig. 3(d) we see larger values. It is likely that the highly space-
time anisotropic system (with z 6= 1 because of the long-range
order) is responsible for this anomaly. In any case, the large
values do not support the already ruled-out (from the order
parameter) continuous transition. Then one would normally
also expect divergent negative peaks in the Binder cumulants
[35–37], which are not seen in Fig. 3(a).

The lack of negative Binder peaks leads us to consider other
mechanisms that could cause discontinuities in the order pa-
rameters (as follows from the phase coexistence in combina-
tion with the step-function behavior of the Binder cumulants).
A well known case is a system with long-range order driven
through a point at which the Hamiltonian has a higher sym-
metry. As an example, we discuss the 3D classical Heisenberg

O(3) model in the ordered phase, including a deformation pa-
rameter �;

H = �
X

hiji

(�x

i

�x

j

+ �y

i

�y

j

+��z

i

�z

j

). (7)

Here �
i

is a vector of length 1 residing on a simple cubic lat-
tice. Alternatively, we could also consider the 2D S = 1/2
quantum Heisenberg antiferromagnet at T = 0 with a simi-
lar deformation. When � < 1, the order parameter is in the
xy plane, hence is U(1) symmetric, while for � > 1 it is
an Ising order parameter with Z2 symmetry. The O(3) point
� = 1 is not normally regarded as the location of a first-order
phase transition, as there is no latent heat released when the
magnetization flips its direction, and it is certainly not a crit-
ical point. However, the elementary excitations do change,
as the Goldstone modes of the U(1) phase and O(3) point are
gapped out for � > 1. In this sense we can still consider the
system as going through a phase transition, which has both
first-order and continuous characteristics. We will analyze the
xy and z magnetizations individually, using standard classical
Monte Carlo simulations at T�1 = 0.7, which is below but
very close to T�1

c

at �
c

= 1 (where T�1
c

= 0.6930).
As shown in Fig. 4, behaviors very similar to those in the

CPJQ model are observed if we make an analogy between
the xy magnetization and the AFM order parameter on the
one hand and the Ising magnetization and the PSS order pa-
rameter on the other hand. The Binder cumulants and their
slopes are defined in ways completely analogous to Eqs. (5)
and (6). Since T is barely below T

c

, the coexistence values
of the magnetizations m2

x

= m2
y

= m2
z

at � = 1 [Fig. 4(c)]
are small, similar to the AFM and PSS order parameters in
Fig. 3(c). In the O(3) case we can also see clearly how 1/⌫

xy

and 1/⌫
z

approach the expected value 3 in Fig. 4(d). Thus,
in most respects this transition looks in finite-size scaling as a
first-order transition, with the glaring exception of the lack of
negative Binder peaks. Indeed, with phase coexistence in the
form of a higher symmetry, the arguments behind the negative
peaks [35, 37] do not apply.

Emergent SO(4) symmetry.—The CBJQ model does not
have any obvious point of enhanced symmetry between its
order parameters, but the above results suggest that the sys-
tem possesses an emergent symmetry at g

c

. The most natural
scenario is that the O(3) AFM and the Z2 PSS combine to
form SO(4) rotational symmetry [38]. To test this, we use the
valence-bond QMC method [28], where a transition graph is
associated with values m2

s

= m2
x

+m2
y

+m2
z

and m
p

. In the
latter we now use the rotationally invariant operator

P (q) = S(q) · S(q+ x̂) + S(q+ ŷ) · S(q+ ŷ + x̂)

+S(q) · S(q+ ŷ) + S(q+ x̂) · S(q+ x̂+ ŷ) (8)

in place of P z(q) in Eq. (3). In a state with both AFM and
PSS order, the commutator [m2

s

,m
p

] / 1/N2, and we can
therefore treat m2

s

and m
p

as c-numbers. For the putative
SO(4) symmetry to be manifest, we further divide m2

s

and m2
p

from each transition graph by hm2
s

i and hm2
p

i, respectively.

Example: Classical 3D O(3) (Heisenberg) model with tunable anisotropy

Symmetry changes vs 𝛥: O(2) for 𝛥<1, O(3) for 𝛥=1, Z2 for 𝛥>1
For T<Tc, analyze xy and z order parameters and Binder cumulants

Very similar behaviors as CBJQ model!
But no point of obvious higher symmetry vs g in the CBJQ model…

3

Figure 3. Finite-size scaling of CBJQ results from SSE simulations at T = 1/L. (a) Spin (open symbols) and plaquette (solid symbols) Binder
cumulants versus g for L = 24 (black), 48 (blue) and 96 (red). Interpolations within these data sets (and results for other system sizes) underlie
the analysis presented in the other panels. In (b) the crossing g-values of U

z

and U

p

are shown vs 1/L along with the (L, 2L) same-quantity
crossing points from U

z

and U

p

. The points approach the infinite-size transition point g
c

= 0.2175 ± 0.0001. The curves are fits including
a single power-law correction / L

�! . In (c) the squared order parameters at the Binder (L, 2L) cross points are graphed versus 1/L along
with polynomial fits. The estimator of the correlation-length exponent, Eq. (6), is shown in (d) for both order parameters, along with line fits.
In all fits, small system sizes were excluded until acceptable agreement with the functional forms were obtained.
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Figure 4. Results for the classical 3D Heisenberg model with anisotropy � graphed as in Fig. 3. Here T

�1 = 0.7 > T

�1
c

for all values of �.
The system sizes in (a) are L = 8 (black), 16 (blue) and 32 (red), with open and solid symbols used for U

xy

and U

z

, respectively. In the other
panels the analysis is presented as in Fig. 3.

The slopes of the cumulants at g
c

can be used to extract
the correlation length exponents ⌫

z

and ⌫
p

, using two system
sizes, L and bL [16, 36]:

1

⌫
zp

=

1

ln(b)
ln


dU

zp

(g, bL)/dg

dU
zp

(g, L)/dg

�

g=gc(L)

, (6)

where g
c

(L) is the relevant (L, bL) cross point. The deriva-
tives can be evaluated directly in the QMC simulations, and
we interpolate to obtain the cross points and slopes from data
on a dense g-grid in the neighborhood of g

c

.
The analysis is presented and explained in Fig. 3. We find a

single transition with g
c

= 0.2175±0.0001 based on all three
cross point estimators in Fig. 3(b). Most notably, in Fig. 3(c)
the order parameters at their respective Binder crossing points
do not vanish as L ! 1. This coexistence of AFM and PSS

order is a decisive indicator of a first-order transition. Another
first-order indicator is 1/⌫

z

and 1/⌫
p

growing to values larger
than 3 with increasing L. At a classical first-order transition,
1/⌫ ! d, where d is the spatial dimensionality. Here, in 2+1
dimensions we might expect 1/⌫

zp

! 3, but in Fig. 3(d) we
see larger values, perhaps related to the Anderson-Goldstone
rotor spectrum of the coexistence state. In any case, the large
values do not support the already ruled-out continuous transi-
tion. Then one would normally also expect divergent negative
peaks in the Binder cumulants [37, 38], which are not seen in
Fig. 3(a) but are present at the first-order transition in a J-Q
model with staggered Z4 VBS [39].

The lack of negative Binder peak at the first-order transition
leads us to consider alternative scenarios for coexisting order
parameters. A well known case is a system with long-range

T

1 ∆

Proposal: O(3) AFM and Z2 PSS orders form emergent O(4) vector



Detecting O(4) symmetry in the CBJQ model
- We know that the AFM component has O(3) symmetry
- Need to check only PSS order and one AFM component; P(mz,mp)
- O(4) projected down to a plane - constant density within circle
- Radius fluctuates because of finite size

- Appears that there is an O(4) point (the transition point)
- No sign of conventional AFM, PSS coexistence

O(4)

4

order driven through a point at which the Hamiltonian has a
higher symmetry. As an example, we discuss a deformed 3D
classical Heisenberg O(3) model in its ordered phase, with
nearest neighbor interactions H

ij

= �x

i

�x

j

+ �y

i

�y

j

+��z

i

�z

j

between unit vectors �
i

on a simple cubic lattice. We could
also consider the 2D S = 1/2 AFM Heisenberg model at
T = 0 with a similar deformation [40]. When � < 1, the
order parameter is U(1) symmetric in the xy plane, while for
Ising anisotropy, � > 1, the symmetry is Z2. At the O(3)
point � = 1, the elementary excitations of the quantum model
change, as the Goldstone modes of the U(1) phase and O(3)
point are gapped out continuously for � > 1. In this sense
we can consider the change in symmetry as a phase transition
with both first-order and continuous characteristics.

We carry out classical Monte Carlo simulations at T�1
=

0.7, close to T�1
c

(�

c

= 1) ⇡ 0.6930, and analyze the xy
and z magnetizations individually. As shown in Fig. 4, be-
haviors very similar to those in the CPJQ model are observed
if we make an analogy between the xy magnetization and the
AFM order parameter on the one hand and the Ising magne-
tization and the PSS order parameter on the other hand. The
Binder cumulants and slopes are defined in ways analogous
to Eqs. (5) and (6). Since T is barely below T

c

, the coexis-
tence values hm2

x

i = hm2
y

i = hm2
z

i in Fig. 4(c) are small. In
Fig. 4(d) we can also see that 1/⌫

xy

approaches the expected
first-order value 3, using a simple line fit, while a proper anal-
ysis of 1/⌫

z

may require larger systems.
In most respects, we see that the O(3) order–order transition

looks in finite-size scaling as a first-order transition, with the
glaring exception of the lack of negative Binder peak. Indeed,
with phase coexistence in the form of a higher symmetry, the
arguments behind the negative peak [37, 38] do not apply.

Emergent O(4) symmetry.—The CBJQ model does not have
any obvious point of enhanced symmetry, but the above re-
sults suggest that the system possesses an emergent symmetry
at g

c

. The most natural scenario is that the O(3) AFM and the
Z2 PSS combine to form O(4) symmetry [35]. To test this, we
use the valence-bond projector QMC method and now define
m

p

with the rotationally invariant operator,

⇧(q) = S(q) · S(q+ x̂) + S(q+ ŷ) · S(q+ ŷ + x̂)

+S(q) · S(q+ ŷ) + S(q+ x̂) · S(q+ x̂+ ŷ), (7)

in place of ⇧z

(q) in Eq. (3). We investigate the probability
distribution P (m

z

,m
p

), where the z-component of the AFM
order parameter is given as before by Eq. (3) and both m

z

and m
p

can be generated from a given transition graph [31].
In a state with both AFM and PSS order, the commutator
[m

z

,m
p

] / 1/N , and we can treat m
z

and m
p

as c-numbers.
For the putative O(4) symmetry to be manifest, we further nor-
malize each m

z

and m
p

by factors involving hm2
z

i and hm2
p

i,
as explained in Supplemental Material [42].

For a point on an O(4) sphere of radius R, the projection
onto two components results in a uniform distribution within
a circle of radius R. However, in a finite system we also ex-
pect fluctuations of R, and we therefore compare our CBJQ
results with a distribution obtained from an O(4) sphere with

� = 0.000(a) � = 0.100 � = 0.200

Figure 5. (a) One quadrant of the sampled [41] distribution of two
components of an O(4) vector with Gaussian length fluctuations with
mean R = 1 and standard deviation �. (b) Projector QMC distribu-
tion P (m

z

,m

p

) for the L = 64 CBJQ model at three coupling ratios
g. The x axis represents the z component of the AFM order parame-
ter (m

z

), while the y-axis is the PSS order parameter (m
p

) [42].

mean radius R = 1 and standard deviation �. Examples are
shown Fig. 5. At the transition, the CBJQ distribution is ro-
tation symmetric with radial profile similar to that of the O(4)
sampling with � = 0.2. Inside the phases the distributions are
shifted as expected—deep in the PSS we should eventually,
for L ! 1, obtain a point on the y-axis, and in the AFM
state a line on the x-axis. Further tests of the emergent sym-
metry are presented in Supplemental Material [42].

Discussion.—We have found a first-order quantum phase
transition at which coexisting AFM and PSS order parameters
form an emergent O(4) vector. It is possible that the O(4) sym-
metry is not exact, but reflects the existence of a nearby fixed
point (perhaps outside the model space) at which the higher
symmetry is exact [20, 25, 28]. Then, away from this point,
perturbations break the symmetry above some length scale ⇠0

larger than the correlation length ⇠ [25]. This scenario was
discussed in the context of continuous and weakly first-order
transitions. In the case of the CBJQ model, the observed dis-
continuities are rather large, however. From Fig. 3(c) and as-
suming O(4) symmetry, we have m

s

= h4m2
z

i1/2 ⇡ 0.12,
almost 25% of the maximum (classical) staggered magnetiza-
tion. Moreover, the first-order nature of the transition is appar-
ent even on small lattices, e.g., the flow of 1/⌫

z

in Fig. 3(d).
Thus, we are well above the length scale ⇠ but the scenario
of Ref. [25] would suggests that still L ⌧ ⇠0 ⇠ ⇠1+a, where
the exponent a would have to be rather large in order to give
the clear separation of length scales needed to account for
the observed O(4) behavior. Alternatively, we may speculate
that the emergent symmetry could be exact. In this scenario,
the dominant symmetry breaking field is tuned to zero at the
first-order AFM-PSS transition and higher-order O(4) violat-
ing perturbations are either absent or vanish upon renormal-
ization, by some extension of the DQCP description of the
order parameters or by some more general mechanism. While
emergent O(N ) symmetric multicritical points arising from

4

Figure 4. (a) One quadrant of the sampled [43] distribution of two
components of an O(4) vector with Gaussian length fluctuations with
mean R = 1 and standard deviation �. (b) Projector QMC distribu-
tion P (m

z

,m

p

) for the L = 96 CBJQ model at three coupling ratios
g. The x axis represents the z component of the AFM order parame-
ter m

z

, while the y-axis is the PSS order parameter m
p

[39].

(L = 8, 16), but no detectable deviations at gc for the largest
systems studied (up to L = 96).

Having concluded that there is emergent O(4) symmetry,
we can also understand why 1/⌫z,p > 3 in Fig. 3(b): The
dynamic exponent of the Anderson-Goldstone rotor states as-
sociated with O(N � 3) order is z = 2, and therefore one
may expect the exponents to eventually tend to d + z = 4

when L ! 1 at T = 0. The deviations may be due to T > 0

effects when T is scaled as L�1 (instead of L�2). As we show
in SM [39], quantitative measures of the emergent O(4) sym-
metry in our T = 0 calculations exhibit L�4 scaling of the
size of the g-window in which the symmetry is emergent.

Another interesting consequence of O(4) symmetry should
be a specific logarithmic (log) form of the critical PSS tem-
perature Tc versus the distance � = gc � g from the T = 0

transition point, Tc / log

�1
(C/�), as in an O(N � 3) model

with an Ising deformation [31, 32]. This form is very different
from that expected close to an Ising quantum-critical point,
where Tc / �⌫3D , where ⌫3D is the 3D Ising correlation-length
exponent. Neither form should apply at a conventional first-
order transition extending from (gc, T = 0) to some T > 0. If
the O(4) breaking perturbation is very weak, one should still
expect the log form to hold down to some low temperature.

We have computed Tc(g) for the PSS by the cumulant-
crossing method using SSE data for L  160. We can reli-
ably extrapolate Tc to the thermodynamic limit for g  0.216
(� & 0.0015), as shown in Fig. 5. The behavior for � . 0.02
is very well described by the log form, lending strong indirect
support to the emergent O(4) symmetry through an important
physical observable in the thermodynamic limit.

Discussion.—We cannot exclude that the O(4) symmetry is
present only up to some length scale above the largest system,
L = 96, studied here. Such symmetry violations at a long
scale may be expected at certain weak first-order transitions,
either when the system is close to a fine-tuned point with or-
der parameter of the higher symmetry (though no convincing

Figure 5. Inverse PSS critical temperature versus the shifted coupling
ratio � = g

c

�g. The red line is a fit to the expected log form, and the
black curve is of the conventional Ising form as a contrast. The inset
shows examples of the extrapolation of T
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using the expected critical
scaling form with a subleading correction, T
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�b(1 + cL
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with fitting parameters a, b, c, d and L up to 160.

emmergent symmetries were observed in connection with this
scenario [44]), or in proximity of a quantum-critical point at
which the higher symmetry is emergent [20, 25, 28]. In the lat-
ter case, perturbations break the symmetry above some length
scale ⇠0 larger than the correlation length ⇠ [25].

In the CBJQ model studied here, the observed discontinu-
ities are rather strong; from Fig. 3(c), the magnitude of the
O(4) vector in AFM units is ms = h4m2

zi1/2 ⇡ 0.12, almost
25% of the maximum staggered magnetization 1/2. The first-
order nature of the transition is apparent even on small lat-
tices, e.g., as seen in the flow of 1/⌫z toward an anomalously
large value in Fig. 3(d). Thus, in the scenario of Ref. [25], we
should have ⇠ ⌧ L ⌧ ⇠0 ⇠ ⇠1+a, where the exponent a must
be rather large in order to give the clear separation of length
scales needed to account for the observed behavior. Such be-
havior has not been previously anticipated; rather, emergent
symmetry on large length scales has been cited as support for
continuous non-LGW transitions [20, 27]

In an alternative scenario of an asymptotic O(4) symme-
try, the dominant symmetry-breaking field is tuned to zero at
the AFM-PSS transition and higher-order O(4) violating per-
turbations would vanish upon renormalization, perhaps by an
extension of the DQCP framework, or by some more general
mechanism. While emergent O(N ) multicritical points arising
from O(N�1) and Z2 order parameters have been extensively
discussed within the LGW framework [45–48], the influence
of the higher symmetry on associated first-order lines have not
been addressed until recently in the weakly first-order DQCP
context [25]. In order to exclude that the CBJQ model is ac-
cidentally fine-tuned to vanishing or extremely small pertur-
bations of the O(4) symmetry, we have also studied a model
extended by additional interactions; see SM [39].

We designed the CBJQ model with SrCu2(BO3)2 in mind.
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emmergent symmetries were observed in connection with this
scenario [44]), or in proximity of a quantum-critical point at
which the higher symmetry is emergent [20, 25, 28]. In the lat-
ter case, perturbations break the symmetry above some length
scale ⇠0 larger than the correlation length ⇠ [25].

In the CBJQ model studied here, the observed discontinu-
ities are rather strong; from Fig. 3(c), the magnitude of the
O(4) vector in AFM units is ms = h4m2

zi1/2 ⇡ 0.12, almost
25% of the maximum staggered magnetization 1/2. The first-
order nature of the transition is apparent even on small lat-
tices, e.g., as seen in the flow of 1/⌫z toward an anomalously
large value in Fig. 3(d). Thus, in the scenario of Ref. [25], we
should have ⇠ ⌧ L ⌧ ⇠0 ⇠ ⇠1+a, where the exponent a must
be rather large in order to give the clear separation of length
scales needed to account for the observed behavior. Such be-
havior has not been previously anticipated; rather, emergent
symmetry on large length scales has been cited as support for
continuous non-LGW transitions [20, 27]

In an alternative scenario of an asymptotic O(4) symme-
try, the dominant symmetry-breaking field is tuned to zero at
the AFM-PSS transition and higher-order O(4) violating per-
turbations would vanish upon renormalization, perhaps by an
extension of the DQCP framework, or by some more general
mechanism. While emergent O(N ) multicritical points arising
from O(N�1) and Z2 order parameters have been extensively
discussed within the LGW framework [45–48], the influence
of the higher symmetry on associated first-order lines have not
been addressed until recently in the weakly first-order DQCP
context [25]. In order to exclude that the CBJQ model is ac-
cidentally fine-tuned to vanishing or extremely small pertur-
bations of the O(4) symmetry, we have also studied a model
extended by additional interactions; see SM [39].

We designed the CBJQ model with SrCu2(BO3)2 in mind.
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Figure 1. Phases of the SS model and SrCu2(BO3)2. (a) Schematic T = 0 phase diagram of the SS model [10, 17]. (b) Experimental (P, T )
phase diagram of SrCu2(BO3)2 (crystal structure in the inset) revealed by high pressure heat capacity measurements. Examples of C(T )/T
curves are given in (c-f). The green open symbols in (b) mark the location Th of the hump in C/T for different samples (indicted by different
symbols). The purple curve shows Th for the 20-spin SS model with P -linear couplings close to those of Ref. [11]; J 0(P ) = [75�8.3P/GPa]
K and J(P ) = [46.7 � 3.7P/GPa] K. For P ⇡ 1.7 � 2.4 GPa a second peak at lower T appears, exemplified in (d), which indicates the
transition into the PS phase. Upon further compression, the system first enter a regime where the experimental setups (Methods) cannot reach
sufficiently low T to observe the second peak. The peak is again detectable around 3 GPa and becomes more prominent while moving to higher
T with increasing P . This behavior, shown in (e,f), suggests [26] a quasi-2D AF system ordering at T > 0 due to weak inter-layer couplings.
The phase boundaries extracted from the second peak are indicated by half-filled red squares and diamonds (PS phase) and blue filled squares
and half-filled circles (AF phase). The low-T data in (c,d) are fitted (black curves) to the form C/T = a0 + a1T

2 + (a2/T
3)e��/T [25],

giving gaps � displayed in Fig. 2(a). In (e,f) fits are shown (red curves) without gap term; C/T = a0 + a1T
2.

argue that this peak signals the PS phase transition. Upon
further increasing P , the small peak is no longer detected at
temperatures accesible in the experiment. A different, broader
hump appears between 3 and 4 GPa, below which there is a

peak at T ⇡ 2 � 3.5 K that we interpret as an AF transition.
AF order was previously detected only at P > 4 GPa at T as
high as ⇡ 120 K [11]. This high-T AF phase is not connected
to the new low-T AF phase—see Supplemental Information.

The C/T hump is known from previous studies at ambi-
ent pressure [25], where it is the result of the spins forming
the correlations that eventually lead to the dimer singlets as
T ! 0. As shown in Fig. 1(b), the hump temperature T

h

(P )
exhibits a minimum at P ⇡ 2.1 GPa. We have computed
C(T ) of the SS model by exact diagonalization (ED) of the
Hamiltonian on a 20-site lattice (Methods and Supplemental
Information) and extracted T

h

(↵). As shown in Fig. 1(b), we
achieve a remarkably good match with the experiments when
converting ↵ to P by using P -linear J(P ) and J 0(P ) [11].

In the 2D Heisenberg model the hump appears at T ⇡ J/2
[26] where significant short-range AF correlations start to

build up. In general, the hump indicates a temperature scale
where correlations set in that remove significant entropy from
the system. The T

h

(P ) minimum can be regarded as the point
of highest frustration, with the energy scale being lowered
due to the competing effects of the two couplings (see also
Refs. [27, 28]). The peak that we associate with PS ordering
appears in this pressure region, suggesting singlet formation
driven by strong frustration.

If the putative AF ordering below T = 4 K for P ⇡ 3 � 4
GPa is the result of weak inter-layer couplings J?, the ob-
served hump-peak separation is expected, as the hump present
for an isolated layer is not affected much by a small J? and
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In a quantum magnet, localized electronic spins can
form unusual collective states at low temperature. While
theoretical proposals for exotic states abound [1–6], many
of the most intriguing scenarios of quantum phases and
phase transitions beyond classical descriptions have been
difficult to realize experimentally. In one class of hy-
pothetical states, the spins entangle locally into dimer-
or quadrumer-singlets, which order in patterns breaking
some of the symmetries of the crystal lattice [1–3, 5, 7–
10]. Experimental signatures of such a state with four-spin
singlets were only recently detected in an inelastic neu-
tron scattering study of the quasi-two-dimensional quan-
tum magnet SrCu2(BO3)2 under high pressure [11]. The
state remained incompletely characterized, however, and
its existence has been questioned [12]. Here we report
heat capacity C(T) measurements along with simulations
of relevant quantum spin models and map out the (P,T)
phase diagram of the material. At pressures P between 1.7
and 2.4 GPa, the temperature dependence of C/T exhibits
features—a hump followed by a smaller peak at lower
T—characteristic of a paramagnet with strong quantum
fluctuations undergoing a phase transition below T = 2 K
into a plaquette-singlet state. We also observe a differ-
ent transition at T ⇡ 2 – 3.5 K into what appears to be
a previously missed antiferromagnetic state at P ⇡ 3 – 4
GPa. The possibility to tune SrCu2(BO3)2 between the
plaquette-singlet and antiferromagnetic states at moder-
ately high pressures opens opportunities for experimental
tests of quantum field theories and lattice models involv-
ing fractionalized excitations, emergent symmetries, and
gauge fluctuations [1, 4, 5, 13].

The S = 1/2 magnetic moments of SrCu2(BO3)2 re-
side on the Cu ions, which form orthogonal dimers within
the two-dimensional (2D) planes [14, 15]. The two domi-
nant Heisenberg exchange couplings J

ij

S
i

· S
j

realize the
Shastry-Sutherland (SS) model [Fig. 1(a)], with intra- and
inter-dimer values J 0 ⇡ 75 K and J ⇡ 45 K, respectively.
The SS model [16] was originally conceived as an example
of a 2D quantum spin system with an exact solution; when
0  ↵ = J/J 0 . 0.68 the ground state is a product of
dimer singlets [10, 16, 17]. For ↵ ! 1 the system reduces to

the antiferromagnetic (AF) Heisenberg model [18], but there
is also a third phase between the dimer-singlet (DS) and AF
phases. Recent calculations [17] have confirmed an early sce-
nario [10] of a plaquette-singlet (PS) phase at ↵ ⇡ 0.68�0.75
that breaks lattice translation symmetry [Fig. 1(a)].

At ambient pressure the properties of SrCu2(BO3)2 agree
well with SS model calculations in the DS phase [14, 15].
AF order has been observed at P ⇡ 4 GPa [11], before a
tetragonal to monoclinic structural transition takes place that
invalidates the SS description [19–21]. Since the Mermin-
Wagner theorem prohibits spin order in 2D Heisenberg sys-
tems at T > 0, the AF order should be due to weak inter-layer
couplings. A 2D SS description of the quantum phase transi-
tions is still relevant, and the simplest explanation of the be-
havior under pressure is that ↵ increases with P [10, 11, 22].
Then it should also be possible to stabilize the PS phase of
the SS model within some region of intermediate P at low T .
Breaking a discrete two-fold (Z2) symmetry, the PS order can
appear at T > 0 already in an isolated layer, and 3D effects
should be less important than at the AF T > 0 transition.

Following earlier indications of an intermediate phase with
broken spatial symmeties [23, 24], an inelastic neutron scat-
tering study revealed an excitation attributed to a PS state [11].
However, the new mode was only detected at P = 2.15 GPa,
and recently an alternative scenario with no PS phase was pro-
posed [12]. Here we will argue that the PS phase does exist
and is directly connected to a low-T (below 4 K) AF phase
between 3 and 4 GPa that was not observed previously.

We have performed high-pressure heat capacity (C) mea-
surements on SrCu2(BO3)2 single crystals. Based on the re-
sults and supporting numerical simulations of quantum spin
models, we have extracted the phase diagram, Fig. 1(b), in the
whole range of pressures where the SS model should be rele-
vant. We discuss data for still higher pressures in Supplemen-
tary Information. Six different samples were studied success-
fully, and for each of them C(T ) was measured from room
temperature down to 1.5 K or 0.4 K at several pressures (using
two different types of cryostats and pressure cells; see Meth-
ods). Consistent results were obtained among all these mea-
surements. In Fig. 1(c-f) we show typical results for C(T )/T
in the different pressure regions.
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Random-singlet (RS) state in disordered J-Q model
5

FIG. 2. The statically dimerized J1-J2 Heisenberg model,
with thin black bonds and thick red bonds representing ex-
change couplings Si · Sj of strength J1 and J2, respectively,
between S = 1/2 spins. The A and B sublattices are in-
dicated with solid and open black circles. The larger blue
circles indicate randomly removed sites. For the intact sys-
tem with j2 = J2/J1 larger than a critical value (j2c ≈ 1.91
[54, 77, 78]), the ground state is approximately a product
of singlets on the strong bonds, and when diluted the ’dan-
gling spins’ remaining at the ’broken dimer’ adjacent to each
removed spin constitutes a localized magnetic S = 1/2 mo-
ment.

lar ordering mechanism [17]. However, our results and
arguments suggest that the correlated nature of spinon-
antispinon pairs (and larger complexes of even numbers
of spinons) in the randomized VBS was not taken fully
into account previously. In particular, we argue that a
key missing ingredient in the analysis of bipartite sys-
tems Kimchi et al. [17] is that the VBS domain walls
act as channels of enhanced spinon-spinon interactions
within the groups of even numbers of spinons, thus lead-
ing to stronger than expected tendency to local singlet
formation and no residual AFM ordering.

Though it is not immediately clear whether the RS
phase that we identify and characterize here corresponds
to the same fixed point as the state identified on the
triangular lattice by Kimchi et al. [17], this certainly is
a strong possibility based on symmetry considerations.
Moreover, similar to our results presented here, the ran-
dom state on the triangular lattice does not have infinite
dynamic exponent, but exhibits power-law correlations
in both space and time. We further show that the RS
state can also form in some cases even though the bi-
partite host system is not yet VBS ordered, still in the
AFM state, as long as there are sufficient interactions
(here Q terms) favoring the formation of some local VBS
domains. This role could also be played by standard frus-
trated interactions, and it therefore appears most likely
that the RS state in the disordered J-Q model actually
is the same as those states discussed previously in the
context of a variety of frustrated host systems, including
the ED studies [13–16] and DMRG calculations [19]. In
these numerical works, the physical picture presented for
the nature of the RS state was different, however, with an
emphasis in Refs. 13–16 put on the singlet pairs (Ander-
son localization of singlets) [15] and no reference to the
localized spinons and VBS domains. These are actually
the objects that form the key ingredients in the theory

φ=3π/4

φ=π φ=0

φ=π/2

FIG. 3. Illustration of a spinon forming as a consequence of an
unpairable spin at the nexus of domains walls separating the
four different VBS patterns. The left part shows an example
of short valence bonds forming the four different domains,
with an unpaired spin located where the domains meet. The
right part shows a simplified view, with the angle φ of the
VBS pattern indicated for each domain.

of Ref. 17 and of the further developed mechanisms pro-
posed here for the formation of the RS state even in the
absence of traditional frustration.
In Secs. IV and V we will present QMC results for

the Hamiltonian Eq. (1) with random J and random Q
couplings, as well as for a site site diluted system with no
randomness in the remaining J and Q interactions. For
reference we also present results for the diluted J1-J2
Heisenberg model. To characterize the ground states of
these systems in an unbiased way, we use a ground-state
projector QMC method formulated in the valence-bond
basis [79], and to obtain properties at temperature T > 0
we use the stochastic series expansion (SSE) method [80].
To make the results sections more accessible and concise,
in Sec. III we first outline the physical scenario that arises
out of the many different calculations reported in the
subsequent sections.

III. DOMAIN WALLS AND SPINONS IN THE
DISORDERED VALENCE-BOND SOLID

On the 2D square lattice and with the bipartite na-
ture of a model such as the J-Q model, the main ques-
tion regarding the disordered VBS state is whether the
spinons localizing at each nexus of four domain walls [23]
will form long-range AFM order or some other collective
state with only short-range or algebraic spin-spin cor-
relations. As already discussed in Sec. II B, one might
suspect [17] that AFM order should exist for all values of
g = J/Q, in analogy with the fate of the quantum param-
agnet and Néel–paramagnetic quantum phase transition
in Heisenberg models with static dimerization when spins
are randomly diluted (Fig. 2). This picture neglects im-
portant spatial correlations among the localized spinons,
however, as well as the nature of the VBS domain walls
that connect the spinons.
To understand these spinon correlations, consider first

an individual, localized spinon. As illustrated in Fig. 3,

Spinon
nexus of four domain 
walls, with unpaired spin 
in the core
(Levin, Senthil, 2004,…)

6

FIG. 4. Illustration of multi-spinon complexes; a spinon pair
(left), with the spinon and antispinon marked as black and
white circles, respectively, and a quadruplet (right) consisting
of two spinons and two antispinons. Two trivial domains, the
yellow and red circles, are also shown. The color coding of
the VBS domains is as in Fig. 3, and all domain walls are of
the elementary type where the VBS angle twists by π/2.

the four lattice bonds pointing out from the site of an
unpaired spin (the core of the spinon) correspond to the
four different VBS patterns. While a different pattern
can also in principle form, with the bonds rotated by
90◦ relative to those in the figure [23], our simulations
of the J-Q model consistently show the ’star’ pattern at
the spinon (but this local arrangement should not change
the properties of the domain walls discussed in Ref. [23]).
The four bonds and the corresponding extended VBS do-
mains can be associated with angles φ as indicated. Note
that the energetically favored domain walls correspond to
a π/2 phase twist [23], while walls with π phase change
are unstable and break up into two π/2 walls (as shown
explicitly in Ref. [81]). This is the origin of the proper
classification of the symmetry of the VBS as a Z4, or
’clock’ symmetry (as opposed to the full Sn permutation
symmetry if all domain walls were equivalent) [23, 69].
Within a domain wall, the angle φ (properly defined by
coarse graining) changes continuously.
Note that a spinon can be associated with either sub-

lattice A or B, and the way in which the angle φ changes,
increasing or decreasing, when going around the spinon
in a given direction depends on the sublattice. Thus, we
can also refer to the two cases as a spinon and an anti-
spinon (but for convenience we will often just use the
term spinon for both). This classification remains valid
also in the presence of longer valence bonds, as long as
only bonds connecting the two sublattices are allowed.
This is exactly the case with bipartite interactions, where
bonds connecting sites on the same sublattice are always
eliminated when a state written in the valence-bond basis
is time-evolved.
As also stressed in Ref. [17], when starting from the

clean VBS, spinons always have to be introduced in pairs
of spinons and antispinons. When separating the two
members of a pair, domains form such that each spinon
is connected to all four types of domains as in Fig. 3. As
shown in Fig. 4, this leads to a four-stranded confining

string, akin to the (more complicated) quark-confining
strings in quantum chromodynamics [82]. Here we have
not shown the details of the bonds within the domains,
only the colors corresponding to the coding in Fig. 3. As
already mentioned, in principle there will also be valence
bonds of length greater than one lattice spacing, but the
pictures remain valid as long as the probability of longer
bonds decays sufficiently rapidly with the bond length. If
we consider the total-spin singlet ground state, there will
also be a bond connecting the spinon and the antispinon
sites. Such a long bond corresponds to a small gap to
the triplet; vanishing in the limit of large separation. In
the non-random VBS, the spinons can not actually be
far separated in this way, because other spinons can be
excited from the vacuum (the VBS ground state) as the
string energy becomes sufficiently high; thus the confin-
ing strings will break, which again is analogous to the
case of quark confinement.

In a system with random couplings, different VBS an-
gles φ ∈ {0,π/2,π, 3π/2}will be favored in different parts
of the system and the domain size will be governed by
the competition of the energy cost of the domain walls
and the energy gains due to the disorder. In classical
systems, according to the Imry-Ma argument [71], this
always leads to domain formation at T = 0 in dimen-
sionality D < 2, while for D > 2 the uniform state is
stable in the presence of weak disorder. Considering en-
tropy effects, the uniform state is also unstable at T > 0
in D = 2. Similarly one can expect quantum fluctuations
to also always lead to domain formation in systems with
two spatial dimensions at T = 0 [17]. At least for weak
disorder, the domain walls should still be of the π/2-
twist type. In addition to single domains forming with
this phase difference with respect to their surroundings
over the whole length of the boundary, the domain-wall
topology also allows for a different situation if localized
spinons are allowed to form. As in the uniform VBS
state discussed above, spinons forming in a VBS broken
up into domains must also always appear in groups of
an even number—half of the spinons and half of them
antispinons. In Fig. 4, a quadruplet is shown along with
the spinon pair already discussed. It is this inherent cor-
relation among spinons and, importantly, the tendency
to singlet formation within the groups, that we believe
prohibit the formation of AFM order in the random VBS
(which we will show is actually the RS phase) arising out
of the VBS in the J-Q model. The effective interactions
between the spinons should be mediated through the do-
main walls (and we will show explicit evidence for this),
because they have much smaller local mass gaps than the
bulk of the VBS domains (through which interactions be-
tween different spinon groups have to be mediated). We
will also later comment on this picture in the context of
SDRG theory.

According to our findings in Sec. IV, the above de-
scribed disordered VBS is an RS state with mean spin
correlations decaying with distance as r−2. It arises out
of the VBS state in the J-Q model with random cou-

Imry-Ma argument (1D, 2D)
any amount of disorder in a VBS
will cause domain formation

Spinons will form in pairs

What kind of magnetic state forms
from the interacting spinons?

2D: Controversial
- Our work: RS appears to be stable
- Kimchi, Nahum, Senthil, PRX 2018: Likely weak AFM order

1D: RS state in random S=1/2 chain
- infinite-randomnes fixed point (z=∞)
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FIG. 1. Qualitative AVBS ground state of an S = 1/2 spin chain.
The open and solid circles represent the two sublattices of the
bipartite lattice and the arches indicate singlets (valence bonds).
The short valence bonds form ordered domains, between which
spinons localize. In the ground state the spinons freeze pairwise into
long-bond singlets.

II. MODELS AND METHODS

We consider interactions written with singlet projectors on
two spins i,j ,

Pi,j = 1/4 − Si · Sj . (1)

The antiferromagnetic Heisenberg Hamiltonian for a chain
with N spins can be written as

HJ = −
N∑

i=1

JiPi,i+1, (2)

where Ji > 0 is a random antiferromagnetic coupling. To
achieve a robust VBS state (an AVBS in the presence
of disorder) accessible to QMC calculations without sign
problems, we use the six-spin interaction [21] to construct
a chain described by

HQ = −
N∑

i=1

QiPi,i+1Pi+2,i+3Pi+4,i+5, (3)

with random Qi > 0. A similar four-spin coupling also
leads to a VBS, but with a much smaller order parameter.
Note that the clean Hamiltonian (Qi = 1∀i) is translationally
invariant and the system dimerizes by spontaneous symmetry
breaking, leading to a twofold degenerate ground state. In both
models we use periodic boundary conditions and the following
distribution of the random couplings (λ = Ji or λ = Qi):

π (λ) =
{
d−1λ1/d−1, for 0 < λ ! 1,
0, else, (4)

which is uniform within the range (0,1] for d = 1 and becomes
singular when d → ∞.

A. Strong-disorder RG

The basic idea of the strong-disorder renormalization-group
(SDRG) scheme is to find a system’s ground state by succes-
sively eliminating degrees of freedom with high energy. The
SDRG method for the random Heisenberg chain (the random-
J model) is well documented and we refer to the literature
for details [1–4,12]. In essence, the RG procedure for the
random Heisenberg chain consists of iteratively locating the
two spins connected by the strongest coupling # = max{Ji},
putting these in their singlet ground state, and perturbatively
generating an effective coupling between the neighboring spins
with strength

J̃ = J ′J ′′

2#
< #, J ′, J ′′, (5)

where J ′ and J ′′ are couplings between the singlet and the
neighboring spins. One can also do this step nonperturbatively

by diagonalizing the relevant subspace exactly [7], but this
does not change the asymptotic behavior. The decimated spins
are now “frozen out” and will form a VB in the ground state that
is successively generated by repeating the steps. This process
yields an effective Hamiltonian with gradually fewer degrees
of freedom and lower energy scale. For the antiferromagnets
considered here, the final ground state is a product of singlet
pairs, i.e., a single VB configuration.

The generalization of the SDRG to the random-Q model
(3) with three singlet projectors (also called Q3 interactions)
is nontrivial, as the multispin interaction generates various
terms of the forms Pi,i+1Pi+2,i+3 (Q2 interactions) and Pi,j

(J interactions) under SDRG, with several different cases in
the perturbative treatment of the decimated operators. The
technical details of the method is described in Appendix A.
Here we comment on the energy flows and demonstrate
identical asymptotic behaviors for the random-J and random-
Q systems.

Since the decimation procedure applied in the SDRG
is an approximation relying on the flow toward a singular
coupling distribution, the method is in general not suitable for
studying systems where the quenched disorder is irrelevant
in the renormalization-group sense. For systems governed
by strong disorder, the approximation made in perturbation
calculations and the “freezing” of degrees of freedom becomes
inconsequential in the long-distance limit; in essence, because
these systems, when studied at ever larger length scales (lower
energy), appear more and more disordered. The RS state,
which is the SDRG solution for the approximate ground state
of the random Heisenberg chain (as well as many other spin
chains, e.g., the random XX chain [3]), is a prominent example
for extremely strong randomness, called infinite randomness
fixed-point solutions. The fixed point is characterized by
unconventional dynamic scaling,

ln ξt ∼ ξψ , (6)

of the correlation length ξ and the correlation time ξt , implying
an infinite dynamic exponent, in contrast to the conventional
power-law scaling,

ξt ∼ ξ z, (7)

with a finite dynamic exponent z < ∞. In SDRG, the dynamic
scaling behavior can be identified, for example, by examining
the RG flow of the logarithmic energy scale ln(#); here the
energy scale is the strongest effective coupling at each step of
RG.

Figure 2 shows the RG evolution of the log-energy scales
for the two systems considered in this work, both with chain
length N = 8192 and disorder parameter d = 1. In both these
cases, the log-energy scale tends to a power-law relation with
the number N# of the active spins (the spins that are not yet
decimated at a given energy scale #) as

− ln(#) ∼ N
−1/2
# , (8)

corresponding to a non-power-law dynamic scaling given in
Eq. (6) with ψ = 1/2 and an infinite dynamic exponent z →
∞, as predicted for an RS state [3].

The convergence of the energy scale for the random-Q
chain in Fig. 2 is slower than for the random-J chain.
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Random-Q J-Q model (large Q/J)

Mechanism of RS state formation
- spinons appear in pairs (not random distribution of spinons)
- domain walls mediate spinon-spinon interactions
- pairing avoids AFM order, instead power-law correlations
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FIG. 17. Binder cumulants vs the inverse system size at the
(L, 2L) crossing points for systems with bimodal Q and J
distributions as well as a uniform distribution of J from the
range [0, 2]. The line is a collective fit to the data for the
bimodal cases.

dom system only can take the form of a domain-forming
VBS. Thus, it seems very plausible that the same RS
state will also be generated if the host system includes
some frustrated interactions that weaken the AFM order
and favor local formation of VBS domains in a disor-
dered system, instead of the Q terms considered for that
purpose here. Such frustrated disordered systems can
include the Heisenberg model on the triangular lattice,
which is equivalent to the square lattice with half of the
diagonal couplings activated. It would then appear quite
plausible that RS state we have identified here on the
square lattice is actually the same state as that discussed
previously for frustrated systems.

F. Universality of the AFM–RS transition

Given our results presented above, it appears most
likely that the AFM–RS transition is universal and that
the RS phase itself has universal properties, such as the
1/r2 power-law decay of the mean spin correlations (but
we will show in Sec. V that the dynamic exponent is not
universal inside the RS phase but varies continuously—
though it also is universal at the AFM–RS transition).
An often used characteristic of a critical point is the value
of the Binder cumulant. This quantity is universal, in the
sense that it is independent on microscopic details, but,
unlike many other universal quantities, such as critical
exponents, it depends on boundary conditions and as-
pect ratios of the system [90–92]. In the projector QMC
method we effectively take the limit of the time-space
aspect ratio β/L → ∞ and the system geometry is also
the same for both the random Q and random J models.
Thus, we have identical boundary conditions and aspect
ratios, and would expect the same value of the Binder
cumulant at the AFM–RS transition point.
In Fig. 17 we show results for three disorder types for

which we have sufficient data to carry out careful studies
of the scaling of the AFM cumulant at the (L, 2L) cross-

ing points; in addition to the bimodal Q and J cases we
also show results for a continuous distributions of J , with
values drawn uniformly from the range [0, 2]. Remark-
ably, the cumulants for all cases not only appear to flow
to the same point in the limit of infinite size, but even the
leading correction in 1/L seems to be the same (even as
regards the prefactor of the power-law correction). This
correction appears to be almost linear, and we analyze
the data under this assumption, though it is more likely
that the form is L−ω with ω just close to 1. For the
two bimodal distributions all the data fall on the line
as closely as would be statistically expected (with excel-
lent goodness of fit), while for the continuous distribution
we see that the data for the smaller sizes deviate more
significantly, indicating that the higher-order corrections
do depend on the kind of disorder distribution. These
results clearly lend further support to the existence of a
universal AFM–RS critical point, and, therefore, to the
existence of the RS phase.

V. FINITE TEMPERATURE PROPERTIES
AND THE DYNAMIC EXPONENT

Finite temperature properties are useful for extracting
the dynamic exponent z and may be the most direct route
to connect to experiments. We will here consider the
uniform magnetic susceptibility,

χu =
1

TN
⟨m2

z⟩, mz =
N
∑

i=1

Sz
i , (12)

and the local susceptibility defined by the Kubo integral

χloc(r) =

∫ 1/T

0
dτ⟨Sz

r
(τ)Sz

r
(0)⟩, (13)

where Sz
r (τ) is the standard imaginary time-dependent

spin accessible in QMC simulations. We here use the
SSE method and refer to the literature, e.g., Ref. 54, for
further technical information. In this section, we average
the local susceptibility over all the sites r of the system
(as well as over disorder realizations) and call this aver-
aged quantity χloc. In Sec. VI we will show an example
of the spatial dependence of χloc(r) for a fixed disorder
realization.

A. Power-law behaviors

At a quantum critical point of a system such as those
considered in this work, where the magnetization is a
conserved quantity, the susceptibility should scale with
the temperature as [93]

χu ∝ T d/z−1, (14)

where d = 2 in our case. In contrast, the local suscepti-
bility is sensitive to the fluctuations of the non-conserved

Local susceptibility (normalized)Strongest bond at each site
- empty if not strongest for both sites
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FIG. 12. (a) String fraction multiplied by L vs the coupling
ratio Q/(J + Q) of the random Q model for several system
sizes. In (b), crossing points Q∗/J extracted from system size
pairs (L, 2L) of the data sets in (a) are graphed vs the inverse
system size, along with crossing points extracted from the
Binder cumulant UM in Fig. 10(a). The curves are fits to a
common constant (the critical value of Q/J) with corrections
∝ L−ω, where ω ≈ 1.3 and 0.9 for the UM and λL crossings,
respectively.

this condition in the fit shown in Fig. 12(b). The critical
point so extracted is Qc/J ≈ 1.23. We take this analysis
as strong evidence for a quantum critical point separat-
ing the AFM phase and a non-magnetic phase that we
argue is an RS phase.

3. Correlation functions

Next, we consider the mean spin and dimer correlation
functions. Fig. 13(a) shows the mean spin correlations,
Eq. (8a), at the largest distance on the periodic lattices,
r = L

√
2, versus the system size L. For three different

coupling ratios inside the RS phase, we find the same be-
havior; a power-law decay corresponding to the distance
dependence Cs(r) ∝ r−α with α = 2. Instead of carrying
out line fits to find α, we here just show comparisons with
the form with α = 2, but individual fits in all cases are
also consistent with this value. Interestingly, C(r) ∝ r−2

is also the form at the RS fixed point in 1D [36], though
in that case there are apparently also multiplicative log-
arithmic corrections [42] that we do not find here in 2D.
In the case of the dimer correlations defined in Eq. (8b),
Fig. 13(b) shows results at the longest distance where we
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FIG. 13. Absolute values of the mean long-distance spin (a)
and dimer (b) correlations at three coupling ratios inside the
RS phase of the random Q model. Results are shown at the
largest distance on the periodic L×L lattices. The three lines
in (a) correspond to decay of the form ∝ L−2 and the line in
(b) shows the form ∝ L−4.

have extracted the relevant connected piece of Cd(r) as
the difference between even and odd distances r, which
produces less noisy results than the method of subtract-
ing the mean value in Eq. (8b). Here the relative error
bars are still rather large for the larger systems, and we
only show consistency with the form Cd(r) ∝ r−4, which
again is the same form as in 1D (up to the log corrections
found in 1D) [42].

It is also interesting to investigate the probability dis-
tribution of the values of the correlation functions in the
spatially non-uniform system. Here we again consider
the longest distance rij = L

√
2 on the periodic square

lattice and accumulate in histograms all the individual
spin correlations Cij = C(rij) for spins at sites i, j sep-
arated by this distance, with a large number of disorder
realizations used to produce reasonably smooth distri-
butions. In this case it is important to run rather long
simulations for each individual disorder realization, so
that the statistical errors do not influence the distribu-
tions significantly for the smaller instances of C(rij) (in
contrast to the mean disorder-averaged values, where one
only has to make sure that the individual simulations are
equilibrated and the final statistical error is dictated by
the number of disorder instances). There will always be
some problems with large relative errors for the smallest
correlations, and therefore we expect the distributions
presented below to be most reliable at the upper end of
the distribution.

spin and dimer correlations

spin correlations ~1/r2

dimer correlations ~1/r4

�u / T d/z�1
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FIG. 18. Temperature dependence of the uniform susceptibil-
ity of the random Q model for several di↵erent system sizes.
(a) shows results at Q/J = 1.25, close to the estimated AFM–
RS critical point, while the system in (b) is well inside the RS
phase, at Q/J = 2. The horizontal line in (a) corresponds
to the scaling expected if the dynamic exponent z = 2; here
the horizontal value was adjusted to roughly match the low-
T , L = 64 data. The curve in (b) shows a fit of the L = 64
data to the form �u = a+ bT

�c, with the exponent c = 0.64
corresponding to z = 2/(1� c) ⇡ 5.6.

critical order parameter, and this is reflected in the scal-
ing form (see, e.g., Ref. 29)

�
loc

/ T �/(⌫z)�1. (15)

Here �/⌫ should be equal to /2, where  = 2 is the
exponent we have found for the decay of the spin corre-
lations; C

s

(r) / r�. Thus, we expect the asymptotic
form �

loc

/ T 1/z�1, which diverges faster than the uni-
form susceptibility Eq. (14). We also note that, in the al-
ternative (less likely) scenario where  = 4 (Sec. IVD3),
we would have �

loc

/ �
u

.
For the above forms to be valid, we not only have to

reach su�ciently low in T , but also the system size has to
reach the range where there is no longer any size depen-
dence left. This requirement limits the temperatures we
can reach, as demonstrated in Fig. 18 in the case of the
uniform susceptibility of the random Qmodel close to the
critical point and inside the RS phase. We can still see
critical behaviors emerging for a range of temperatures
for the largest system sizes. In Fig. 18(a), at Q/J = 1.25,
which should be close to the AFM–RS transition accord-
ing to the results in Fig. 12, we find very little size de-
pendence, indicating, by Eq. (14), that z = d = 2 at
the transition. The small increase seen at low T before

10
-2

10
0

T/Q

10
-2

10
-1

 χ
u
 ,

 χ
lo

c

L=48, χ
u

L=48, χ
loc

10
-2

10
-1

10
0

T/J

10
-2

10
-1

 χ
u
 ,

 χ
lo

c

L=64, χ
u

L=64, χ
loc

Q/J=4

J/Q=0

FIG. 19. Temperature dependence of the uniform and local
susceptibilities of the Random Q model deep insider the RS
phase, at Q/J = 4 and J/Q = 0. The fits to the �

u

data are of
the same type as in Fig. 18(b), with the exponents c = 0.68
(Q/J = 4) and 0.76 (J/Q = 0). The local susceptibility
appears to not yet have reached its asymptotic low-T form,
Eq. (15), and we do not present any fits to these data.

the finite-size form is most likely due to Q/J not being
exactly at the AFM-RS transition but slightly inside the
RS phase.
Well inside the RS phase, at Q/J = 2 as shown in

Fig. 18(b), we find a clearly divergent low-T behavior of
�
u

. Since the overall magnitude of the susceptibility orig-
inating from the localized spinons is small, when fitting
to the expected power-law form we also include a con-
stant, as a natural leading correction to the asymptotic
divergent form. This works well and the value of the ex-
ponent given by the fit corresponds to z ⇡ 5.6. Thus, we
find that z increases rapidly as the RS phase is entered.
Figure 19 shows results even further inside the RS phase,
along with fits such as those discussed above. Here we
find z ⇡ 6.2 at Q/J = 4 and z ⇡ 8.3 when Q/J ! 1
(J = 0). In the latter case it should be noted the bi-
modal disorder distribution, where half the Q couplings
are set to zero, can lead to isolated spins that contribute
/ 1/T to the susceptibility. However, we avoid this is-
sue by “patching” such rare isolated spins by adding a
randomly chosen Q interaction for each of those spins to
connect them to the rest of the system.
Figure 19 also shows results for the local susceptibility.

Here we do not observe the expected faster divergence
than in �

u

, given by Eq. (15), and it appears that the
asymptotic temperature regime has not yet been reached.

dynamic exponent z

z=d=2 at AFM-RS boundary
z>2 inside RS phase

�u = T�a + b

- bimodal random Q model (J uniform)



Experiments
Some ‘disordered spin liquids’ may actually be RS states
Recent example Sr2CuTexW1-xO6
- square-lattice S=1/2 system with
   J1 or J2 randomly on plaquettes 

Antiferromagnetic interactions on simple geometric lattices,
such as triangular, square or tetrahedral, can give rise to
magnetic frustration, because not all interactions between

neighboring spins can be satisfied. These frustrated magnets have
been widely studied in the search for exotic ground states such as
quantum spin liquid (QSL) and quantum spin ice1. The square
lattice has been of special interest due to its connection to high-
temperature superconductivity2. Frustrated magnetism on a
square lattice can be described using the spin-1/2 Heisenberg
square-lattice model (J1–J2 model). This model has two interac-
tions: nearest-neighbor interaction J1 along the side of the square
and next-nearest-neighbor interaction J2 along the diagonal of the
square (Fig. 1a). The J1–J2 model has three classical ground states:
ferromagnetic (FM), Néel antiferromagnetic (NAF) and columnar
antiferromagnetic (CAF) order. The Néel order occurs when the
J1 interaction is antiferromagnetic and dominates (J2/J1 « 0.5),
while the columnar order requires a dominant antiferromagnetic
J2 interaction (J2/J1 » 0.5)3.

The nature of the ground state in the highly frustrated region at
the NAF–CAF boundary near J2/J1 ≈ 0.5 is under debate.
Anderson4 famously proposed that a QSL state emerges when
Néel order is frustrated by including an antiferromagnetic J2
interaction. Quantum spin liquids are highly entangled states, in
which spins remain dynamic even at absolute zero1, 5. Experi-
mental QSL candidates are known with several different structure
types6–11, typically Kagomé lattices, but a square-lattice QSL has
not been realized. The other ground state suggested for the J2/J1 ≈
0.5 region is a valence bond solid12–14, in which spins form dimer
or plaquette singlets with a static pattern. Despite these theore-
tical predictions for the square-lattice antiferromagnets, no
experimental evidence of a compound in the J2/J1 ≈ 0.5 region
exists.

Isostructural A2B’B”O6 double perovskite antiferromagnets
Sr2CuTeO6 and Sr2CuWO6, where A= Sr2+, B’= Cu2+ and B”
= Te6+/W6+ (Fig. 1b), are well described by the J1–J2 model15–20.
A Jahn–Teller distortion and an accompanying orbital ordering
result in a square lattice of Cu2+ (S= 1/2) ions with highly two-
dimensional magnetic interactions15, 21. The two B” cations, Te6+

and W6+, have nearly the same size22, and thus the bond dis-
tances and angles in Sr2CuTeO6 and Sr2CuWO6 are very

similar21. Nevertheless, the diamagnetic B” cation has a sig-
nificant effect on the magnetic properties. Recent neutron scat-
tering studies have revealed NAF ordering at TN= 29 K with J1=
−7.18 and J2=−0.21 meV (J2/J1= 0.03) for Sr2CuTeO6, whereas
Sr2CuWO6 has CAF ordering at TN= 24 K with J1= –1.2 and J2
= –9.5 meV (J2/J1= 7.92)18, 19, 23, 24 (Fig. 1c). This dramatic
change in exchange interactions is driven by differences in orbital
hybridization. In Sr2CuWO6, the dominant 180°
Cu–O–W–O–Cu J2 exchange pathway is enabled by significant W
5d0–O 2p hybridization19, 25. In contrast, the filled 4d10 states in
Sr2CuTeO6 are core-like and do not hybridize18, 25, resulting in a
weak J2. The origin of the dominant 90° J1 interaction is under
debate: Babkevich et al.18 proposed a Cu–O–O–Cu exchange
pathway without a contribution from Te, whereas Xu et al.25

proposed that some Te 5p–O 2p hybridization does occur
affecting the J1 interaction. Since Sr2CuTeO6 has a dominant
J1 interaction and Sr2CuWO6 a dominant J2, it is natural to
ask whether the J2/J1 ≈ 0.5 region could be reached by making a
Sr2Cu(Te1-xWx)O6 solid solution.

Recently, Zhu et al.26 showed that Te6+–W6+ (d10–d0) cation
mixing can be used to tune the magnetic ground state of
Cr3+ (S= 3/2) inverse trirutiles Cr2TeO6 and Cr2WO6. Similar to
Sr2CuWO6, W 5d0–O 2p hybridization in Cr2WO6 allows an
exchange pathway not observed in Cr2TeO6, resulting in different
magnetic structures for the two compounds. Magnetic interac-
tions can be tuned by making a Cr2(Te1-xWx)O6 solid solution; a
change in magnetic structure occurs at x= 0.7. Differences in the
magnetic properties of isostructural d10 and d0 compounds have
also been observed in perovskite-like Ni2+ (S= 1)27, 28 and Os6+

(S= 1)29 compounds.
Here we show that the magnetic ground state of a spin-1/2

square-lattice antiferromagnet can be tuned by d10–d0 cation mix-
ing. In the solid solution Sr2Cu(Te0.5W0.5)O6 spins remain entirely
dynamic down to 19mK. This represents a suppression of TN by at
least three orders of magnitude compared to the antiferromagnetic
parent phases. Moreover, the magnetic specific heat shows T-linear
behavior at low temperatures, despite the material itself being an
insulator. These results indicate a spin-liquid-like ground state. A
special property of Sr2Cu(Te0.5W0.5)O6 is the high amount of
quenched disorder in the magnetic interactions.
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Fig. 1 Spin-1/2 Heisenberg square-lattice model in Sr2CuTeO6 and Sr2CuWO6. a Phase diagram of the J1–J2 square-lattice model. J1 is the nearest-neighbor
interaction and J2 the next-nearest-neighbor interaction. The classical ground states are ferromagnetic (FM), Néel antiferromagnetic (NAF) and columnar
antiferromagnetic (CAF) ordering. The highly frustrated J2/J1 ≈ 0.5 and J2/J1 ≈ –0.5 regions are located at the NAF–CAF and CAF–FM boundaries,
respectively. b The double perovskite structure of Sr2CuTeO6 and Sr2CuWO6. Sr, Cu, B” (Te/W) and O are represented by green, blue, dark yellow and red
spheres, respectively. The blue (dark yellow) octahedra represent CuO6 (B”O6). c The Néel antiferromagnetic structure of Sr2CuTeO6 and the columnar
antiferromagnetic structure of Sr2CuWO6 with the view down the c-axis. The dominant antiferromagnetic interactions are shown
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Susceptibility divergence for x=0.5 may be sign of RS
- re-analysis of experimental data shows power slower than 1/T

Results
Crystal structure. Polycrystalline samples of Sr2Cu(Te0.5W0.5)O6,
Sr2CuTeO6 and Sr2CuWO6 with crystallite size in the micrometer
range were synthesized via a conventional solid state reaction.
Sample color ranged from light green to yellow, indicating that the
materials are insulating. This was confirmed with a room-
temperature four-probe electrical conductivity measurement. Xray
diffraction analysis found the samples to be of high quality with a
trace SrWO4 impurity in Sr2Cu(Te0.5W0.5)O6 and Sr2CuWO6; the
relatively stable SrWO4 is a common impurity in Sr2CuWO6

15,21.
Sr2Cu(Te0.5W0.5)O6 retains the I4/m double perovskite structure of
the parent phases with little difference in lattice parameters or
bond distances; Rietveld refinement results are presented in Sup-
plementary Fig. 1 and Supplementary Table 1. Cation order with
respect to B’ (Cu2+) and B” (Te6+/W6+) sites is complete within
experimental accuracy, but tellurium and tungsten are randomly
distributed on the B” site. This results in quenched disorder in the
J1 and J2 interactions between the Cu2+ ions.

Magnetic properties. Magnetic properties of Sr2Cu(Te0.5W0.5)O6,
Sr2CuTeO6 and Sr2CuWO6 are summarized in Table 1. DC
magnetic susceptibilities as a function of temperature are pre-
sented in Fig. 2. The zero-field cooled (ZFC) and field cooled (FC)
curves fully overlap in all samples, and therefore we present only
the ZFC results. The magnetic susceptibilities of Sr2CuTeO6 and

Sr2CuWO6 do not feature a cusp at TN. Instead, in all three
compounds we observe a broad maximum in the susceptibility,
which is a common feature of two-dimensional magnets and QSL
candidates5. This maximum can be characterized by two para-
meters: its position Tmax and height χmax. In the frustrated region
of the square-lattice model near J2/J1 ≈ 0.5 Tmax is predicted to be
lower than in either the NAF (J2/J1 « 0.5) or CAF (J2/J1 » 0.5)
regions30,31. Our magnetic data are consistent with this theore-
tical prediction: Tmax in Sr2Cu(Te0.5W0.5)O6 shifts to a lower
temperature than in Sr2CuTeO6 or Sr2CuWO6. This would place
Sr2Cu(Te0.5W0.5)O6 close to the highly frustrated region, although
the structural disorder present in Sr2Cu(Te0.5W0.5)O6 is not
included in the theoretical model. In the related solid solution
series Sr2Cu(W1-xMox)O6, where both end members have a
dominating J2 interaction and less frustration is expected,
Tmax depends linearly on composition and never goes below
those of the end members15,17. A Curie tail is observed in
Sr2Cu(Te0.5W0.5)O6 at low temperatures. This is likely to be from
a paramagnetic impurity, which are known to be relatively
common in the end phases15–17,24.

Magnetic susceptibilities were fitted to the Curie–Weiss law
χ= C / (T−Θcw), where C is the Curie constant and Θcw is the
Weiss constant. The inverse susceptibilities deviate from the
linear Curie–Weiss behavior below relatively high temperatures
of ≈ 200 K (inset in Fig. 2). For this reason, we performed the
fitting in the temperature range 250–300 K. The Weiss constant
Θcw gives an indication of the total strength of magnetic
interactions in a material. For Sr2Cu(Te0.5W0.5)O6 we obtain
Θcw=−71 K revealing mainly antiferromagnetic interactions
similar in strength to those in Sr2CuTeO6 (Θcw=−80 K). In
contrast, the antiferromagnetic interactions in Sr2CuWO6 are
significantly stronger with Θcw=−165 K. Effective paramagnetic
moments obtained from the Curie–Weiss fits are essentially the
same for all samples and typical for Cu2+ (Table 1). In DC
susceptibility, the ZFC and FC curves were found to overlap for
all samples, which indicates the lack of a spin glass transition. AC
susceptibility of Sr2Cu(Te0.5W0.5)O6 was measured (Supplemen-
tary Fig. 2) to support this conclusion. No frequency dependent
peak was observed in the real part χ’ (dispersion) of the AC
susceptibility indicating that Sr2Cu(Te0.5W0.5)O6 is not a spin
glass. Moreover, the imaginary part χ” (absorption) remains
practically zero.

Specific heat. Results of specific heat measurements of
Sr2Cu(Te0.5W0.5)O6, Sr2CuTeO6 and Sr2CuWO6 are shown in
Fig. 3a. Similar to the magnetic susceptibility, TN cannot be simply
determined from the specific heat of Sr2CuTeO6 or Sr2CuWO6 as
no lambda anomalies are observed. Likewise, no lambda anomaly
is seen for Sr2Cu(Te0.5W0.5)O6 down to 2 K. Moreover, we do not
observe a low-temperature maximum typical of spin-gapped sys-
tems such as valence bond solids32,33 or the valence bond glass
Ba2YMoO6

34. The main difference between the compounds is that
the reduced specific heat capacities of Sr2CuTeO6 and Sr2CuWO6
approach zero with decreasing temperature, as is expected for
insulators, whereas the reduced specific heat of Sr2Cu(Te0.5W0.5)
O6 appears to remain finite.

At temperatures below ≈ 10 K, linear behavior is observed in a
Cp/T vs. T2 plot (inset in Fig. 3a). Specific heat in the range 2–10
K was fitted using the function Cp= γT+ βDT3, where γ is the T-
linear electronic term and βD the Debye-like phononic term. The
T-linear γ terms obtained were 54.2(5), 2.2(2) and 0.7(4) mJ/
molK2 for Sr2Cu(Te0.5W0.5)O6, Sr2CuTeO6 and Sr2CuWO6,
respectively. Sr2Cu(Te0.5W0.5)O6 has a notably large γ term for
an insulator with no free electrons. There are two main
possibilities for a significant γ term in an insulator. In a gapless

Table 1 Magnetic and thermodynamic properties of
Sr2Cu(Te0.5W0.5)O6, Sr2CuTeO6 and Sr2CuWO6

Sr2Cu(Te0.5W0.5)O6 Sr2CuTeO6 Sr2CuWO6

Tmax (K) 52 74 86
χmax (10-3emu/mol) 2.55 2.24 1.55
μeff (μB) 1.87 1.87 1.90
Θcw (K) −71 −80 −165
TN (K) <0.019 2924 2417

k — [½ ½ 0]24 [0 ½ ½]23

f= |Θcw|/TN >3700 ≈3 ≈7
γ (mJ/molK2) 54.2 2.2 0.7
βD (K) 395 381 361
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Fig. 2 Magnetic susceptibility. DC magnetic susceptibility of
Sr2Cu(Te0.5W0.5)O6, Sr2CuTeO6 and Sr2CuWO6 measured in a 1 T field.
Néel temperatures of Sr2CuTeO6 and Sr2CuWO6 are marked with TN,
whereas the position of the maximum in magnetic susceptibility is marked
with Tmax. Zero-field cooled and field cooled curves fully overlap and only
the former is shown. Inset: Inverse magnetic susceptibility and fits to
Curie–Weiss law
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